An Efficient Index Method
for Multi-Dimensional Query in Cloud
Environment

Youzhong Ma!2(®) | Xiaofeng Meng?, Shaoya Wang?®, Weisong Hu®, Xu Han?,
and Yu Zhang?

1 School of Information and Technology, Luoyang Normal University, Luoyang, China
{mayouzhong,xfmeng,hanxumelody,zhangyul990}@ruc.edu.cn
2 School of Information, Renmin University of China, Beijing, China
3 NEC Labs China, Beijing, China
{wang_shaoya,hu_weisong}@nec.cn

Abstract. The explosion of the data in many applications brings big
challenges to the traditional relational database management systems,
they are in trouble with the scalability when deal with very large volume
data. The cloud-based databases provide a promising approach to manage
massive data because of their native good scalability, fault tolerance and
high availability, while they can not provide efficient multi-dimensional
queries processing on the non-rowkeys. In real applications, many queries
are focused on many attributes, at the same time we can not predicate
all the query requirements and the query requirements always changes. In
this paper we proposed an efficient index solution layered on the key-value
store that can deal with multi-dimensional queries efficiently on large scale
data in cloud environment, and the solution can support adding new index
dynamically for the new query requirements. We implemented a proto-
type based on HBase and performed comprehensive experiments to test
the scalability and efficiency of our proposed solution.

Keywords: Multi-dimensional index + Cloud computing - HBase

1 Introduction

The explosion of the data in many applications brings big challenges to the
traditional relational database management system (RDBMS), the RDBMS can
provide efficient multi-dimensional query processing because of its lots of index
structures, such as KD trees [1], R-trees [2] et al., but RDBMS has big trouble
with the scalability when deal with massive data. The cloud-based databases
provide an effective way to deal with the big data because of its native good
scalability, fault tolerance and high availability, but the cloud-based databases,
such as Bigtable [3] and HBase, can only support efficient query on the rowkey,
they can not provide efficient multi-dimensional queries on the non-rowkeys.
This shortcoming limits the widespread usage of the cloud-based databases in
many applications.

© Springer International Publishing Switzerland 2015
W. Qiang et al. (Eds.): CloudCom-Asia 2015, LNCS 9106, pp. 307-318, 2015.
DOI: 10.1007/978-3-319-28430-9_23

308 Y. Ma et al.

With the development of GPS technology and widely spread of smart phones,
location based service(LBS) and location based social network(LBSN) have been
used by many users. LBS providers can collect users’ location information via
their smart phones, based on these information, LBS providers can offer many
interesting service for the users, e.g. recommending nearest Peking Duck restau-
rant. The users can also find the nearby friends through LBSN. In order to con-
duct the above services, the system needs to support multi-dimensional query,
such as on time, location and other attributes. In addition, in many other appli-
cations, the queries are focused on multiple attributes, such as e-commerce, the
internet of things applications. At the same time we can not predicate all the
query requirements and the query requirements always changes. In this paper
we proposed an efficient index solution layered on the key-value store that can
deal with multi-dimensional queries efficiently on large scale data in cloud envi-
ronment, and the solution can support adding new index dynamically for the
new query requirements. We implemented a prototype based on HBase and per-
formed comprehensive experiments to test the scalability and efficiency of our
proposed solution. The main contributions of the paper are as follows:

1. we propose an efficient index solution layered on the key-value store that can
deal with multi-dimensional queries efficiently on large scale data in cloud
environment, and the solution can support adding new index dynamically for
the new query requirements.

2. We propose a Region Split Tree as the global index to reorganize the regions
based on the selected key attributes, so we can locate the related regions
through the Region Split Tree for a given query.

3. We develop a prototype system based on HBase and perform comprehen-
sive experiments to test the scalability and efficiency of our proposed index
solution.

The organization of the paper is as the follows: Sect. 2 describes the related
research works about the index techniques for cloud data management; Sect. 3
gives the system overview of our proposed index solution; In Sects.4 and 5, we
introduce the details of global index and local index respectively; Sect. 6 mainly
gives the detailed procedure of the range query algorithm; In Sect. 7, we perform
comprehensive experiments to test our proposed index solution; We conclude
this paper in Sect. 8.

2 Related Works

Many research works have been done to study the index techniques on the cloud
data management, they can be divided into many different categories accord-
ing to their index techniques:double-level index framework, distributed index,
bitmap-based index, Hadoop framework based index, index solution based on
key-value stores and other index techniques specialized in processing some kind
of data type.

An Efficient Index Method for Multi-Dimensional Query 309

Wu et al. [4] are the first to explore the index techniques for the cloud data
management, they firstly proposed a double-level index framework in the cloud
environment. The double-level index framework includes two parts: global index
and local index. In cloud environment, the data is always stored at different
storage nodes in a distributed way, each local index is built for the data at every
storage node, and the global index is built based on the local index. In order
to improve the query efficiency and eliminate the bottleneck of the centralized
index paradigm, the computer nodes are organized into overlay networks such
as CAN and Chord.

Several index approaches have been proposed based on the double-level index
framework. [5] is one kind of the double-level index solutions. [5] builds up one
BT-tree at each storage node, then some index nodes of each BT -tree are selected
based on a cost model, these index nodes are reorganized into the global index using
BATON overlay network. But [5] can only support point query or range query
on single attribute, can not deal with multi-dimensional queries. Wang et al. [6]
and Ding et al. [7] proposed other different index solutions respectively to support
multi-dimensional query for the cloud data management. Wang et al. [6] built one
R-tree to index the local data on each compute node, and organized the compute
nodes into a CAN overlay network, the global index was constructed by selecting
portion of the local R-tree index nodes to publish into the CAN overlay network.
Ding et al. [7] used MX-CIF quad tree as the local index and Chord overlay net-
work as the global index. Efficient B-tree, Wang et al. [6] and Ding et al. [7] all use
P2P overlay network to organize the global index, this scheme has good scalability,
but it needs additional network cost when deal with a query. Zhang et al. [8] and
A-tree [9] both adopt the centralized index scheme at the global index. Zhang et al.
[8] also adopted the local index plus global index structure, it used the K-d tree for
local data, and in the global index level he adopted the centralized index scheme
by using R-tree to organize the portion of the local K-d tree nodes.

IHBase, THBase, CCIndex [10] and MD-HBase [11] proposed some index
solutions based on the key-value store. IHBase [12] and ITHBase [13] are two
open source projects that provide transactional and indexing extension for hbase.
CClIndex [10] is a kind of secondary index solutions based on Key-value store
proposed by Zhou et al., in [10], one secondary index table was built for each
indexed column. And in order to reduce the random read, the detailed infor-
mation of each record was pushed into the secondary index table, so that the
random read can be changed into sequential read. The author also proposed some
optimization methods to support multi-dimensional query based on the several
secondary indexes. CClndex is easily to be implemented, but it has several draw-
backs. Firstly it needs much more additional storage space when there are many
indexed columns; secondly CCIndex does not support adding or removing index
after the table was created. MD-HBase, as a scalable multi-dimensional data
infrastructure, was proposed in Shohi et al. [11]. In [11], the author transformed
the data from multi-dimensional space into one dimension by using linearization
techniques such as Z-ordering and used the z-order value as the rowkey. In order
to reduce the false positive scan during the query, the author divided the space

310 Y. Ma et al.
- T T Master
-7 - B AN
// - - ~o
. - -_
- - -
s - ==
// | T T T T T T T T T T T T =R 1
, | Regionserver 1 Regionserver 2 |
7 1 1
4 | i i jon i i i |
Iy @ ! Region 1 Region 2 Region i Region i+1 !
. T~ i
o - i E I:] i
— - dimensional [K___ | - 1
index SO : TRegiow3— — — Regiend4 — | Region i+2 Region i+3 :
) Tre E I:] :
\\ 1 1
1 _— 1
N | S = |

1

Local Index |

1

1

Statistics !
Information :

1

Filtering Module i
1

|

Fig. 1. System overview

into subspaces by using K-d tree and Quad-tree, and then constructed the index
layer using the longest common prefix naming scheme.

3 System Overview

In order to provide efficient multi-dimensional query on large scale data and
deal with the upcoming new query requirements on other attributes, we propose
a hybrid index solution layered on the key-value store(HBase). The overview
of the system is depicted in Fig.1. There are mainly five components in our
solution: global index, local index, statistical information, query processing and
index maintaining. The global index is always a multi-dimensional index and
mainly responsible for the selected key attributes; the local index is built on the
non-key attributes or the new attributes for each region; statistical information
module is used to collect the statistical information of the data in each region;
query processing module is responsible for executing the queries based on the
above index and statistical information; lastly, the index maintaining module is
used to add new index on other attributes.

4 Global Index

It is well known that the query performance of the multi-dimensional index
(R-tree) decreases dramatically as the dimensionality increases. Especially when
the dimensionality is very high, the performance of the multi-dimensional query
will be almost the same with that of full scanning the whole data. So in our
solution we just create multi-dimensional index for the selected key attributes,
not for all the attributes. The aim of the multi-dimensional index is to divide the
data into several disjoint partitions on the selected attributes and each partition
will be stored in a region in HBase, so we propose a Region Split Tree as the

An Efficient Index Method for Multi-Dimensional Query 311

47 Split region ’
Region D TopGrid
null /null /null / pull /13, /732 33/ I3

|

|

| wall / wall / nill / it/ v31 /7513 /T34 /) Tsi
| ‘nll / wull)/ nuil / watt /311, 11/ s
| e/ e /113 /113 / null/ ngll/ nuil/ null

|

|

RegionInfoGrid

mull / wull /nll /il fr3 [152 [135 /1

2/ 12/ ris /115 /it g i / mull

Grid Split Process o v)) i) il [i
N ___1 I 1131/ il pl,/ il / null
9 /
M —
;

Tia12 /T3, T2/ T1414,

T /i T1a141 / Trang,

Fig. 2. Global index: region split tree

global multi-dimensional index. Figure2 displays the overview of the Region
Split Tree.

Actually Region Split Tree is a hybrid index by combining gird index and
tree index. The basic idea of the grid index is to divide the k-dimensional space
based on a orthogonal grid, the whole space is divided into many k-dimensional
rectangle subspaces, and these rectangle subspaces are called grid directory. The
strength of the grid index is that it can find the final results through limited
times of access to the external storage. The main problem of the grid index is
the storage of the grid directory, when the dimensionality is very high, the grid
directory will be very large and the split will add many new grid directory items.
So in our solution we make some modifications based on the original grid index.

TopGrid. Region Split Tree has two entrances: TopGrid and RegionInfoGrid.
TopGrid is a coarse grained grid that is used to pre-split the space into partitions,
each partition corresponds to a region of the HBase and the data of each partition
is stored in the region. At the beginning the information that is stored in the
TopGrid is the region names, as the data increases, if the number of the records in
a specific partition exceeds a predefined threshold, we need to split the partition
into several new partitions, at the same time we update the information that
is stored in the TopGrid using the address of the new partitions. Finally all
the regions can be indexed using the Region Split Tree. The granularity of the
TopGird depends on the distribution of the original data, the data volume and
other factors.

RegionInfoGird. When the data is skewed, the depth will be very high, it will
cost too much time to locate the related regions by traversing the whole Region
Split Tree from the TopGird to the bottom. In order to solve this problem, we
proposed RegionInfoGrid that is a fine grained grid compared with TopGrid.
RegionInfoGird is mainly used to store the information of the regions that lie at
a given level (L) of the Region Split Tree. The names of the regions from Level,

312 Y. Ma et al.

to Level;, can be stored in the RegionInfoGrid. At Levely, if a sub-grid is split
again, then the address of the new sub-grids will be stored in the RegionInfoGrid.
The granularity of the RegionInfoGird is the same as that of the Grid ar Levely,.

The information of RegionlnfoGrid can be stored in main memory, If too
large, we can store all the grids information into HBase table. We create an
index table to store the grid directory items, the rowkey of the index table is the
combination of the y-coordinate and x-coordinate, the value corresponding to
each rowkey is the region name that the subspace belongs to. When we execute a
query, if the query contains the selected attributes, we can get the names of the
related regions by accessing the index table. Because each region may correspond
to several different sub grids, we need to filter the duplicated region names.

Region Split Procedure. Given the TopGrid, we need to record the number
of the records in each sub-grid, if it is over a threshold, we need to divide the
sub-gird again, so on and so forth. The number of the new partitions the sub-
gird is divided into must be suitable, not too big or too small. Supposing the
dimensionality of the key-attributes is n, the split number is N, then:

N ok g 2n, n =2
T N n, n>2

During the procedure of the gird splitting, the information stored in RegionIn-
foGrid needs to be updated accordingly.

Rowkey Formulation Scheme. Because the data in HBase is organized into
different regions based on their rowkeys, and the rowkey is in each region is
sequential, we need to design a suitable key formulation scheme. When we divide
the space using Region Split Tree, we have to make sure that the data that is
close in the original space is likely to be stored in the same region. So we use the
z-order value as the rowkey of each record, such coding scheme can make sure
that the rowkey is continuous in each region.

5 Local Index

In addition to the selected key attributes on which we build global multi-
dimensional index, we have to consider other non-key attributes for satisfying
the query requirements. We plan to create local index for the non-key attributes,
and the local index is built for each region. The structure of the local index can
be selected according to the characteristics of the attributes, we can select R-tree
for those attributes which are always used together, if one attribute is always
used dependently, we can use B-tree for such attribute. We have two kinds of
solutions for the local index: real time processing and batch processing.

5.1 Real-Time Processing

In real time processing mode, we have to index each record when it is inserted
into the region. In order to keep the consistency between the local index and

An Efficient Index Method for Multi-Dimensional Query 313

the actual data inserted into the region, we can make use of the Coprocessor
technique proposed in HBase recently. When a record is inserted into a region,
it will trigger a new task that is used to insert the record into the local index
through Coprocessor mechanism, the record will be inserted into the region only
after the record has been inserted into the local index successfully.

5.2 Batch Processing

Although the real time processing mode can make sure that the data can be
indexed timely, it will bring additional burden to the system and affect the
performance of the insertion. In order to maintain the high inset throughput, we
can adopt the batch processing mode. According to the batch processing mode,
we don’t create local index for the data when they are inserted into the region.
After the data of one region becomes stable, that is to say no more data will
be inserted in to this region again, we can create the local index for each region
by scanning the whole data in the specific region. MapReduce paradigm can be
used to speed up the batch processing procedure, map task is enough for the
MapReduce job and each map task is responsible for one region.

5.3 Region and Local Index Localization

HBase always moves the regions among the region servers according to some
predefined load balance strategy. While the local index is built for each region
and it is stored as a file on the HDFS, at the beginning each region and its
corresponding local index are at the same region server. In order to reduce the
communication cost, we have to move the local index together with the region.
We have two methods to choose: one is that we move the local index as long as
the region has been moved; another one is that we can check the local index and
regions occasionally and move the local index in batch.

6 Query Processing

In this section we mainly describe the detailed procedure of the range query
processing based on our proposed index solution.

6.1 Range Query Processing

Q(Es, E,) is a multi-dimensional query, Ey and F,, are the query conditions
on the selected attributes and non-selected attributes respectively. Algorithm 1
display the detailed procedure of the multi-dimensional query. Firstly we need to
decide whether the query contains the selected attributes or not, that is to say
if E5 is empty, we have to send the query to all the regions, so we set the names
of all the regions to the related region set Sg (line 4), otherwise we can get the
related regions through querying the global index (line 6). For each region R
in the related regions set S, we firstly decide whether R contains the desired

314 Y. Ma et al.

results or not based on the statistical information, if not, region R can be skipped
(line 9,10), otherwise we need to process R (line 11-21). When process region
R, we need to decide whether it is necessary to use the local index or not, if yes,
we can get the final results through the local index (line 12,13), if not, we need
to scan the whole region to find the final results (line 14-19).

Algorithm 1. Range Query Processing
Input: Q(Es, E,)
FE: conditions on selected attributes
FE,.: conditions on non-selected attributes
Output: Rg
: Rog — 0
Sg < 0 /*Initialize the related region set to empty*/
if (Es ==0) then
Sq +the names of all the regions
else
Sq «— getRegions(Q(Es, Ey), RST)
end if
for each region R in Sg do

9: if (R doesn’t contain the desired result) then
10: continue

11: else

12: if (need to query localindex) then

13: Rg «— Rq U searchLocallndex(R, E, En)
14: else

15: for each record r in R do

16: if r € (Es, E) then

17: Ro «— RoUr

18: end if

19: end for

20: end if

21: end if

22: end for

6.2 Get Related Regions Through Global Index

Algorithm 2 displays how to get the related regions based on the global index:
Region Split Tree, it mainly contains three steps. Firstly we get the sub-girds by
querying the TopGird of the Region Split Tree, if the elements of the query result are
all Regions (that is to say no region has been split), we return the result directly (line
3-6); if some regions have been split, we need to query the RegionInfoGird of Region
Split Tree again (line 7-10). If the elements of the query result are all Regions,
we combine the result and previous result S, then retrun Sg (line 11-13); oth-
erwise we need to query the Region Split Tree continuously by using the entrances
retrieved from the RegionInfoGird (line 14-18). Finally the related region set Sg

An Efficient Index Method for Multi-Dimensional Query 315

is returned, the Range Query Processing Algorithm will continue to process the
related regions.

Algorithm 2. Get Related Regions Through Global Index
Input: Q(E, E,)
FE: conditions on selected attributes
FE,.: conditions on non-selected attributes
RST: global index: Region Split Tree
Output Sq: the related regions set
: Sq < 0 /*Initialize the related region set to empty*/
subGridSet — () /*The temporal set to store the query result*/
subGridSet «— getGirds(Q, RST.TopGird)
if (the regions in subGridSet are Region) then
Sq < subGridSet
return Sg
else
Sq < Regions in subGridSet
9: subGridSet «— ()
10: subGridSet — getGirds(Q, RST.RegionInfoGird)
11: if (the regions in subGridSet are Region) then

12: Sq «— Sq U subGridSet

13: return Sg

14: else

15: Sq «— Sg U Regions in subGridSet

16: Sq «— SqU

17: getRegions(Q, RST.RegionInfoGird. Entrances)
18: end if

19: end if

20: return Sg

7 Experiment Evaluation

In this section we will perform comprehensive experiments to test the perfor-
mance of our prototype. We will compare our proposed index RegionSplitTree
with other two index: UQE-Index [14] and EMINC (8], UQE-Index [14] is an
Update and Query Efficient index for massive IOT data in cloud environment,
EMINC [8] index refers to Efficient Multi-dimensional Index with Node Cube.
The prototype is implemented based on HBase-0.94.5 and Hadoop-1.0.3 The
experiments were performed on an in-house cloud platform, the cloud platform
size varies from 4 to 16 nodes that are connected with 1 Gbit Ethernet switch,
the configuration is: CPU: Q9650 3.00 GHz, memory: 4 GB, disk:1TB, os: 64 bit
Ubuntu 9.10 server. We mainly focus on the insert throughput, query processing
performance such as rang query, point query.

316 Y. Ma et al.

The experiments are performed on two different data set: uniform distribution
data set and skewed distribution data set, each data set contains 200 million
records. The data sets are synthetic data, and they are generated in the following
scheme: in the distribution uniform data set, each record has six attributes:
time, latitude, longitude, atty,atts, contastantString. The values of longitude
and latitude are uniformly distributed in the range [1, 10000], the time is the
system time when the data is generated, ConstantString is used to tune the
record size, att; and atty are two additional attributes on which we need to
build local index. In the skewed distribution data set, each record has the same
attributes as the uniform distribution data set, the difference is that longitude,
latitude, att; and atty are skewed following zipf like distribution, and we set the
skew factor as 0.5.

7.1 Performance of Insert Throughput

Figure 3 shows that the insert throughput of RegionSplitTree, UQE-Index and
EMINC. We can see that the insert throughput of RegionSplitTree is up to
6000rec/s, it is two times of EMINC. We also can see that UQE-Index is the
best, it is two times of RegionSplitTree. The main reason is that UQE-Index can
only create index on three attributes: time, latitude and longitute, while Region-
SplitTree creates index on five attributes: time, latitude, longitute, atty, atts. So
the cost of RegionSplitTree will be higher than that of UQE-Index.

7.2 Performance of Point Queries

Figures4 and 5 show that the performance of point query for uniform data set
and skewed data set. When the number of the computer nodes exceeds 8, the
point query performance of RegionSplitTree is always better than that of UQE-
Index for both uniform data set and skewed data set. But for the skewed data set,
the performance of UQE-Index decreases as the number of the computer nodes
increases, the main reason is that the data is skewed, although the computer
nodes increase, the data is still inserted into some fixed computer nodes; on the
other hand, communication cost will increase as the computer nodes increase.
From the experiment result we can see that RegionSplitTree is more suitable for
the skewed data set than UQE-Index.

7.3 Performance of Range Queries

Figure 6 shows the performance of range query for uniform data set. From the
figure we can see that RegionSplitTree has the best performance when the selec-
tivity is lower than 0.01 %, while the performance of RegionSplitTree becomes
worst when the selectivity is more than 0.1 %. But Fig. 7 shows that the range
query performance of RegionSplitTree is the always the best for all the selectivity
on skewed data set.

An Efficient Index Method for Multi-Dimensional Query 317

- 8- RegionSplitTree 3 —A—RegionSplitTree
12000{ | -6~ UQE-Tndex Zaooof | o
—— EMINC £ ©7 UQE-Index
£ 10000 & 2500
E s £ 270

=

A RegionSplitTrec
-© -UQE-Index

Z 6000
= .o

401

2 8 12 8 2
Computer Node Computer Node Computer Node

Fig. 3. Insert throughput Fig. 4. Point query-uniform Fig. 5. Point query-skewed

7000 30,000
6000 Il RegionSplitTree 25,000 I RegionSplitTree
. [CJEMINC _ [JEMINC
£ 50007 | I UQE-Index £ 20,000 B UQE-Index
E 4000 E:
N 5 15,000
é 3000 g
2 £10,000
& 2000 &
1000 5,000
0 0
0.0001 0.01 0.1 1 0.0001 0.01 0.1 1
Selectivity(%) Selectivity(%)
Fig. 6. Performance of range queries Fig. 7. Performance of range queries
(uniform) (skewed)

8 Conclusions and Future Work

In this paper we proposed an efficient index solution layered on the key-value
store that can deal with multi-dimensional queries efficiently on large scale data
in cloud environment, and the solution can support adding new index dynam-
ically for the new query requirements. We pick up some important attributes
which are often used in the queries as the key attributes and create global multi-
dimensional index for the key attributes, we proposed a Region Split Tree as the
global index. We build up local index for non-key attributes if needed, the ocal
index can be R-tree or B-tree. Finally, we implemented a prototype based on
HBase, and comprehensive experiment evaluations have been done to analyze
our solution’s efficiency and scalability.

In this paper we mainly focus on multi-dimensional range query, in the future
we plan to extend our works to support other more complex query, such as KNN
query, aggregate query. In addition to query on the simple data, we plan to deal
with queries on the more complicated data, such as strings, vector data, graph
data, an so on.

Acknowledgment. This work was partially supported by the grants from NEC
Labs China; the Natural Science Foundation of China (No. 61070055, 91024032,
91124001); the Fundamental Research Funds for the Central Universities, and the

318 Y. Ma et al.

Research Funds of Renmin University (No. 11XNL010); National 863 High-tech Pro-
gram (2012AA011001, 2013AA013204); Science and technology project of Henan
Province (No. 152102210332).

References

1. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Commun. ACM 18, 509-517 (1975)

2. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: Con-
ference on SIGMOD 1984, pp. 47-57 (1984)

3. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,
Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for
structured data. ACM Trans. Comput. Syst. 26, 4 (2008)

4. Wu, S., Wu, K.L.: An indexing framework for efficient retrieval on the cloud. IEEE
Data Eng. Bull. 32, 75-82 (2009)

5. Wu, S., Jiang, D., Ooi, B.C., Wu, K.L.: Efficient B-tree based indexing for cloud
data processing. In: VLDB, pp. 1207-1218 (2010)

6. Wang, J., Wu, S., Gao, H., Li, J., Ooi, B.C.: Indexing multi-dimensional data in a
cloud system. In: SIGMOD Conference 2010, pp. 591-602 (2010)

7. Qiao, B., Wang, G., Chen, C., Ding, L.: An efficient quad-tree based index structure
for cloud data management. In: Wang, H., Li, S., Oyama, S., Hu, X., Qian, T. (eds.)
WAIM 2011. LNCS, vol. 6897, pp. 238-250. Springer, Heidelberg (2011)

8. Zhang, X., Ai, J., Wang, Z., Lu, J., Meng, X.: An efficient multi-dimensional index
for cloud data management. In: CloudDB, pp. 17-24 (2009)

9. Papadopoulos, A., Katsaros, D.: A-tree: Distributed indexing of multidimensional
data for cloud computing environments. In: CloudCom, pp. 407414 (2011)

10. Zha, L., Wang, S., Xu, Z., Zou, Y., Liu, J.: CCIndex: a complemental clustering
index on distributed ordered tables for multi-dimensional range queries. In: Ding,
C., Shao, Z., Zheng, R. (eds.) NPC 2010. LNCS, vol. 6289, pp. 247-261. Springer,
Heidelberg (2010)

11. Nishimura, S., Das, S., Agrawal, D., Abbadi, A.E.: MD-HBase: A scalable multi-
dimensional data infrastructure for location aware services. In: Mobile Data Man-
agement 2011, pp. 7-16 (2011)

12. Kulbak, Y., Washusen, D.: IHBase (2010). http://github.com/ykulbak/ihbase

13. Kennedy, J., et al.: ITHBase:transactional and indexing extensions for HBase
(2010). https://github.com/hbase-trx/hbase-transactional-tableindexed

14. Ma, Y., Rao, J., Hu, W., Meng, X., Han, X., Zhang, Y., Chai, Y., Liu, C.: An
efficient index for massive IOT data in cloud environment. In: CIKM 2012, pp.
2129-2133 (2012)

http://github.com/ykulbak/ihbase
https://github.com/hbase-trx/hbase-transactional-tableindexed

	An Efficient Index Method for Multi-Dimensional Query in Cloud Environment
	1 Introduction
	2 Related Works
	3 System Overview
	4 Global Index
	5 Local Index
	5.1 Real-Time Processing
	5.2 Batch Processing
	5.3 Region and Local Index Localization

	6 Query Processing
	6.1 Range Query Processing
	6.2 Get Related Regions Through Global Index

	7 Experiment Evaluation
	7.1 Performance of Insert Throughput
	7.2 Performance of Point Queries
	7.3 Performance of Range Queries

	8 Conclusions and Future Work
	References

