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Abstract—As the development of social network, mobile Inter-
net, etc., an increasing amount of data are being generated, which
beyonds the processing ability of traditional data management
tools. In many real-life applications, users can accept approximate
answers accompanied by accuracy guarantees. One of the most
commonly used approaches is online aggregation. Online aggre-
gation responds aggregation queries against the random samples
and refines the result as more samples are received. In the era
of big data, since more and more data analysis applications are
migrated to the cloud, online aggregation in the cloud has also
drawn more attention. The problem of data skew can greatly
impact the results of online aggregation in the cloud. In fact,
there exist two special types of data skew in online aggregation in
the cloud. In this paper, we propose two methods to deal with the
two types of data skew respectively. We implement our methods
in a cloud online aggregation system called COLA and the
experimental results demonstrate our methods can remarkably
eliminate negative effect of data skew and get better results.

I. INTRODUCTION

Big data has brought great challenges to traditional data
management, as the growth of sheer volume of data, techniques
of data management and analytics based on the relational
database system cannot work in many fields. Value of stored
data can only be explored by data analysis. Extracting knowl-
edge from data is usually an interactive process, with a user
issuing a query, seeing the result, and using the result to
formulate the next query, in an iterative fashion. During this
procedure, users are more concerned about the response time
rather than data accuracy. They can accept a little sacrifice of
data accuracy in return for shorter response time.

Aggregation query of massive datasets has been noticed
by researchers of relational database management system,
and online aggregation (OLA) was proposed to cope with
this problem. The basic idea behind online aggregation is
to estimate the result by sampling data and the approximate
answer should be given certain accuracy guarantee. Generally,
we use confidence to measure the accuracy. In recent years,
as the development of cloud computing and big data, online
aggregation in the cloud has attracted more attention. Although
OLA is very suitable for cloud environment, there are still
some limitations constraining its extensive use, and one of the
important considerations is data skew. Data skew is not a new
issue, but it has brought new challenges when we implement
OLA in the cloud. Our contributions include:

– We point out two special types of data skew in OLA
and analyze how they influence the results of OLA.

– We propose two approaches to solve the problem of
data skew in OLA.

– We implement our method in COLA, and conduct
extensive experiments to demonstrate that our method
can deliver reasonable precise online estimates within
a time period much shorter than that used to produce
exact answers.

The remainder of the paper is organized as follows. In Section
2, we present the related work. In Section 3, we describe
material required for the remainder of the paper. In Section 4,
two methods are proposed to handle the problem described in
section 3. We use COLA to implement the proposed methods,
and the experiment results are presented in Section 5, followed
by conclusions.

II. RELATED WORK

Online aggregation was proposed as one commonly-used
approximate query processing technique to provide a time-
accuracy trade off for aggregation queries. It was first intro-
duced in the field of relational database management system
[1], which focuses on single-table queries involving “group by”
aggregations. Work [6] proposed a new OLA system called
COSMOS to process multiple aggregation queries efficiently.
COSMOS organizes queries into a dissemination graph to
exploit the dependencies across queries, and the partial answers
can be reused by the linked queries. All the work above is in
the context of traditional databases. Nowadays, online aggre-
gation research is renewed in the context of cloud computing,
and some studies have been conducted based on MapReduce.
Hadoop Online Prototye (HOP) [8] is a modified version of
the original MapReduce framework, which is proposed to
construct a pipeline between Map and Reduce so that the
reduce task could start immediately as long as any Map output
is generated. HOP can provide the original snapshots of the
MapReduce jobs at data dependent intervals, and it supports
OLA by scaling up the snapshots with the job progress without
any confidence bounds of the query estimate. COLA [9], [10],
[23] realizes the estimation of confidence interval based on
the HOP. COLA allows different task to adopt different data
granularity and provides progressive approximate answers for
both single tables and joined multiple tables.

Data is not always so uniform in reality, so the work in
[12] focuses on the problem of data skew, and a preprocessing
stage is introduced. This stage can make the skewed data into
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random data. Work [15] improves performance of OLA for
skewed data distribution by efficient pruning of unneeded data
due to the partition and shuffle strategies. Work [24] addressed
the skewed issue that affects the OLA performance by propos-
ing a keep-order algorithm to make sure that intermediate
results delivered to downstream operators are consumed in a
statistically random fashion.

III. PRELIMINARIES

We start by introducing material required in this paper. This
includes two parts: problem definition and introduction of data
skew of OLA in the cloud.

A. Problem Definition

In this section, we formalize our problem. This paper
mainly focuses on online aggregation for single table, so
consider a relation R and queries of the form as follows:

SELECT op(exp(tij)), col FROM R WHERE predicate
GROUP BY col

where op is the operation of Sum, and other operator (Count,
Avg) can be dealt similarly. exp is an arithmetic expression of
the attributes in R, predicate is an arbitrary predicate involving
the attributes, and col is one or more columns in R. Because
all the data are stored in HDFS, so the data unit is block while
its counterpart in RDBMS is tuple. tij represents the j-th tuple
in block i.

Online aggregation in the cloud is that when users request
an aggregation query, system returns an approximate result
within the prescribed level of accuracy against the unbiased
random samples, and the result is refined as more samples
are received. In this way, users can terminate the running
queries prematurely if an acceptable estimate arrives quickly.
Usually, confidence interval and confidence level are adopted
to measure the accuracy of current result. If users do not
terminate the query actively, all the data will be scanned,
and the processing is just the same as common aggregation
query. We must guarantee above query can still return accurate
results when facing the problem of data skew. Figure 1 shows
the basic architecture of COLA, COLA is a cloud-based
online aggregation system.The system can provide progres-
sive approximate aggregate answers in large-scale, distributed
MapReduce environment. Currently, COLA supports OLA for
both single table and multiple joined tables. In this paper,
we focus on single-table queries involving ”GROUP BY”
aggregations.

B. Data Skew of OLA in the Cloud

Data skew is not a new problem for RDBMS, but there are
some special issues when we implement OLA in the Cloud.
These special issues are mainly caused by the data organization
in the cloud and the sampling-based processing of OLA.

1) Skewed Data Distribution: Uneven data distribution can
lead to data skew, so lots of methods have been proposed to
handle the problem. Among these methods, the normally used
size-aware partition manner seems to be a good candidate
for the implementation of OLA in the cloud, in which the
block contains the same amount of data, thus reducing possible

Fig. 1: COLA Architecture

skew of tasks when processing in parallel and improving
the performance. However, this data partition is not always
effective for OLA. Because OLA is a sampling-based method
to obtain approximate results from a subset of data rather than
the exact one against the whole dataset, the sampling efficiency
becomes the major factor that affects the performance espe-
cially when the data distribution is skewed. Given a dataset,
a majority of blocks may not contain any tuples that satisfy
the query predicate (called relevant tuples) or only contain a
small amount of such tuples. For the blocks containing fewer
(or none) relevant tuples, the probability of drawing sufficient
relevant tuples by sampling may be relatively small (or none),
and there will be few or no relevant tuples in the sample during
the initial stage of OLA, leading to larger error for the accuracy
estimation. Therefore the commonly size-aware data partition
cannot solve the problem of data skew when it applies to OLA
in the cloud.

2) Skewed Intermediate Results: The basic idea behind
OLA is to estimate the result by sampling data and the ap-
proximate answer should be given some accuracy guarantees.
The results of OLA highly depend on the sampling and the
accuracy of sampling can only be ensured when the dataset
is random. One way is to associate a pseudo-random number
with each processing unit (which typically refers to a tuple in
traditional database). Then, a sorting algorithm is used on the
tuples to order them based upon the associated pseudo-random
numbers. Thus, input data can be viewed as if it is clustered
in a statistically random fashion on disk such that a sequential
scan already returns the data in a random order. In this case,
there is absolutely no correlation between the ordering of
the tuples on disk and the contents of the tuples. Even the
slightest correlation can invalidate the statistical properties of
OLA algorithm, leading to inaccurate estimates and confidence
bounds. In large-scale, distributed environment, the basic unit
of data storage and processing is a block[16], which may
contain tens or hundreds of megabytes of data. In this type of
environment, out of consideration for efficiency, we take data
block as the random sampling unit, and conduct the statistical
computing based on the aggregate value associated with each
block. In this section, we describe our observations of how
data skew can yield biases in distributed environment and lead
to inaccurate estimates.

Haas and Hellerstein’s derivation assumes a with-
replacement sampling (visualized in Figure 2(a)). In the ap-
plication domain imagined for OLA, this is reasonable since it
was assumed that the computation will be terminated after only
a rough estimate of the eventual answer has been obtained.
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This means that the computation probably will end before a
significant fraction of input data has been processed. In such a
situation where sample size is “small enough”, the difference
between sampling with replacement and sampling without
replacement is negligible. As a result, in Haas and Hellerstein’s
analysis, the samples can be viewed as a sequence of indepen-
dent and identically distributed (i.i.d.) random variables. Thus,
we can bring to bear the tools of statistical estimation theory.

We found that in distributed MapReduce environment, this
i.i.d. guarantee no longer holds, because of the impact of data
skew on upstream operators’ runtime. Take a look into Hadoop,
usually, a fixed amount of bytes are assigned to each map
task, how unbalance can arise in the runtime of map phase
though? [14] confirms that the input data size alone is not a
good indicator of task runtime. In real-world Hadoop clusters,
there are many causes leading to such unbalanced runtime in
map phase, including:

– Instability inherent in system: hardware malfunc-
tion, resource contention, cluster conditions, mis-
configuration etc.

– Occasionality of runtime environment: locality
scheduling (take Hadoop, that is, some blocks may be
scheduled to the local machine, some are scheduled
to a machine in the same rack, and some are in a
distant rack.), etc.

Such variation in the runtime would break the randomness
on which statistical tools are based. That is, while mappers
access input blocks randomly, the map outputs consumed
by reducer are not kept in that random order as shown in
Figure 2(b). Since the reducer is the operator that produces
the aggregates, what really matters is the processing order in
reducer. Unfortunately, in this type of environment, this order
is somehow correlated with the aggregate value of each block.
The reasoning is intuitive: those blocks with lower selectivity
could have a lot of intermediate results, and take longer to
process, which we called as the “superchunks”. And such a
correlation may exist, superchunk with a lot of valid data is
more likely to have big aggregates. At any particular point,
we look into the set of blocks that have actually completed
processing, non-superchunks appear with higher probability.
When non-superchunks appear “too quickly”, the estimator
interprets this as a sign the final aggregate answer is smaller
than it truly is, causing the estimator to under-estimate. The
sampling unit of database is tuple, so we can process the data
records one by one. The order of sampled data is the same
as original random sequence, and the sampled data can be
viewed as random sequence. The sampling unit of OLA is
block, and one block may contain thousands of tuples. The
original sequence can be viewed as random while the sampled
data can not, because the order of sampled data may be not the
same as original sequence. The processing time of a block is
decided by how many relevant tuples it contains for the current
query. Those blocks which contain less relevant tuples would
be received early by downstream operators. This would destroy
the randomness of data and cause the estimation unprecise.

IV. SKEW HANDLING IN OLA

To address above two problems of data skew of OLA in
the cloud, we propose two different approaches respectively in
this section.

Sampler

(a) Database Sampling

Sampler Mapper

(b) OLA Sampling

Fig. 2: Sampling Process

A. Data Filter

For the first type of data skew, the key point is to locate
relevant blocks, which contain more relevant tuples for the
query. If we can filter out irrelevant blocks at the very
beginning, the overall processing time will be reduced. We
utilize Hilbert curve to map the data range of each block
into one dimension. In order to promote the efficiency, the
implementation of Hilbert curve is loaded into the memory of
namenode when the system starts. Once the system receives
the user’s query, the relevant blocks will be selected very soon.

B. Re-randomness of Intermediate Results

As illustrated above, the skewed intermediate results is
caused by the destruction of original randomness. In the work
[24], authors tried to force the sampled data obey the original
order. This is a naive solution. If a block contains lots of
relevant tuples, it may be received by the downstream operator
very late. Other blocks will wait for the block for a long
time and the overall processing time will extend under this
situation. We solve this problem by a very tricky approach:
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re-random the intermediate results. The processing of re-
randomness must be online, just like the processing of stream.
This is because intermediate results of OLA are continuous
and we cannot wait for all the results ready. Finally, we
choose Acceptance/Rejection sampling (A/R sampling) [18]
to re-random the intermediate results. The key point of A/R
sampling is the choice of acceptance probability of every
block. Suppose there are totally N blocks of the input file
F, and the acceptance probability of block Bi is

αi =
bi

bmax ∗ β
Where bi is the amount of relevant tuples contained by block
Bi, bmax is the maximum amount of relevant tuples contained
by all the blocks of input file F, and β is the adjustment
factor. Usually, we do not need β for tuple-level sampling,
but for block-level sampling, very few blocks may contain a
very large part of the relevant tuples and most blocks may
only hold very few relevant tuples. In this situation, if we do
not introduce the adjustment factor, the acceptance probability
of most blocks will be very low and will not be accepted by
downstream operators. The user must wait for a long time
to see the initial result which is very bad for OLA. We can
prove the probability of acceptance(do not confuse it with the
acceptance probability) of every block is equal to 1/N.

PROOF. We use pimap represents the sampling probability
of data block Bi in Map phase, so pimap = 1/N. When we
want to estimate the result during Reduce phase, the output
of Bi in Map phase is inversely proportional to the amount
of valid tuples in Bi. Suppose the amount of valid tuples in
Bi is bi, and the maximum value of all bi is bmax. In order
to avoid over correction, adjustment factor θ (0 ≤ θ ≤ 1) is
introduced. Now the output of Bi in Map phase is received by
Reduce phase with the probability of pired = bmax

bi
∗θ. Set αi

to be the acceptance probability of Bi, then

αi =
bi

bmax∗θ
(1)

Then the probability of acceptance is

pi = pimap∗pired∗αi = 1/N (2)

The new sampling processing is shown in Figure 3.

V. PERFORMANCE EVALUATION

A. Experiment Overview

The testbed is established on a cluster of 11 nodes con-
nected by a 1Gbit Ethernet switch. One node serves as the
namenode of HDFS and jobtracker of MapReduce, and the
remaining 10 nodes act as slave nodes. Each node has a 2.33G
quad-core CPU and 7GB of RAM, and the disk size of each
node is 1.8TB. We set the block size of HDFS to 64MB.
We implement our solutions on COLA, and all the following
experiments are conducted on the improved COLA. In the
experiment, we analyze the page traffic statistics of Wikipedia
hits log. The dataset we use contains 7 months of hourly
pageview statistics for all articles in Wikipedia, with 320GB
of compressed data (1TB uncompressed). Table 1 summarizes
settings used in the experiments:

Random

Sampler
Mapper

A/R

Sampler

Fig. 3: A/R Sampling

TABLE I: Settings used in the experiments

Parameter Values
Number of Computer Node 11
Data type page view statistics
Data size 100G
Platform COLA
Map task num. per Computer Node 4
Reduce task num. per Computer Node 2

All the data are stored in HDFS. We test online aggregation
queries with example queries shown next.

Q= SELECT Sum(pageviews), language FROM visit log
GROUP BY language

B. Accuracy of the Estimator

Table II shows the different confidence intervals after a
portion of the task has completed: 2%, 4%, 6%, and so on.
Here, “Default” stands for the original method while “New”
stands for the data filter used in this paper.

TABLE II: Relative Confidence Interval

2% 4% 6% 8% 10%
Default 0.168 0.124 0.115 0.106 0.072

New 0.147 0.109 0.084 0.062 0.041

From table II, we can find that our method can get more ac-
curate result within fewer time, because our approach involves
more relevant blocks. In the first version, random sampler is
turned off, so blocks are scheduled in physical order (denoted
as non-randomized). The first point to note is that without
randomization, estimate results are totally useless. The severe
bias in Figure 4 certifies this: the fraction of the time that the
final query result is not within the 95% confidence bounds is
huge, almost reaching 77.8%. So the estimate result and con-
fidence interval computed without sampling is of no statistical
significance. With randomization, the confidence bounds from
Figure 5 seem remarkably accurate. most reporting estimates
were correct in the sense that the interval did in fact contain
the exact answer. The careful reader will immediately notice
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that the randomized estimator typically under-estimates, which
is the expected behavior given that “non-superchunks” appear
with higher probability.

We then ran three versions (randomized, keep-order and
accept-reject) on the dataset, and the estimate and confidence
interval were tracked throughout execution. Figure 5 shows
the online estimates for the English language at various query
progress percentages. We plot the upper and lower limit of
the confidence interval, as well as the current estimate over
time. Our technique successfully improves the estimation,
as expected that the estimate becomes more accurate and
stable as it processes more data. Note in Figure 5 that the
value of the estimate begins approaching the true value at
the first beginning, and stay very close to the true value for
the remaining time of the experiment. For the accept-reject
version, the average relative error of all the estimate results is
0.53%, which is 64% lower than the randomized version with
the average relative error being 1.46%. At the time, the accept-
reject version is also more accurate than keep-order version.
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C. Impact of Data Skewness

In this section, we study the effect of data skew. Six
sets of datasets were created, using Zipf parameter C in the
list (0, 0.2, 0.4, 0.6, 0.8, 1.0). Each tuple has a length of
40 bytes, consisting of language, pagename, pageviews and
pagesize just like the Wikipedia dataset. The pageviews is a
randomly generated 4-byte integer between 1 and 100. We
generate different selectivity in blocks by setting the pagesize
attribute to different values. Each dataset set contains 1033
blocks. For each of the six datasets having Zipf parameters, we
ran three versions (randomized, keep-order and accept-reject)
to completion, and the current estimate and confidence interval
were tracked throughout execution. Due to space constraints,
we describe only three sets of results having parameters (0,
0.6, 1.0) for English language.

We note that the confidence bounds were tighter when data
is less skewed, as observed in Figure 6 - Figure 8. For the
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Fig. 6: C=0.0

randomized version, the average relative interval is 0.850%,
1.42%, 1.55% respectively with Zipf parameter being 0.0,
0.4, 1.0, the keep-order version is 0.853%, 1.36%, 1.53%.
Similarly, the accept-reject version is 0.857%, 1.39%, 1.53%.
Actually, this is because, the less skewed dataset contains more
tuples satisfying the selection predicate. For example, consider
the case of the 1.0 Zipf coefficient:in the “biggest” block,
the amount of valid tuples is proportional to 1/1, the second
“biggest” one is proportional to 1/2, the third is proportional to
1/3, and so on. In our experiment, the fractions of valid data
were set to 100%, 50%, 33% and so on. While the dataset
having 0.0 Zipf coefficient contains blocks in which all tuples
satisfy the selection predicate, in the dataset having 1.0 Zipf
coefficient, some blocks contains 100% valid tuples, some
contains 50% valid tuples, and so on. As a result, when data
is less skewed, there are more tuples satisfying the selection
predicate, leading to much tighter confidence bounds. From
figure 6 - 8, although the estimation of our method is not
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0.0 0.2 0.4 0.6 0.8 1.0

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

e
st

im
a
te

s 
w

ith
 c

o
n
fid

e
n
ce

 in
te

rv
a
ls

 (
X

 1
0
^1

0
)

query progress

 randomized
 keep-order
 accept-reject

Fig. 8: C=1.0

always better than the other two, the update of confidence
interval is more stable than the other two. At the same time,
our method can get desired accuracy faster.

VI. CONCLUSIONS

In a large-scale, distributed MapReduce environment, on-
line aggregation should appear more and more attractive rel-
ative to their o2ine counterparts, given that it can save cost
in the cloud by permitting early termination of queries when
the approximate answer is sufficiently precise. Incorporating
online aggregation into a MapReduce engine, however, raises
questions regarding the statistical guarantees in the presence
of data skew. In this article, we analyze how biases can arise
when estimating aggregates on skewed data in a distributed
environment.We propose a re-randomness method, targeting
eliminating such biases. The experimental results demonstrate
the efficiency of our proposal.
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