
Providing Freshness Guarantees for Outsourced
Databases ∗

Min Xie† Haixun Wang‡
†Renmin University of China

Beijing 100872, China
{xiemin,xfmeng}@ruc.edu.cn

Jian Yin‡ Xiaofeng Meng†
‡IBM T. J. Watson Research Center

Hawthorne, NY 10532, USA
{haixun,jianyin}@us.ibm.com

ABSTRACT
Database outsourcing becomes increasingly attractive as ad-
vances in network technologies eliminate the perceived per-
formance difference between in-house databases and out-
sourced databases, and price advantages of third-party data-
base service providers continue to increase due to economy of
scale. However, the potentially explosive growth of database
outsourcing is hampered by security concerns, namely data
privacy and query integrity of outsourced databases. While
privacy issues of outsourced databases have been extensively
studied, query integrity for outsourced databases has just
started to draw attention from the database community.
Currently, there still does not exist a solution that can pro-
vide complete integrity. In particular, previous studies have
not examined the mechanisms for providing freshness guar-
antees, that is, the assurance that queries are executed again-
st the most up-to-date data, instead of just some version of
the data in the past. Providing a practical solution for fresh-
ness guarantees is challenging because continuously moni-
toring data’s up-to-dateness is expensive. In this paper, we
perform a thorough study on how to add freshness guaran-
tees over proposed schemes (including authenticated data
structure-based and probabilistic-based approaches) to pro-
vide integrity assurance. We implement our solutions and
perform extensive experiments to quantify the cost. Our ex-
periment results show that we can provide reasonable tight
freshness guarantees without sacrificing much performance.

1. INTRODUCTION
Database outsourcing becomes increasingly attractive as net-
work performance continues to improve and the cost contin-
ues to decrease. However, concerns about the quality of ser-
vices, security in particular, hamper the growth of database
outsourcing.

∗This research was partially supported by the grants
from the Natural Science Foundation of China under
grant number 60573091; China 863 High-Tech Program(No.
2007AA01Z155); China National Basic Research and Devel-
opment Program Project (No. 2003CB317000); Program for
New Century Excellent Talents in University(NCET).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT’08, March 25–30, 2008, Nantes, France.
Copyright 2008 ACM 978-1-59593-926-5/08/0003 ...$5.00.

There are two aspects of security in database outsourcing:
privacy and integrity. Much previous work has addressed
the issue of safeguarding data privacy [1, 6]. Integrity, on
the other hand, has received attention from the research
community just recently [12, 13, 14, 10]. By integrity, we
mean that query results returned by the service provider
must be correct.

Current known schemes that provide query integrity over
outsourced databases can be categorized into two types. The
first type is based on authenticated data structures [10], and
the second type uses a probabilistic approach [15]. These ap-
proaches have a limited scope – they only consider queries
against read-only databases. A more challenging aspect
of providing integrity assurance lies in providing freshness
guarantees. By “fresh”, we mean the outsourced data is up-
to-date, that is, all database update operations have been
correctly carried out by the service provider. Although re-
searchers have started to realize that having freshness guar-
antee is important, there has not been any systematic study
of this issue so far. In this paper, we perform extensive study
on how to provide freshness guarantees.

We provide freshness guarantees for both types of approaches
[10, 15]. For the authenticated data structure based scheme,
we add timestamps to data signatures to provide freshness
guarantees. For the probabilistic approach, we add fake in-
sertion, deletion, and update operations to provide freshness
guarantees. In both of the schemes, there is a trade off be-
tween the level of the freshness guarantees and the overhead.

Overall, we make four contributions in this paper. First, we
perform a thorough and systematic study on how to pro-
vide freshness guarantees for outsourced databases. Sec-
ond, we propose architecture to provide freshness guaran-
tees for both authenticated data structure based and the
probabilistic based approaches. Third, we implement proto-
types of our solutions and perform experimental studies. We
find that reasonable freshness guarantees only add around
5%−20% overhead for authenticated data structure and only
25% of overhead for probabilistic based approach. Moreover,
we quantified the trade off between the level of freshness
guarantees and the overhead, we found that we can reduce
the overhead significantly for applications that can tolerate
relatively low level of freshness guarantees.

The rest of the paper is organized as follows: In section 2,
we cover the background of this topic. In section 3 and 4,

we describe our architecture to provide freshness guaran-
tees for authenticated data structure based approaches and
probabilistic-based approaches. In section 5, we present our
experiment results. Section 6 discusses related work and
section 7 summarizes the paper.

2. BACKGROUND
In this section, we provide an overview of security issues in
outsourced databases. Our focus is on query integrity of out-
sourced databases. We discuss several aspects of query in-
tegrity and describe primitives, mechanisms, and approaches
to implement query integrity.

2.1 Security in Outsourced Databases
The main obstacle for wide acceptance and deployment of
database outsourcing is security concerns. As the databases
are hosted by third party service providers, it is no long rea-
sonable to assume that the server hardware and software can
be trusted. Service providers may peek into the confiden-
tial information or provide misleading query responses for
various reasons. But more frequently, a third party service
provider can host software from many parties and it could
be difficult to administrate the hosting environment securely,
which can open up vulnerabilities that may be susceptible
of risks ranging from insider attacks, outside hacking, and
human errors.

There are two aspects of security concerns: privacy and in-
tegrity. By privacy in database outsourcing, we mean that
anyone who is not authorized to access, including those who
control the server software and hardware, cannot peek into
the confidential data stored in the database. By integrity
in database outsourcing, we mean that servers cannot make
up query results and query results must be generated by
correctly processing of queries over the most up-to-date un-
derlying data. In this introductory section, we first discuss
privacy and then integrity.

2.2 Privacy
Data privacy is generally achieved through encryption. In
outsourced databases, we have an additional requirement,
that is, we must be able to execute queries efficiently. Vari-
ous database encryption schemes [7, 2] have been proposed
for efficient query processing. The ultimate goal of the re-
search in this field is to make queries in encrypted databases
as efficient as possible while preventing an adversary from
learning anything about the data. Privacy research in out-
sourced database complements our work and our solutions
can leverage progress in the privacy research.

2.3 Integrity
Although privacy in outsourced database has been exten-
sively researched, database research community has just sta-
rted to study integrity of outsourced database recently. There
are three components in integrity of outsourced databases:
authenticity, completeness, and freshness.

Authenticity means that the query result is generated from
original database tuples. Authenticity is generally achieved
by attaching a signature to a tuple or part of a tuple. When
a query is processed by the server, signatures are returned
along with the content of the query result to the client. As

the signature is unforgeable, the client can check the signa-
ture for authenticity.

Completeness means that a query is executed over all the
data and the query result thus contains all the tuples that
satisfy the query. Note that it is possible to meet authentic-
ity requirements without meeting the completeness require-
ment by executing the data over a subset of the data.

Freshness basically means that the queries are executed over
the most up-to-date data. It is challenging to provide fresh-
ness guarantees because old data are still valid data at some
point of time.

Up to this point of time, there does not exist any system
that can provide freshness guarantees even though there are
several systems that can provide both authenticity and com-
pleteness guarantees. Those systems either use the authenti-
cated data structure based approach or use the probabilistic
based approach. In this paper, we investigate how to add
freshness guarantees to both of the approaches. Having a
basic understanding of the two approaches is essential for
understanding the rest of the paper. In the following two
subsections, we provide a detailed description of the two ap-
proaches.

2.4 Authenticated Data Structure Based Ap-
proaches

In authenticated data structure based approaches, complete-
ness guarantees are provided by signing the sorted list of
date attribute values. In response to a query, the tuples
along with a part of the signature on the sorted list are re-
turned to the client. The client can verify that the query
result contains all the tuples matching the selection criteria
by checking the part of the signature.

We illustrate how this approach works by a simple example.
Suppose that a table contains 8 tuples, t1, t2, . . ., t8, the
value of attribute A of those tuples are a1, a2, . . ., a8, and
the list of a1, a2, . . ., a3 is in the ascending order. Further
suppose that a client C issues a query that selects all the
tuples whose attribute A value is between as and ae. Assume
that a3 < as < a4 and a5 < ae < a6. The query result
will be a4 and a5. In a näıve method, the server can send
back the whole signed list of a1, a2, . . ., a8 and the client
can verify that only a4 and a5 meet the selection criteria.
However, sending the whole attribute value list and checking
the whole list can be prohibitively expensive. Note that it is
not necessary for the client to know the whole list to verify
that t4 and t5 are the complete query result. It is sufficient
for the client to know that part of sorted list from a3 to
a6 is a3, a4, a5, a6. This can be implemented by attaching a
pointer to each attribute value ai that points to the attribute
value that is immediately next to ai and signing the pointer.
In our case, a2 points to a3, a3 to a4, a4 to a5, and a5 to a6.
These signed pointers are returned to the client along with
the tuples t4 and t5. The client can then verify that there
does not exist any tuple whose attribute A value is between
a4 and a5 and there does not exist any tuple whose attribute
value is bigger than a5 or smaller than a4 and in the range
between as and ae.

The most recent work in this area is by Li et. al. [10]. In that

work, the authors use PKI to authenticate the database. To
reduce the cost of signature while preserving the ability of
verifying parts of the data, a Merkle hash tree can be built
upon the underlying data and only a signature of the root
node is needed for the authentication.

The drawback of this approach is that it can only handle
simple queries. In a complex query such as a join with the
condition that two attribute values are equal, the complete
list of attribute values is needed to verify the completeness,
which makes this approach impractical.

2.5 The probabilistic approach
In the probabilistic approach [15], we inject a small number
of fake tuples into the outsourced database. Data encryption
ensures that the service provider cannot differentiate fake
tuples from the original tuples in the database. A query
sent to the service provider is executed against the entire
database, and fake tuples that satisfy the query will show
up in the query result. By analyzing these fake tuples, the
system can provide probabilistic guarantees that the service
provider is doing a correct and honest job.

An interesting question is what kind of fake tuples should be
mixed up with the original data in the outsourced database.
In order to analyze the query result, the client must be able
to know what are the fake tuples in the query result. One
approach is to create a copy of the fake tuples and store
them on the client side. While queries are executed by the
service provider against the outsourced database, the client
executes the same query on the local data and compare both
the results. However, this approach requires that the client
manages a local database of the fake tuples, which undoes
the purpose of database outsourcing.

A better approach is to use a set of deterministic functions
to generate the fake tuples [15]. Although tuples generated
by deterministic functions may exhibit certain patterns, it
is provable that the service provider cannot distinguish fake
tuples from original tuples in the database. Thus, instead
of maintaining a copy of fake tuples on the local site, the
client remembers the deterministic functions. Given a query
and the deterministic functions, the client can find the fake
tuples generated by the deterministic functions that satisfy
the query.

We illustrate how the probabilistic based approach works
with an example. We assume that a query has the following
form.

SELECT * FROM T

WHERE T.A BETWEEN a1 AND a2 AND

T.B BETWEEN b1 AND b2 AND . . .

Assume that the server returns RQ for a query Q. The
client knows that RQ should include certain fake tuples by
checking the deterministic fake tuple generating function.
Then, if any of them is absent, we know immediately that
there is an attack.

Auditing whether all fake tuples covered by Q appear in RQ

can be a costly process, for the client needs to join RQ with

its own “copy” of fake tuples to get the result. To alleviate
the cost, we use the header column information for each
tuple t to easily find out the total number of fake tuples
returned by the server for query Q.

Let Cs(Q) be the set of fake tuples in RQ, and let Cc(Q) be
the tuples computed on the client that satisfy Q. Note that
it is easy to ensure that no duplicates exisit in Cs(Q) and
Cc(Q). We have the following conclusion:

Theorem 1. If |Cs(Q)| = |Cc(Q)|, then Cs(Q) = Cc(Q).

Proof. Assume to the contrary Cs(Q) 6= Cc(Q). As
|Cs(Q)| = |Cc(Q)|, ∃t ∈ Cs(Q) such that t 6∈ Cc(Q). But
t ∈ Cs(Q) means t is a fake tuple, whose authenticity is
guaranteed by the encryption and the one-way hash func-
tion, and since t satisfies Q, t must appear in Cc(Q).

Theorem 1 enables the client to audit the completeness of
RQ by counting the tuples, which avoids the join operation.
Now, if |Cs(Q)| 6= |Cc(Q)|, we know immediately there is a
problem.

There are two advantages of using probabilistic based ap-
proaches. First, probabilistic based approach are server
transparent in the sense that we do not need to modify
database servers. Second, unlike the existing authenticated
data structure based approach, probabilistic based approach
can handle complex queries such as joins efficiently, which
makes this approach more applicable.

3. AUTHENTICATED DATA STRUCTURE
BASED APPROACH

In an authenticated data structure based approach, the whole
database and the sorted list of each attribute are certified
with signatures. When the server processes a query for a
client, the server returns the query result along with a part
of the signatures to allow a client to verify authenticity and
completeness of the query result.

In order to provide freshness guarantees, it is no longer suf-
ficient to verify that the signatures are valid. We also need
to verify the signatures are the signatures of the most up-to-
date data. The clients needed to be constantly notified of the
current signatures of the data. Authenticated data structure
based approaches typically aggregate the signatures or use
Merkle hash tree to reduce the cost of generating and ver-
ifying signatures. We call the aggregated signature or the
signature of Merkle hash tree’s root node the root signa-
ture. It is sufficient for the client to know the current root
signature.

3.1 The Basic Scheme
As the underlying data changes over the time, their aggre-
gated signature also changes. Assume that a client CA up-
dates the database at time t that results in a signature St.
The client can generate a signature CertificateCA(St, t) and
put it into the outsourced database to indicate that the cur-
rent signature at time t is St. When another client retrieves
the query result, it also retrieves the signature.

Note that if the database server is trusted, we only need
to place a certificate whenever the root signature changes.
However, this opens up potential attacks when the database
server is not trusted. A malicious server can simply turn
away all the updates on the data and new certificate.

To counter this kind of attack, we also assign an expiration
time, δ, to such a certificate. So a client needs to place
a certificate on the current signature every δ units of time
no matter the signature has been changed or not. When
another client sees a certificate on (St, t), it assumes that St

is valid until t + δ, which ensures that a client can see all
the updates that happen δ units of time before the current
time. δ can be tuned to provide various degree of freshness
guarantees. Note that the clients need to have correct local
time to make this scheme work. However, correct local time
is required for many other applications such as the make
utility.

3.2 Multiple Updating Clients
The basic scheme is sufficient if there is only one client that
updates the database. When multiple clients update the
database, the basic scheme cannot provide freshness guar-
antees.

For example, suppose we have three clients CA, CB , and CC .
CA first makes an update which results in a signature S1.
Then CB makes another update which results in a signature
S2. Assume that both of the clients then become idle. Each
of the client would continue to certify the signature that
results from their last update every δ units of time. When
client CC accesses the database, it would not be able to tell
which signature is the latest signature.

To address this issue, we propose the following scheme: when
a client certifies a root signature, it also provides a reference
to the latest signature from another client. In our example,
CB certifies the tuple (S2, S1). When another client CC

accesses the database, it can follow the reference to figure
out the latest signature.

4. THE PROBABILISTIC APPROACH
In this section, we present a probabilistic approach for in-
tegrity auditing of update operations1.

4.1 Outline
Recall that for read-only databases, we create a set of fake
tuples and embed them into the database [15]. As the ser-
vice provider or malicious attackers cannot distinguish a fake
tuple from a real tuple, we are able to obtain a probabilistic
integrity assurance for select queries.

It is conceivable that there is a relationship between the per-
centage of fake tuples in the database and level of assurance
we can provide [15]. Figure 1 shows that for a dataset of
N = 1, 000, 000 tuples, with an additional of 5% to 50%
fake tuples, the probability of escaping detection when 1 to
100 tuples are deleted from the database. It shows that

1In this work, we focus on auditing insert and delete op-
erations in outsourced databases, update is considered as a
combination of insert and delete.

the probability of escape decreases sharply when the num-
ber of fake tuples or deletion increases. In particular, when
the fake tuples are more than 10% of the original data, and
more than 50 tuples are deleted, it is close to impossible for
the attacker to escape from being caught by the randomized
approach.

0 25 50 75 100
0

0.2

0.4

0.6

0.8

1

Number of Deletion

E
sc

ap
e

P
ro

ba
bi

lit
y

5% Fake Tuple
10% Fake Tuple
20% Fake Tuple
50% Fake Tuple

Figure 1: Probability of malicious attacks escaping
detection. The database has 1,000,000 records.

Our approach for providing freshness guarantee is based on
the same mechanism. When fake tuples in the outsourced
database change over time in a deterministic way, it allows
us to check whether update queries are performed correctly
by the service provider. Note that our algorithm cannot pro-
vide freshness guarantee when there exists a malicious client
that collaborates with the malicious server. However, in the
outsourced database model, clients are from the enterprise
that outsourced the database service and thus are assumed
to be in a trusted domain. Moreover, we do not consider
range deletion in this paper.

Architecture
We are interested in providing query integrity assurance for
insert and delete operations. Before we dive into details,
we reveal the architecture of data services outsourcing. In
Figure 2, we show multiple clients, one trusted proxy server,
and one service provider. In this multiple client scenario, the
trusted gateway exists to coordinate clients for deterministic
auditing, which we will discuss in detail. Usually, the trusted
gateway forwards all clients’ queries to the server at the
service provider side, but at proper time slot decided by our
algorithm, it also sends some queries to the service provider
for the purpose of auditing. Note that all data services are
provided by the server. Neither the client nor the trusted
gateway maintains any database on its own.

Our Approach
To audit the integrity of insert and delete operations, we
create fake inserts and deletes. These audit operations
insert new fake tuples into the outsourced database and
delete old ones from the outsourced database. By check-
ing whether fake tuples that should be in the outsourced
database actually show up in query results, we can find out
whether previous fake operations have been correctly and
honestly carried out. Furthermore, if we ensure that neither
malicious attackers nor the service provider can distinguish

Query

Results

Trusted Gateway Service Provider

...

Encrypted

Query

Encrypted

Results

...

Client Server

Figure 2: The architecture of query integrity audit-
ing.

fake operations from real operations, we can provide a prob-
abilistic assurance of all insert and delete operations.

To make the above approach work, we are faced with the
following challenges. At any time t, in order to perform in-
tegrity audit, each client must know what are the current
fake tuples in the outsourced database. This means each
client must know the accumulated effect of all fake inserts
and deletes starting from time 0. Furthermore, we must
ensure our scheme is provable secure. In particular, mali-
cious attackers cannot distinguish fake operations from real
operations. We give the security proof in this section.

4.2 Deterministic Fake Operations
Recall that for static databases, in order to avoid storing
a copy of fake tuples on the client side, we use a function
determined by a randomly chosen key to generate a deter-
ministic set of fake tuples. The benefit is that we only need
to remember the randomly chosen key instead of the tuples
generated by the function.

We want to apply this technique on non-static databases.
To provide freshness assurance, we not only embed fake tu-
ples in the outsourced databases, but also send fake insert
and delete operations to the service provider to manipu-
late the fake tuples. As a result, the set of fake tuples in the
outsourced database changes over time.

As for static databases, to provide probabilistic integrity
assurance, we need to know what are the fake tuples in the
database. But we do not want to store a local copy of fake
tuple, nor do we want to record all historical fake inserts
and deletes to derive the current fake tuples.

Our approach is to devise a mechanism to make all fake op-
erations “deterministic”. Because of the determinacy, each
client inherently knows i) when fake operations take place,
and ii) what are the fake tuples being inserted or deleted by
each fake operation. This tells each client what are the cur-
rent fake tuples in the outsourced database. In comparison,
for static databases, we only need one snapshot of the fake
tuples in the outsourced database, as they do not change
over time. In our approach, we rely on determinacy to en-
code the entire history of fake operations and their effects.

More specifically, our scheme is a triple (FS, T ,H), where

• FS = {f1, · · · , fn} is a set of functions, where each fi

is determined by a randomly chosen key, and generates
a deterministic set of fake tuples.

• T is a function determined by a randomly chosen key,
and it prescribes when fake operations are sent to the
service provider. More specifically, let ti be the last
time we submit fake operations, then the next time we
submit fake operations will be T (ti) = ti+1.

• H is a function determined by a randomly chosen key,
and it maps a function f ∈ FS and a time stamp t to
a real value between 0 and 1, that is H(f, t) ∈ [0, 1].
It decides when f is used to generate fake tuples.

Intuitively, at any time, the fake tuples in the outsourced
database are generated by a subset of functions in FS. At
certain time slots decided by function T , we turn on or turn
off certain functions decided by function H. The effect is
that we will generate a deterministic sequence of fake in-
serts and deletes at deterministic time slots to change
the fake tuples in the outsourced database in a determinis-
tic way.

Specifically, the current fake tuples are collectively generated
by a subset of functions in FS. If function fi is in the
subset, we say fi is in effect, meaning the current outsourced
database contains fake tuples generated by fi. Function T
generates a deterministic series of time slots {t1, · · · , tk, · · · }
where the content of the subset changes. The function H
decides, at each time slot tk, which functions of FS will
become in effect, and which will cease to be in effect. Let
θ ∈ [0, 1] be a user-defined threshold. At time tk, function
fi become or keeps in effect if H(fi, tk) ≥ θ. It is clear
that parameter θ can effectively control the size of total fake
tuples in the outsourced database.

Thus, between time slots tk and tk+1, the fake tuples in the
outsourced database should be those generated by functions
in

C(tk) = {fi|fi ∈ FS,H(fi, tk) ≥ θ}
Clearly, as long as the clients remember FS, T , and H, they
can derive the current fake tuples easily.

To enforce such changes in the outsourced database, at each
time slot tk, when the functions in effect change from C(tk)
to C(tk+1), the trusted proxy sends a series of insert op-
erations to add fake tuples generated by function fj where
fi ∈ C(tk+1) − C(tk), and a series of delete operations
to remove fake tuples generated by function fj where fj ∈
C(tk)−C(tk+1). Thus, by making the fake tuple generation
functions valid and invalid over time, we have a determinis-
tic way to audit update operation.

Algorithm 1 outlines the procedure. In Algorithm 1, at each
time slot designated by T , we check if a function f is turned
on or off by H. The set EffectiveSet records all func-
tions that are in effect. Whenever functions are added to or
removed from EffectiveSet, the trusted gateway will send
fake insert or delete operations to the service provider to add
or remove corresponding fake tuples. Thus, the fake tuples
in the outsourced database should always be those gener-
ated by the functions in EffectiveSet and nothing more,
as long as all fake operations are performed correctly by the
service provider.

As we show in Figure 1, in order to achieve good integrity

Algorithm 1 Update Auditing Algorithm

1: t = T (0)
2: EffectiveSet = {}
3: while true do
4: if current time = t then
5: for all f ∈ FS do
6: if H(f, t) ≥ θ and f 6∈ EffectiveSet then
7: EffectiveSet ← EffectiveSet ∪{f}
8: for all Tuple t generated by f do
9: insert t

10: end for
11: else if H(f, t) < θ and f ∈ EffectiveSet then
12: EffectiveSet ← EffectiveSet −{f}
13: for all Tuple t generated by f do
14: delete t
15: end for
16: end if
17: end for
18: t ← T (t)
19: else
20: wait()
21: end if
22: end while

assurance, the number of fake tuples we embed into out-
sourced databases usually account for 10% to 20% of the
entire data [15]. Adding or removing large amount of fake
tuples can be a costly operation that will not finish instantly.
Also, if the total number of functions in FS is small, then
it is also likely that there might exist some hiatus where
the database contains no fake tuples. Clearly, during such
hiatuses, no auditing can be performed.

To solve this problem, we partition the feature space into a
set of grids, and for each grid, we use an independent triple
(FS, T ,H) to generate fake tuples and perform auditing. A
range query may access multiple grids in the feature space,
and auditing is performed in each grid independently.

The benefit of griding is obvious. Switching to use another
set of fake tuples is much easier and more efficient. Globally,
it will be much more unlikely that there exist a hiatus during
which the outsourced database does not contain any fake
tuples.

4.3 Designing deterministic functions
Given the triple (FS, T ,H), each client knows what are the
current fake tuples, and how they evolve in the outsourced
database. However, what is the criteria in choosing what
FS, T , and H to use?

We should choose functions such that the service provider
or the malicious attackers cannot tell fake tuples from orig-
inal tuples, and fake operations from real operations. The
problem of choosing the right set of FS has been discussed
in [15]. The set FS can contain any family of functions,
e.g., linear functions, quadratic functions, etc. It is conceiv-
able that tuples generated by such functions exhibit certain
patterns. However, with encryption, it is proved that it is
computationally infeasible to detect such patterns [15]. As
far as H is concerned, we can just use a pseudorandom func-
tion which turns on and turns off functions in FS at given
time slot in a uniform way.

We focus on finding the right function T . Function T de-
termines the distribution of fake inserts and deletes over
time. If the distribution differs significantly from the dis-
tribution of user inserts and deletes, then there is a big
chance that the server or the malicious attackers can detect
such patterns and tell fake operations from real ones. This
enables the attackers to cheat and elude our detection: they
can carry out only fake operations and ignore real ones.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 2 4 6 8 10

Area = a

x

Figure 3: The next deterministic fake inser-
tion/deletion time.

Thus, it is essential that the distribution generated by func-
tion T is similar to the distribution of real inserts and
deletes. In the following, we show how this is achieved.
In the next section, we give a security proof of our method.

Assume we know the distribution of real inserts and deletes.
The distribution can be in the form of a histogram which
records the number of inserts and deletes for any interval
of time. For simplicity of discussion, let us assume that it is
a Poisson distribution. Figure 3 shows a Poisson distribution
with λ = 3.

How do we generate a series of inserts and deletes whose
distribution is close to that shown in Figure 3? Given a se-
cret key, and assume the i-th time slot is ti (and also assume
t0 = 0), each client uses the following steps to generate the
(i + 1)-th time slot ti+1:

1. Use the secret key to encrypt number i. Assume the re-
sults of encryption distribute uniformly between [0, 1],
then this essentially gives the client a pseudo random
value a in the range of [0, 1].

2. Since the curve in Figure 3 represents a probability
density function, the total area under the curve is 1.

Find x such that
∫ x

0
λte−λ

t!
dt = a, that is, a is the area

under the Poisson curve between 0 and x.

3. ti+1 ← ti + x

Given that the secret key is known to each client, the clients
generate a same series of time slots. Also, it is easy to
show that the time intervals in the series of timestamps
{0, t1, t2, · · · , tk · · · } generated in the above steps observe
the distribution shown in Figure 3. We can easily substitute

the Poisson distribution in our discussion by a real distribu-
tion represented by histogram. In the next section, we show
that our approach is provable secure – it is computationally
infeasible to tell fake insert and delete operations from
real operations.

4.4 Security Proof
Here we give a proof of our scheme based on a simple model.
With this simple model, our data outsourcing scheme is
shown to be a provably secure scheme, that is, the secu-
rity of our scheme can be reduced to the security of the
underlying encryption primitives. The underlying security
primitives used in our scheme includes pseudo random gen-
erators. Our proof uses the standard techniques used in the
provable security literature [4, 3].

We first introduce some necessary definitions for developing
our theorem and proof.

Definition 1. Function family
A function family F is a finite collection of functions to-
gether with a probability distribution on them. All functions
in the collection are assumed to have the same domain and
the same range.

There is a set of “keys” and each key names a function in F .
We use Fk to denote the function selected by key k in the
function family F .

Definition 2. ε-distinguisher
Suppose that F0 and F1 are two function families. Let ε > 0
and let f0 and f1 be two functions selected from F0 and
F1 uniformly randomly. A distinguisher A is an algorithm;
given a function, A outputs 0 or 1 as it determines whether
the function is from F0 or F1. We use AdvA to denote A’s
advantage in distinguishing F0 from F1.

AdvA = |Pr[A(f0) = 1]− Pr[A(f1) = 1]|
We say algorithm A is an ε-distinguisher of F0 and F1 if
AdvA > ε.

Definition 3. (t, ε)-pseudo random
A function family F : U → V is (t, ε)-pseudorandom if there
does not exist an algorithm A that can ε-distinguish a pseu-
dorandom function from a truly random function. Here A
is allowed to use no more than t computation time.

A stream cipher can be abstracted as a pseudorandom gen-
erator for uniform distributions. More complex distribution
can be constructed by applying function map to this basic
pseudorandom number generator.

In our scheme, the time slots for fake insert and delete oper-
ations are selected by a pseudorandom function G. We show
that an adversary cannot distinguish such operations from
real insert and delete operations from the clients. Specifi-
cally, let R be the time distribution of real insert and delete
operations. Our goal is to show that our scheme is secure
even if we only know the exact distribution R approximately.

The following theorem shows that an approximate distribu-
tion can still work if the divergence from the true distribu-
tion is small enough.

Theorem 2. If G is a (t, ε)−secure pseudorandom func-
tion then G and R is (t, e +EG)− indistinguishable, where

EG =
∫ T

0
(g(x)−r(x))p(x)dx, where g is the probability den-

sity function of the output of G, r is the probability den-
sity function of the output of R, p(x) = 1 if and only if
g(x) > r(x), and p(x) = 0 otherwise.

Proof. (Sketch) Define G′ as the truly random distribu-
tion with the same probability density function as G. The
goal is to show that G is indistinguishable from R. We first
show that G is indistinguishable from G′. We then show
that it is difficult to distinguish G′ from R.

For any given algorithm A that distinguish these distribu-
tion, let x in X denote a time point, 0 be the start time
point, and T be the end time point.

AdvA = |Pr[A(G′) = 1]− Pr[A(R) = 1]|
= |

∫

X

Pr[A(G′) = 1|Output(G′) = x]Pr[Output(G′) = x]dx

−
∫

X

Pr[A(R) = 1|Output(R) = x]Pr[Output(R) = x]dx

This function is maximized when A(G′) = 1 and A(R) = 0
whenever Pr[Output(G′) = x] > Pr[Output(R) = x], which

equals to AdvA ≤ ∫ T

0
(g(x) − r(x))p(x)dx. This is exactly

EG.

AdvA = |Pr[A(G) = 1]− Pr[A(R) = 1]|
= |Pr[A(G) = 1]− Pr[A(G′) = 1] +

Pr[A(G′) = 1]− Pr[A(R) = 1]|
≤ |Pr[A(G) = 1]− Pr[A(G′) = 1]|+

|Pr[A(G′) = 1]− Pr[A(R) = 1]|

By definition, |Pr[A(G) = 1] − Pr[A(G′) = 1]| ≤ ε. Thus,
AdvA ≤ ε + EG.

5. EXPERIMENTS
In this section, we evaluate the performance of our integrity
auditing scheme.

5.1 Experiment setup
We use two Pentium IV 2.0GHz PCs. Each of them has
512MB RAM and a 80GB Ultra-ATA/100 hard disk. One
simulates clients and the other simulates the server. The
two machines are connected with a local Ethernet network
running at 100MBps. We use IBM DB2 v8.2 to store data
on the server side. We use an existing library for authen-
ticated index structure [9]. Authentication index based ex-
periments are coded in C++ and compiled with GCC 3.4.4.
Probabilistic based experiments are developed in JAVA with
the JDK/JRE 1.5 develop kit and Runtime Library.

Data setup. We generate a synthetic dataset in our ex-
periments to evaluate the performance of the authentica-
tion data structure based approach and the probabilistic
approach. The synthetic dataset is composed of 200,000
randomly generated one dimensional numerical tuples.

Fake tuple setup. We use equal-width histogram with 1000
buckets to catch the distribution of the synthetic data value.
And an initial set of 2000 deterministic linear functions are
randomly selected to generate fake tuples.

Query setup. Query used in our experiments are composed
of three parts, unit selection query, of which the value predi-
cate interval has the same width as a histogram bucket, ran-
domized point insertion query and randomized point dele-
tion query.

5.2 Server Side Performance Study
In this section, we compare performance of our probabilistic
integrity auditing scheme against the authenticated index
based auditing scheme at the server side.

In our experiment, we measure the throughput and CPU
utilization at the server side for both the authenticated in-
dex based approach and our probabilistic approach for a
workload of 300 query requests.

In figure 4, we show the server side throughput performance
with the number of requests we simultaneously send to the
server varying from 10 to 20.

10 12 15 20
0

2

4

6

8

10

Concurrent Request Number

T
hr

ou
gh

pu
t (

T
ra

ns
ac

tio
ns

/S
ec

on
d)

No Authentication
Authentication Index Approach
Probabilistic Approach, 10% Fake Tuple
Probabilistic Approach, 20% Fake Tuple
Probabilistic Approach, 30% Fake Tuple

Figure 4: ThroughPut Experiment

From the figure, it can be easily seen that our probabilistic
auditing scheme has only small overhead over throughput
when we have a reasonable amount of fake tuples inserted
into the database. We can improve security performance of
our probabilistic auditing approach by increasing the num-
ber of fake tuples, but as a result we have to sacrifice query
performance as a cost. So basically, according to different
application requirements, we can trade-off between efficiency
and the level of integrity assurance by adjusting the number
of fake tuples we have in the database.

We also analyzed the CPU utilization performance of both
approaches at the server side. In order to have a fair com-

parison, we use the same work load, and ensure that the time
each approach uses to finish the whole workload is roughly
the same under different request rate. To achieve this goal,
we can simply adjust the time interval between two contin-
uous requests. And then we analyze the average CPU uti-
lization during the execution of the workload. Experiment
result is shown in Figure 5.

5 10 15 20
0

25%

50%

75%

100%

Concurrent Request Number

S
er

ve
r

C
P

U
 U

til
iz

at
io

n

No Authentication
Authentication Index Method
Probabilistic Method, 10% Fake Tuple
Probabilistic Method, 20% Fake Tuple
Probabilistic Method, 30% Fake Tuple

Figure 5: Server Side CPU Utilization Experiment

From the figure we can see that when only a reasonable
amount of fake tuples present in the database, our proba-
bilistic auditing scheme will not cause much burden for the
server side. And besides our probabilistic auditing scheme
is server transparent, which means we do not need to imple-
ment none standard authentication structures on the server
side, we can easily get an conclusion that our probabilistic
approach is both efficient and practical to implement.

5.3 Client Side Performance Study
We also evaluate the client side performance of authentica-
tion index based approach and our probabilistic approach.

Figure 6 shows the average processing latency of client side
with different request rate. From the figure, we can easily
find out that the additional inserted fake tuples have only
a small affection on the overall performance. And when a
reasonable amount of fake tuples are inserted into the ta-
ble, our probabilistic based approach have better client side
performance than authentication index based approach.

10 12 15 20
0

2

4

6

8

10

Concurrent Request Number

C
lie

nt
 L

at
en

cy
 (

S
ec

on
d)

No Authentication
Authentication Index Method
Probabilistic Method, 10% Fake Tuple
Probabilistic Method, 20% Fake Tuple
Probabilistic Method, 30% Fake Tuple

Figure 6: Client side overall performance experi-
ment

And from figure 7, which shows detailed client side process-
ing latency information, we can figure out that our proba-
bilistic auditing approach have very low client side verifica-
tion cost, and the synchronization cost caused by our deter-
ministic updating processing also has a very small affection
on the overall performance.

No AI 10% 20% 30%
0

2

4

6

8
Concurrent Request # : 10

Fake Tuple Ratio

La
te

nc
y

(S
ec

on
d)

Server Latency
Synchronize Latency
Client Latency

No AI 10% 20% 30%
0

2

4

6

8
Concurrent Request # : 12

Fake Tuple Ratio

La
te

nc
y

(S
ec

on
d)

Server Latency
Synchronize Latency
Client Latency

No AI 10% 20% 30%
0

2

4

6

8
Concurrent Request # : 15

Fake Tuple Ratio

La
te

nc
y

(S
ec

on
d)

Server Latency
Synchronize Latency
Client Latency

No AI 10% 20% 30%
0

2

4

6

8
Concurrent Request # : 20

Fake Tuple Ratio

La
te

nc
y

(S
ec

on
d)

Server Latency
Synchronize Latency
Client Latency

Figure 7: Client side performance study

5.4 Freshness auditing cost study
Here in this section, we study the cost of performing fresh-
ness auditing of both of the approaches. We setup a dataset
of 200000 tuples, and measure the cost of freshness auditing
using the average computation cost for both schemes after
a set of tuples have been updated.

In figure 8, we show after a certain number of tuples have
been inserted, the computation cost needed of both ap-
proaches to guarantee the freshness. For authentication in-
dex based approach, we may need to update the index ac-
cordingly, recompute the digest, encrypt and send to the
server side after every insertion. And for our probabilistic
based approach, we need to insert a set of fake tuples into
the database along with the normal insertion. From the fig-
ure, it’s easy to figure out that our probabilistic approach
may have comparable computation cost with authentication
index based approach when the fake tuples we insert have
a reasonable size. As the number of fake tuples increases,
we may have a high insertion cost, but remember the more
fake tuples we insert, the more secure our approach will be.
In practice, our approach can offers users flexible choices to
trade off between performance and security according to the
application scenario.

Similarly, In figure 8, we show after a certain number of
tuples have been deleted the computation cost needed for
both approaches. Our probabilistic based approach need to
delete fake tuples while performing normal deletions, but
unlike insertion, deletion is a high cost operation as it needs
scanning the whole table to locate all the target tuples to
be deleted. So a set of point deletion may cause great per-
formance degration. A simple solution is to group several
deletions into a single one using “OR”predicate. In figure 9,

0.1% 0.2% 0.3% 0.4% 0.5%
0

0.1

0.2

0.3

0.4

0.5
Insertion Auditing Cost Comparison

Insert Operation Ratio

P
ro

ce
ss

in
g

C
os

t(
se

co
nd

s)

Authentication Index Method
Probabilistic Method, 10% Fake Tuple
Probabilistic Method, 20% Fake Tuple

Figure 8: Insertion auditing cost

for probabilistic based approach, we experimented using dif-
ferent group size, like we group every 20(40) deletions into
a single deletion. An extreme case is that we group all fake
deletions into a single one, as shown in figure 9, we get a
very good performance gain.

0.1% 0.2% 0.3% 0.4% 0.5%
0

0.2

0.4

0.6

0.8

1
Deletion Auditing Cost Comparison

Delete Operation Ratio

P
ro

ce
ss

in
g

C
os

t(
se

co
nd

s)

Authentication Index Method
Probabilistic Method, 10% Fake Tuple, Group 20
Probabilistic Method, 10% Fake Tuple, Group 40
Probabilistic Method, 10% Fake Tuple, Single

Figure 9: Deletion auditing cost

6. RELATED WORK
There are two security concerns in database outsourcing:
data privacy and query integrity. Although data privacy
has been extensively studied, so far there does not exist any
system that provide complete integrity assurance.

Hacigümüs et. al. [8] first studied security issues in the sce-
nario of database outsourcing. That work focuses on the
privacy aspect of the outsourced database, in particular, ef-
ficiency of various encrypting schemes using both hardware
and software encryption. However, that work does not con-
sider the problem of data integrity.

The pioneering work on the problem of integrity [5, 12] fo-
cuses on the authentication of the data records, that is, the
authenticity aspect of the integrity. Devanbu et. al. [5]
authenticates data records using the Merkle hash tree [11],
which is based on the idea of using a signature on the root
of the Merkle hash tree to generate a proof of correctness.
Mykletun et. al. [12] discussed and compared several signa-
ture methods which can be utilized in data authentication,
and they identified the problem of completeness, but did not
provide a solution.

Some recent work [13, 10, 14] studied the problem of audit-
ing the completeness aspect of the integrity. By explicitly
assuming an order of the records according to one attribute,
Pang et. al.[13] used an aggregated signature to sign each
record with the information from two neighboring records in
the ordered sequence, which ensures the result of a simple se-
lection query is continuous by checking the aggregated signa-
ture. But it has difficulties in handling multipoint selection
query of which the result tuples occupy a non-continuous
region of the ordered sequence.

Besides, it can only handle a subclass of join operations ef-
ficiently, the primary key/foreign key join, because that the
result of the join forms a continuous region of original or-
dered data can only be assured in this case. Other work [5,
10] uses Merkle hash tree based methods to audit the com-
pleteness of query results, but since the Merkle hash tree
also uses the signature of the root Merkle tree node, a sim-
ilar difficulty exists. The network and CPU overhead on
the client side can be prohibitively high for some types of
queries. In some extreme cases, the overhead could be as
high as processing these queries locally, which can under-
mine the benefits of database outsourcing. Moreover, to
ensure freshness, an additional system is needed to deliver
the most up-to-date root signature to all the clients in a re-
liable and timely manner. It is unclear where such a system
can be placed in an outsourced database environment, while
the freshness problem could be solved naturally in our ap-
proach without additional requirements. In our approach,
we just need to vary the inserted tuples according to the
current time. We will prototype this functionality in our
future work.

Sion [14] introduces a mechanism called the challenge to-
ken and uses it as a probabilistic proof that the server has
executed the query over the entire database. It can han-
dle arbitrary types of queries including joins and does not
assume the underlying data is ordered. But their scheme
cannot detect all malicious attacks, for instance, when the
service provider computes the complete result but returns
part of it for sake of business profit from a competition rival.
Xie et. al.[15] proposed an improved probabilistic based ap-
proach that addresses those drawbacks. In that approaches,
fake tuples are added to the encrypted outsourced databases.
Clients check the fake tuples in query results for integrity.

7. CONCLUSION
The potentially explosive growth of database outsourcing is
hampered by security concerns: privacy and integrity. Al-
though privacy in outsourced databases has been extensively
researched, there still does not exist a practical system that
can provide complete integrity guarantees before this work.
The freshness aspect of integrity guarantees is missed from
all the previous systems. In this work, we perform a system-
atic study on how to add freshness assurance to two types
of approaches for database outsourcing integrity: authen-
ticated data structure based and probabilistic based. We
have shown that we can provide complete integrity guaran-
tees without sacrificing much performance.

8. REFERENCES
[1] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan

Srikant, and Yirong Xu. Order-preserving encryption

for numeric data. In SIGMOD, 2004.

[2] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan
Srikant, and Yirong Xu. Order-preserving encryption
for numeric data. In Gerhard Weikum, Arnd Christian
König, and Stefan Deßloch, editors, SIGMOD
Conference, pages 563–574. ACM, 2004.

[3] Mihir Bellare. Practice-oriented provable-security. In
Eiji Okamoto, George I. Davida, and Masahiro
Mambo, editors, ISW, volume 1396 of Lecture Notes
in Computer Science, pages 221–231. Springer, 1997.

[4] Mihir Bellare, Anand Desai, E. Jokipii, and Phillip
Rogaway. A concrete security treatment of symmetric
encryption. In FOCS, pages 394–403, 1997.

[5] Premkumar T. Devanbu, Michael Gertz, Charles U.
Martel, and Stuart G. Stubblebine. Authentic
third-party data publication. In Bhavani M.
Thuraisingham, Reind P. van de Riet, Klaus R.
Dittrich, and Zahir Tari, editors, DBSec, volume 201
of IFIP Conference Proceedings, pages 101–112.
Kluwer, 2000.

[6] Hakan Hacıgümüş, Balakrishna R. Iyer, Chen Li, and
Sharad Mehrotra. Executing SQL over encrypted data
in the database service provider model. In SIGMOD,
2002.

[7] Hakan Hacigümüs, Balakrishna R. Iyer, Chen Li, and
Sharad Mehrotra. Executing sql over encrypted data
in the database-service-provider model. In Michael J.
Franklin, Bongki Moon, and Anastassia Ailamaki,
editors, SIGMOD Conference, pages 216–227. ACM,
2002.

[8] Hakan Hacigümüs, Sharad Mehrotra, and
Balakrishna R. Iyer. Providing database as a service.
In ICDE, pages 29–. IEEE Computer Society, 2002.

[9] Feifei Li, Marios Hadjieleftheriou, George Kollios, and
Leonid Reyzin. Authenticated Index Structures
Library.
http://www.cs.fsu.edu/ lifeifei/aisl/index.html.

[10] Feifei Li, Marios Hadjieleftheriou, George Kollios, and
Leonid Reyzin. Dynamic authenticated index
structures for outsourced databases. In Surajit
Chaudhuri, Vagelis Hristidis, and Neoklis Polyzotis,
editors, SIGMOD Conference, pages 121–132. ACM,
2006.

[11] Ralph C. Merkle. A certified digital signature. In
Gilles Brassard, editor, CRYPTO, volume 435 of
Lecture Notes in Computer Science, pages 218–238.
Springer, 1989.

[12] Einar Mykletun, Maithili Narasimha, and Gene
Tsudik. Authentication and integrity in outsourced
databases. In NDSS. The Internet Society, 2004.

[13] HweeHwa Pang, Arpit Jain, Krithi Ramamritham,
and Kian-Lee Tan. Verifying completeness of
relational query results in data publishing. In Fatma
Özcan, editor, SIGMOD Conference, pages 407–418.
ACM, 2005.

[14] Radu Sion. Query execution assurance for outsourced
databases. In Klemens Böhm, Christian S. Jensen,
Laura M. Haas, Martin L. Kersten, Per-Åke Larson,
and Beng Chin Ooi, editors, VLDB, pages 601–612.
ACM, 2005.

[15] Min Xie, Haixun Wang, Jian Yin, and Xiaofeng Meng.
Integrity auditing of outsourced data. In VLDB, 2007.

