
Towards Accurate Histogram Publication under Differential Privacy

Xiaojian Zhang∗ Rui Chen† Jianliang Xu‡ Xiaofeng Meng§ Yingtao Xie¶

Abstract

Histograms are the workhorse of data mining and analy-

sis. This paper considers the problem of publishing his-

tograms under differential privacy, one of the strongest pri-

vacy models. Existing differentially private histogram pub-

lication schemes have shown that clustering (or grouping) is

a promising idea to improve the accuracy of sanitized his-

tograms. However, none of them fully exploits the bene-

fit of clustering. In this paper, we introduce a new clus-

tering framework. It features a sophisticated evaluation of

the trade-off between the approximation error due to clus-

tering and the Laplace error due to Laplace noise injected,

which is normally overlooked in prior work. In particular,

we propose three clustering strategies with different orders

of run-time complexities. We prove the superiority of our

approach by theoretical utility comparisons with the com-

petitors. Our extensive experiments over various standard

real-life and synthetic datasets confirm that our technique

consistently outperforms existing competitors.

1 Introduction

Obtaining fast and accurate sketches of data distribu-
tions is a central problem in data mining and analysis.
Histograms are one of the most popular techniques pro-
posed in this context to approximate data distributions.
A histogram is a graphical summary of the counts of do-
main values over a specific domain in a database. For
example, if the domain is a set of diseases (e.g., TB, NS,
etc), the corresponding histogram is a representation of
tabulated counts of the diseases (i.e., number of patients
contracting a disease), as illustrated in Figure 1(a).

Though making histograms available to researchers
may result in knowledge that benefits the general pub-

∗School of Information, Renmin University of China, Beijing,

China, xjzhang82@ruc.edu.cn. Henan University of Economics

and Law. Part of the work was done when visiting Hong Kong

Baptist University
†Department of Computer Science, Hong Kong Baptist Uni-

versity, Hong Kong, ruichen@comp.hkbu.edu.hk
‡Department of Computer Science, Hong Kong Baptist Uni-

versity, Hong Kong, xujl@comp.hkbu.edu.hk
§School of Information, Renmin University of China, Beijing,

China, xfmeng@ruc.edu.cn
¶Experiment Center, China West Normal University, Nan-

chong, China, yingtaoxie@outlook.com

TB NS PS CF AP HE RA

1

2

3

4

5

1 1

2 2

4

2

66

TB PS CF HE RA NS AP

1

2

3

4

5

1

2

4

6

1

2 2

6

(a) Original histogram (b) Sorted histogram

Figure 1: Sample histogram and its sorted version

lic, it has to be done in a way that does not compromise
the privacy of individuals in the database. A standard
practice is to safeguard histograms by differential pri-
vacy [4], one of the strongest privacy models that pro-
vides provable privacy guarantees. Intuitively, differen-
tial privacy can be satisfied by injecting Laplace noise
sufficient for hiding the maximum impact of any indi-
vidual on a histogram. As a result, all record owners
can be assured that any privacy breach will not be a
result of participating in the database.

There have been some recent works on differentially
private histogram publication [2, 15, 13, 9, 5, 17, 16,
1, 7] with the fundamental objective of improving the
accuracy of histograms released. Among all these works,
the methods based on clustering (or grouping) [16, 1, 7]
provide the most promising accuracy. The general idea
of a clustering-based method is to cluster bins with close
counts and approximate their counts by the cluster’s
mean so that we can enjoy reduced Laplace noise. In
this process, we encounter two sources of errors: 1) the
approximation error (AE) due to approximating each
bin count by its cluster’s mean, and 2) the Laplace
error (LE) due to Laplace noise injected. The trade-off
between the AE and the LE is vital to the final accuracy
of a sanitized histogram.

Unfortunately, the existing studies [16, 1, 7] do not
balance this trade-off in a desirable way, leaving much
room for improvement. Xu et al. [16] and Acs et al. [1]
only consider “local” clustering, that is, a bin can only
be grouped with adjacent bins, despite the fact that
there may exist many bins with close counts far apart.
For example, under their methods, in Figure 1(a) the
bin CF cannot be in the same cluster as HE and RA
unless AP is also in the cluster. Consequently, these
methods inevitably incur either large AE (e.g., grouping

587 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

CF, AP, HE and RA together) or large LE (e.g., creating
three different clusters)1. Furthermore, both methods
rely on the exponential mechanism [12] to identify the
clusters. When the number of clusters is large, which
is the case for most real-life histograms, the formation
of clusters becomes imprecise due to the extremely
small privacy parameter available for each operation. In
addition, specifying the number of clusters as an input
is a major hindrance of the method in [16].

Kellaris and Papadopoulos [7] partially address the
drawbacks of the above methods by performing a private
sorting procedure. Sorting allows “global” clustering.
For example, in Figure 1(b), the bins CF, HE and RA
can be grouped into a single cluster without including
AP. However, their approach does not carefully take into
consideration the AE. They simply demand each cluster
to be of the same size. In practice, there may not exist
a good fixed size that leads to a reasonable trade-off
between the two sources of errors (e.g., Figure 1(b)).

Motivated by this, we propose a new clustering
framework that publishes more accurate histograms
while satisfying differential privacy. Under this frame-
work, we address the aforementioned shortcomings of
the existing works. In particular, we propose three clus-
tering schemes with different run-time complexities, in-
cluding an optimal algorithm, an empirical algorithm
and a greedy algorithm. All of these clustering schemes
carefully evaluate the trade-off between the AE and the
LE in the formation of clusters. We prove the superi-
ority of our approach by providing theoretical accuracy
comparisons with our competitors [16, 1, 7]. We also
perform an extensive experimental study over various
real-life and synthetic datasets, which confirms that our
technique consistently outperforms the competitors.

2 Related Work

Numerous recent works [2, 15, 13, 9, 5, 17, 16, 1, 7] have
been endeavored to release histograms under differential
privacy. Barak et al. [2] consider the problem of releas-
ing differentially private contingency tables. They first
apply the Laplace mechanism on the Fourier coefficients
of an input dataset, and then use linear programming
to generate non-negative contingency tables. Later, in
the context of time-series data, Rastogi and Nath [13]
point out that the magnitude of noise can be reduced
by retaining just the first few Fourier coefficients.

Hay et al. [5] make use of the public constraints
on the query answers to perform constrained inferences.
Xiao et al. [15] apply a wavelet transform on the original
histogram and add noise to the wavelet coefficients.

1As will be shown later, the LE is proportional to the number

of clusters.

Li et al. [9] generalize the methods in [5, 15] under
the matrix mechanism. The key idea is to derive the
answers to a workload of queries from a different set of
queries (known as a query strategy), on which Laplace
noise is added. However, the recent work [17] identifies
several inherent limits in the matrix mechanism that
lower its accuracy in practice, and consequently presents
the low-rank mechanism. It answers batch queries based
on a low rank approximation of the workload matrix.

Another promising line of research [16, 1, 7] is based
on the idea of clustering or grouping. In particular, Acs
et al. [1] experimentally show that this line of methods
outperforms many aforementioned techniques. Xu et
al. [16] propose the NoiseFirst and StructureFirst

algorithms. Given the number of clusters in advance,
NoiseFirst forms clusters by applying the non-private
optimal histogram construction technique [6] over a
noisy histogram while StructureFirst finds the clus-
ter boundaries by iteratively applying the exponential
mechanism. Their approaches consider only the AE with
respect to the non-private optimal histogram and ignore
the resultant LE.

Acs et al. [1] improve the methods in [16] by deter-
mining the number of clusters on the fly. They design
a hierarchical bisection procedure over a histogram to
identify good clusters. Kellaris and Papadopoulos [7]
consider a slightly different problem setting, in which a
record owner may contribute to multiple bins. They first
employ sampling to sort the underlying histogram and
then divide the bins into groups with a fixed size. Un-
fortunately, using the same size for all groups normally
leads to unbalanced AE. As mentioned in Section 1, all
these works [16, 1, 7] have some inherent design lim-
its that prevent them from fully exploiting the benefit
of clustering. In Section 5 and Section 6, we provide
both a formal theoretical analysis and an experimen-
tal evaluation to show that our solution achieves better
accuracy.

3 Preliminaries

3.1 Histogram. Consider an attribute X with the
value set V (either numerical or nominal) in a database
D. For each value v ∈ V, its count (or frequency)
is the number of tuples t ∈ D with t.X = v. The
histogram H over the attribute X consists of a set of
bins: H = {H1, H2, · · · , Hn}, where each bin Hi is
associated with a range of values it covers, denoted by
Hi.range, and is of a count (or frequency) equal to the
sum of the counts of the values covered by Hi (i.e.,
the number of tuples in Hi.range). Normally, for any
i ̸= j, Hi.range ∩ Hj .range = ∅, and |D| =

∑n
i=1 Hi,

where |D| is the number of tuples in D. In this paper,
we consider attributed histograms, that is, each bin’s

588 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

range of values is retained. An attributed histogram
can be used to answer a wide range of queries (e.g.,
range queries).

3.2 Differential Privacy. Let H1 and H2 be two
histograms derived from two databases D1 and D2 that
differ by at most one record. We call H1 and H2

neighbors. It can be observed that any two neighboring
histograms differ in exactly one bin with difference on
the count at exactly 1. Differential privacy [4] in our
problem is formally defined as follows.

Definition 3.1. A privacy algorithm A satisfies ϵ-
differential privacy, if for any two neighboring his-
tograms H1 and H2, and for any O ∈ Range(A),

Pr[A(H1) = O] ≤ exp(ϵ) · Pr[A(H2) = O]

where the probability is taken over A’s randomness.

The parameter ϵ > 0 specifies the desired level of
privacy. The smaller ϵ, the better privacy protection.
Typically, ϵ is small (e.g., ϵ ≤ 1).

In the literature, there are two well-established
techniques to achieve differential privacy: the Laplace
mechanism [4] and the exponential mechanism [12].
Both are based on the concept of global sensitivity of
a function f to compute over a histogram. For any
two neighboring histograms H1 and H2, the global
sensitivity of a function f : H → Rd is defined as
∆f = maxH1,H2 ∥f(H1)− f(H2)∥1.

The Laplace mechanism is used in our solution.
Intuitively, it requires to mask the impact of a record
owner by adding properly calibrated Laplace noise.
More precisely, given a histogram H, a function f ,
and the privacy parameter ϵ, the noise is drawn from
a Laplace distribution with the probability density
function p(x|λ) = 1

2λe
−|x|/λ, where λ = ∆f/ϵ.

Theorem 3.1. [4] For any function f : H → Rd, the
mechanism A

A(H) = f(H) + ⟨Lap1(
∆f

ϵ
), . . . , Lapd(

∆f

ϵ
)⟩

gives ϵ-differential privacy, where Lapi(
∆f
ϵ) are i.i.d

Laplace variables with scale parameter ∆f
ϵ .

3.3 Utility Metrics. Two popular data analysis
tasks conducted over an attributed histogram are exam-
ining data distributions and answering range queries [16,
1, 7]. Consequently, we measure the utility of the re-
leased histograms in terms of Kullback-Leibler diver-
gence (KLD) and mean squared error (MSE).

KLD is used to quantify the difference of the
probability distributions between the original histogram

H and the sanitized histogram H̃. Formally, KLD(H ∥
H̃) =

∑n
i=1 Hi ln

Hi

H̃i
, where n is the number of bins in

H. If H = H̃, then KLD(H∥H̃) = 0. We follow the
standard convention that 0ln 0 = 0.

The utility of the sanitized histogram H̃ over a set
of range queries Q = {Q1, Q2, · · · , Qm} is quantified

by the MSE as: MSE(H, H̃,Q) =
∑m

i=1(Qi(H)−Qi(H̃))2

m ,

where Qi(H) and Qi(H̃) return the answers of Qi on H

and H̃, respectively.

4 Sanitization Algorithm

In this section, we present our clustering framework that
carefully seeks for a better trade-off between the AE and
the LE and thus achieves better accuracy.

4.1 Overview. Our objective is to generate a san-
itized histogram that minimizes its error with respect
to the original histogram while satisfying ϵ-differential
privacy. Let E(·) be the expected value. Formally, the

error of a sanitized histogram H̃ is defined as:

err(H̃) = E(
∥∥∥H− H̃

∥∥∥2
2
) = E(

n∑
i=1

(Hi − H̃i)
2).

Similarly, the error of a bin H̃i is err(H̃i) = (Hi− H̃i)
2.

As mentioned before, in a clustering-based ap-
proach, err(H̃) is composed of two types of errors: 1)
the approximation error (AE) due to approximating each
bin count by its cluster’s mean, and 2) the Laplace error
(LE) due to Laplace noise added. There exists a funda-
mental trade-off between these two sources of errors: in
general forming more clusters decreases AE at the cost
of larger LE. We have to bear this trade-off in mind for
designing an effective solution.

Our clustering framework is summarized in Algo-
rithm 1. We first employ a noisy sorting procedure
over the input histogram H, then group bins with close
counts into the same cluster, and finally replace each
bin count with the sum of its cluster’s mean and re-
duced Laplace noise. To minimize the resultant error,
each step needs careful design.

4.2 Detailed Algorithm. The success of our solu-
tion lies in a good formation of clusters. A natural start-
ing point is to sort all bins based on their counts and
then apply clustering over sorted bins. However, the
sorting cannot be done based on their true counts; oth-
erwise differential privacy will be violated [7]. For this
reason, we obtain the noisy counts of the bins by the
Laplace mechanism using a portion of the total privacy
parameter ϵ1 (Line 2).

To generate more accurate sorting results, we would

589 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

like to mitigate the impact of Laplace noise added.
One attempt toward this goal is to employ sampling
techniques based on the following theorem [10], as
suggested by Kellaris and Papadopoulos [7].

Theorem 4.1. [10] If an algorithm A satisfies ϵ-
differential privacy, the algorithm Aβ, for any 0 < β <
1, satisfies ln (1 + β(eϵ − 1))-differential privacy, where
Aβ denotes the algorithm to first sample with probability
β and then apply A to the sampled dataset.

Unfortunately, the column sampling technique does
not fit our problem setting in its nature because a
record owner falls into exactly one bin, while the row
sampling technique only generates less precise sorting
results. To reliably sort two bins Hi and Hj based on
their noisy counts, it is natural to require their true
difference to be much larger than the magnitude of
noise. Therefore, the ratio of their difference |Hi −Hj |
to the standard deviation of noise,

|Hi−Hj |√
2/ϵ1

, is a good

indicator of the sorting quality. When row sampling

is applied, the ratio becomes
β|Hi−Hj |√

2/ ln(1+β(eϵ1−1))
. Since

|Hi−Hj |√
2/ϵ1

>
β|Hi−Hj |√

2/ ln(1+β(eϵ1−1))
for any 0 < β < 1, we learn

that row sampling only leads to less precise sorting.
In this paper, we use a thresholding strategy to

alleviate the influence of noise, following the observation
that, in many real-life histograms, there exist many
bins with a zero count. Adding additive Laplace noise
to these bins creates many artificially non-zero counts,
which introduces a major disturbance to the sorting
process. The Threshold procedure (Line 3) essentially

applies a high-pass filter to Ĥ as follows:

Ĥi =

{
Ĥi if Ĥi ≥ θ

0 otherwise
,

where θ = η log(n)/ϵ1 and η > 0 is a tuning parameter.
The selection of θ follows the intuition that the maximal
magnitude of n Laplace variables will be O(logn

ϵ1
) [8].

Threshold smooths the noise added to the bins of rela-
tively small counts and leads to a more accurate sorting
result. We stress that even if the aforementioned obser-
vation does not hold for a particular input histogram,
Threshold does no harm to the entire algorithm.

Sorting then can be conducted on the smoothed
Ĥ using any sorting algorithm (Line 4). Since Sort

is performed over the differentially private Ĥ, it does
not incur any extra privacy cost.

Next we perform clustering over the sorted noisy
histogram Ĥ. To better balance the AE and the LE,
we need a deeper understanding of err(H̃) by explicitly
representing it in terms of these two sources of errors.
Let err(Ci) be the error of the cluster Ci.

Algorithm 1 Accurate Histogram Publication (AHP)

Input: Original histogram H = {H1,H2, · · · ,Hn}
Input: Privacy parameter ϵ
Output: Sanitized histogram H̃
1: ϵ = ϵ1 + ϵ2;
2: Ĥ = H+ ⟨Lap(1

ϵ1
)⟩n;

3: Ĥ = Threshold(Ĥ);

4: Ĥ = Sort(Ĥ);

5: C = Cluster(Ĥ);
6: for each Ci ∈ C do
7: Ci =

∑
Hj∈Ci

Hj/|Ci|;
8: for each Hj ∈ H do

9: H̃j = Ci +
Lap(1/ϵ2)

|Ci| , where Hj ∈ Ci;

10: return H̃ = {H̃1, H̃2, · · · , H̃n};

Theorem 4.2. Given a cluster Ci generated by Algo-
rithm 1, err(Ci) =

∑
Hj∈Ci

(Hj −Ci)
2+ 2

|Ci|(ϵ2)2 , where

Ci is the mean of Ci,
∑

Hj∈Ci
(Hj −Ci)

2 is the AE, and
2

|Ci|(ϵ2)2 is the LE.

Proof. By definition, Ci =

∑
Hj∈Ci

Hj

|Ci| . Since every bin

count in Ci is set to Ci +
Lap(1/ϵ2)

|Ci| (Line 9), err(Ci) can

be calculated as follows:

err(Ci) = E

 ∑
Hj∈Ci

(
Hj − Ci −

Lap(1/ϵ2)

|Ci|

)2

=
∑

Hj∈Ci

(
Hj − Ci

)2
+ E

 ∑
Hj∈Ci

(
Lap(1/ϵ2)

|Ci|

)2

=
∑

Hj∈Ci

(
Hj − Ci

)2
+

2

|Ci| (ϵ2)2

This proves the theorem.

Consequently, we propose three clustering strategies
to instantiate the cluster procedure (Line 5) with
different orders of run-time complexities.

Optimal Clustering Algorithm. Given the pre-
processed noisy histogram Ĥ, the first clustering algo-
rithm aims to identify the optimal clusters that mini-
mize err(H̃). We slightly abuse the term optimal in the

sense that the optimality is with respect to Ĥ, instead
of the original histogram H.

Our optimal algorithm is built on the dynamic pro-
gramming technique proposed in [6], which finds the op-
timal clusters for a given number of clusters k. However,
the LE is not a concern in the problem of [6]. Denote

the partial histogram containing {Ĥi, Ĥi+1, · · · , Ĥj} by

Ĥi,j . Define err∗(Ĥ1,j ,m) to be the minimum error for

590 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Ĥ1,j using at most m clusters. To correctly reflect the
LE, we accordingly modify the recursive rule in dynamic
programming as follows:

err∗(Ĥ1,j ,m) = min
1≤l<j

{err∗(Ĥ1,l,m−1)+err(Ĥl+1,j)}.

It is easy to verify the correctness of this rule2.
To find the minimum err(H̃), we consider all possible
numbers of clusters, that is, k = 1, 2, · · · , n, and return
the clusters that achieve the minimum error.

This algorithm is guaranteed to find the optimal
clusters, but its computational cost is prohibitively
high. The run-time complexity of finding the optimal
clustering scheme for a given number of clusters k is
O(kn2) [6], and therefore the complexity of our optimal
clustering algorithm is O(n4), making it impractical for
most real-life applications.

Empirical Clustering Algorithm. Realizing that
the major computational cost of the optimal clustering
algorithm comes from examining all possible numbers of
clusters k, we propose an empirical clustering algorithm,
which estimates some good k values based on well-
established statistical results. In particular, we consider
four rules of thumb:

• Square-root choice: k =
√
n;

• Sturges’ formula [14]: k = ⌈1 + log2 n⌉;

• Doane’s formula [3]: k = 1 + log2 n+ log2(1 +
|s|
σ),

where s =

∣∣∣∣∣ ∑
1≤i≤n(Ĥi−

∑
1≤j≤n Ĥj/n)

3

(
∑

1≤i≤n(Ĥi−
∑

1≤j≤n Ĥj/n)2)
3
2

∣∣∣∣∣ and σ =√
6(n−2)

(n+1)(n+3) ;

• Rice Rule3: k = ⌈2n 1
3 ⌉.

For each k value, we employ the dynamic-
programming-based clustering algorithm explained
before to find the optimal clusters, denoted by
OptimalCluster. We use the best clustering scheme
derived from these four k values as the final scheme.
Algorithm 2 shows the details of the empirical cluster-
ing algorithm.

It can be seen that the empirical clustering algo-
rithm successfully reduces its complexity to O(n2

√
n).

However, the empirical k values normally assume cer-
tain underlying data distribution, and may perform
poorly if the data are not distributed as assumed. This

2Note that the faster implementation proposed in [6] cannot be

used here because we do not always have err(Ĥi,j) ≥ err(Ĥi,l)+

err(Ĥl+1,j) for 0 ≤ i < l < j ≤ n.
3Online statistics education: A multimedia course of study

(http://onlinestatbook.com).

Algorithm 2 Empirical Clustering Algorithm

Input: Sorted histogram Ĥ = {Ĥ1, Ĥ2, ..., Ĥn}
Output: Clusters C

1: K= {
√
n, ⌈1 + log2 n⌉, 1 + log2 n+ log2(1 +

|s|
σ),

⌈2n 1
3 ⌉}; //see main text for detail

2: for each ki ∈ K do
3: Ci = OptimalCluster(Ĥ, ki);

4: Calculate err(Ĥ,Ci);

5: return C = argmin
Ci

(err(Ĥ,Ci));

motivates our third algorithm, which adaptively identi-
fies the best k value by balancing the trade-off between
the AE and the LE.

Greedy Clustering Algorithm. Instead of asking for
a k value in advance, our greedy clustering algorithm
iteratively decides whether to add the next bin Ĥj into
the current cluster Ci. The decision is guided by the
resulting error: if merging Ĥj into Ci leads to lower

error, we add Ĥj into Ci; otherwise, we create a new
cluster. The detail is given in Algorithm 3.

When we add Ĥj to Ci, the resulting error err(Ci∪
Ĥj) is the sum of the AE and the LE of the new cluster

Ci ∪ Ĥj . We have err(Ci ∪ Ĥj) = AE(Ci ∪ Ĥj) +
2

(|Ci|+1)(ϵ2)2
. When we do not add Ĥj to Ci, the error

is err(Ci)+ err(Ĥj), where err(Ci) is the total error of

Ci and err(Ĥj) is the total error on Ĥj . It is easy to
observe that err(Ci) = AE(Ci) +

2
|Ci|(ϵ2)2 . However, the

calculation of err(Ĥj) needs more efforts.

Keeping Ĥj out of Ci implies n − j + 1 possible

clusters in which Ĥj may reside, and therefore err(Ĥj)
is a variable depending on the actual formation of
the cluster containing Ĥj , which is not known at this
moment. Fortunately, it is sufficient to make the correct
decision if we can learn the lower bound of err(Ĥj),

denoted by err∗(Ĥj). Let Cj,l be the potential cluster

containing {Ĥj , Ĥj+1, · · · , Ĥl}, where j ≤ l ≤ n. We

get err∗(Ĥj) = minl{(Ĥj − Cj,l)
2 + 2

|Cj,l|2(ϵ2)2 }.
To efficiently calculate Cj,l, we maintain a prefix

sum array P of length n with P[i] =
∑i

m=1 Ĥm.

Then we have Cj,l = P[l]−P[j−1]
l−j+1 . We further speed

up the calculation of err∗(Ĥj) by making use of the

monotonicity of (Ĥj − Cj,l)
2 and 2

|Cj,l|2(ϵ2)2 : with the

increase of l, (Ĥj −Cj,l)
2 monotonically increases while

2
|Cj,l|2(ϵ2)2 monotonically decreases.

We consider the possible clusters containing Ĥj in

the ascending order of their sizes. As soon as (Ĥj −

591 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Algorithm 3 Greedy Clustering Algorithm

Input: Sorted histogram Ĥ = {Ĥ1, Ĥ2, ..., Ĥn}
Output: Clusters C
1: C = ∅;
2: i = 1;
3: j = 2;
4: Ci = {Ĥ1};
5: while j ≤ n do
6: Calculate err(Ci ∪ Ĥj);

7: Calculate err(Ci) + err∗(Ĥj);

8: if err(Ci ∪ Ĥj) < err(Ci) + err∗(Ĥj) then

9: Ci = Ci ∪ Ĥj ;
10: else
11: C = C ∪ Ci;
12: i++;
13: Ci = {Hj};
14: j ++;
15: return C;

Cj,l+1)
2 − (Ĥj − Cj,l)

2 ≥ 2
|Cj,l|2(ϵ2)2 − 2

(n−j+1)2(ϵ2)2
, we

can conclude that err∗(Ĥj) = (Ĥj −Cj,l)
2+ 2

|Cj,l|2(ϵ2)2 .

The rationale behind this stop condition is that once the
increase of the AE between Cj,l+1 and Cj,l is greater than
the maximum decrease of the LE, we have missed the
minimum point. Note that 2

(n−j+1)2(ϵ2)2
is the minimum

LE we can achieve on Ĥj .

Example 3.1. Let Ĥ = {1, 1, 3, 3, 4, 6, 7} be the sorted
noisy histogram. Assume that the current cluster C1 =
{1, 1} and ϵ2 = 0.5. We consider whether to add

Ĥ3 = 3 to C1. We have err(C1 ∪ Ĥ3) = AE(C1 ∪ Ĥ3) +
2

(2+1)(ϵ2)2
= 16

3 and err(C1) = 4. To calculate err∗(Ĥ3),

we consider 5 potential clusters, and obtain err∗(Ĥ3) =
1
9 + 8

9 = 1 when the potential cluster containing Ĥ3 is

{3, 3, 4}. Since err(C1 ∪ Ĥ3) > err(C1) + err∗(Ĥ3), we
keep the cluster C1 = {1, 1} as it is. Similarly, we find
C2 = {3, 3, 4} and C3 = {6, 7}.

Once the clusters have been identified, for a bin

Hj ∈ Ci, its noisy count is set to Ci+
Lap(1/ϵ2)

|Ci| (Line 9 of

Algorithm 1). The run-time complexity of Algorithm 1
when coupled with the greedy clustering strategy is
O(n2), where n is the number of bins in H.

5 Analysis

In this section, we provide the critical analysis on the
privacy and utility of our solution (referred to as AHP).

Privacy Analysis. The theorem below shows that AHP
is ϵ-differentially private.

Theorem 5.1. AHP satisfies ϵ-differential privacy.

Proof. Line 2 of Algorithm 1 employs the Laplace
mechanism to calculate the noisy count of each bin.
Let this set of count queries be Q1. By definition
of neighboring histograms, we have ∆Q1 = 1 and
therefore Line 2 satisfies ϵ1-differential privacy. Line
9 of Algorithm 1 employs the Laplace mechanism to
calculate the noisy mean of each cluster. Since the size
of each cluster has been known, this is equivalent to
asking for the noisy sum of each cluster. Let this set
of queries be Q2. Similarly, we have ∆Q2 = 1 and
hence Line 9 satisfies ϵ2-differential privacy. Using the
sequential composition property [11] stated below, we
learn that Line 2 and Line 9 together satisfy (ϵ1 + ϵ2)-
differential privacy.

Lemma 5.1. [11] Let each Ai provide ϵi-differential
privacy. A sequence of Ai(D) over the database D
provides

∑
ϵi-differential privacy.

The rest lines of AHP are based on differentially
private results, and they do not incur any extra privacy
cost [5]. So AHP as a whole satisfies ϵ-differential
privacy.

Utility Analysis. We first give the error of the
sanitized histogram generated by AHP.

Theorem 5.2. Given an input histogram H and its
sanitized version H̃ computed by AHP,

err(H̃) =
∑
Ci∈C

∑
Hj∈Ci

(
Hj − Ci

)2
+

∑
Ci∈C

2

|Ci|(ϵ2)2
.

The proof of Theorem 5.2 directly follows Theo-
rem 4.2. Now we show that the utility of AHP is bet-
ter than our state-of-the-art competitors: NoiseFirst

(referred to as NF) [16], StructureFirst (SF) [16],
P-HPartion (PHP) [1] and GS [7]. Since all these meth-
ods are data-dependent, it is very difficult to give rig-
orous quantitative comparisons among them. However,
we can still elaborate why AHP leads to better utility.

Comparison with NF and SF. We first focus on the
error of a particular cluster Ci. From [16], we learn that
errNF(Ci) = AE(Ci)+

2
ϵ2 and errSF(Ci) > AE(Ci)+

2
(ϵ2)2

.

In SF, ϵ is divided into ϵ1 and ϵ2, where ϵ1 is used
to form clusters while ϵ2 is used to generate noisy
counts. When Ci contains the same bins under all three
methods, we can directly observe that errAHP(Ci) =
AE(Ci) +

2
|Ci|(ϵ2)2 < errSF(Ci) if ϵ2’s are equal in both

methods and that errAHP(Ci) < errNF(Ci) if |Ci| > (ϵ
ϵ2
)2.

In practice, ϵ2 is normally set to ϵ
2 , and therefore as

long as |Ci| > 4, which is the case for most clusters,
errAHP(Ci) < errNF(Ci).

Based on the above analysis, we can discuss the
error of the entire sanitized histogram. In general,

592 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

due to the sorting procedure and the better clustering
strategy, AHP obtains larger cluster sizes and lower AE

within each cluster (this is especially true for SF due to
the extremely small privacy parameter used to identify
each cluster). Larger cluster sizes imply a smaller
number of clusters and hence smaller LE. This indicates
that AHP achieves smaller total error.

Comparison with PHP. Similarly, PHP uses ϵ1 to form
the clusters and ϵ2 to generate the final noisy counts.
The error of a particular cluster Ci under PHP is also
errPHP(Ci) = AE(Ci)+

2
|Ci|(ϵ2)2 . So the difference of error

between PHP and AHP is solely determined by the quality
of the clusters. Analogously, the sorting procedure and
the better clustering scheme of AHP generate smaller
number of clusters with smaller AE. This guarantees that
AHP achieves smaller total error.

Comparison with GS. As indicated before, column
sampling does not fit our problem setting and row
sampling only leads to less precise sorting results. Here
we discuss the version of GS with no sampling. The
sorted noisy histogram in GS is at most as precise as
that in AHP. The utility difference between GS and AHP

is determined by the clustering procedure. Let the fixed
cluster size chosen by GS be w. Below we establish
the critical condition under which a cluster can be
decomposed into two clusters with smaller total error.

Theorem 5.3. For a cluster Ci = {H1,H2, · · · ,Hw}
with H1 ≤ H2 ≤ · · · ≤ Hw, if Hj+1 − Hj ≥√

2(w2−w+1)

ϵ2(w−1) for some 1 ≤ j < w, then err(Ci) ≥
err(C1

i) + err(C2
i) where C1

i = {H1,H2, · · · ,Hj} and
C2

i = {Hj+1,Hj+2, · · · ,Hw}.

Proof. By definition, we have err(Ci) = AE(Ci)+
2

w(ϵ2)2
,

err(C1
i) = AE(C1

i) +
2

j(ϵ2)2
and err(C2

i) = AE(C2
i) +

2
(w−j)(ϵ2)2

. To prove the theorem, we need to prove that

AE(Ci)−AE(C1
i)−AE(C2

i) ≥ 2
j(ϵ2)2

+ 2
(w−j)(ϵ2)2

− 2
w(ϵ2)2

.

For the right hand side (RHS) of the inequality, we have:

RHS =
2

(ϵ2)2

(
w

j(w − j)
− 1

w

)
≤ 2

(ϵ2)2
· w

2 − w + 1

w(w − 1)
.

Let Hj+1 − Hj = δ. For the left hand side (LHS), we

have two facts: Ci − C
1

i ≥ δ·(w−j)
w and C

2

i − Ci ≥ δ·j
w .

Then we have:

LHS = j ·
(
Ci − C

1

i

)2

+ (w − j) ·
(
Ci − C

2

i

)2

≥ j · δ
2(w − j)2

w2
+ (w − j) · j

2δ2

w2

= j(w − j) · δ
2

w

≥ (w − 1) · δ
2

w

Table 1: Experimental dataset characteristics.
Dataset |H| Number of Mean Variance Count

zero count Range

Location 7,725 4,720 24.13 4,764.57 [0, 467]

Social Network 11,342 0 59.49 2995 [1, 1,678]

Search Log 32,768 17,082 10.25 577.31 [0, 496]

NetTrace 65,536 63,318 0.39 91.01 [0, 1,423]

To make LHS ≥ RHS, it is sufficient to require

(w − 1) · δ
2

w
≥ 2

(ϵ2)2
· w

2 − w + 1

w(w − 1)
,

which leads to δ ≥
√

2(w2−w+1)

ϵ2(w−1) .

Theorem 5.3 suggests that even if w in GS is chosen
to be the optimal, we can still find a better clustering
scheme with non-uniform cluster sizes if the critical
condition holds. To give an intuitive impression on the

magnitude of

√
2(w2−w+1)

ϵ2(w−1) , let ϵ2 = 0.5 and w = 1004.

We get

√
2(w2−w+1)

ϵ2(w−1) ≈ 2.84, suggesting that many

clusters identified by GS could be further decomposed to
obtain smaller total error. In contrast, AHP adaptively
identifies the clusters that result in the minimal total
error, regardless of their sizes.

6 Experimental Evaluation

This section experimentally evaluates the utility of
AHP in terms of the two utility metrics introduced in
Section 3.3, namely the KLD of data distributions
and the MSE of range queries. Due to the space
limit, we only report the results of AHP integrating the
greedy clustering strategy (Algorithm 3), which achieves
the best trade-off between utility and efficiency. We
compare AHP with our competitors: NF [16], SF [16],
PHP [1] and GS [7]. AHP is implemented in C++, and
all experiments were performed on an Intel Core 2 Duo
2.94GHz CPU with 4GB RAM.

Our experiments are based on four standard real-
life and synthetic datasets used in [5, 1, 16]. Location
is a half-synthetic dataset that involves a total popu-
lation of 186,471 distributed in 1,340 meshblocks (or
bins). It is generated from the 2006 Census Meshblock
Dataset of New Zealand5. Social Network records the
friendship relations among 11K users in a social net-
work website. Each user’s record contains her number
of friends. Search Log is a synthetic dataset generated
by integratingGoogle Trends data and American Online
search logs during the period between 2004 and 2010.
Each bin contains the number of the keyword “Obama”

4w = 100 is one of the best group sizes used by GS.
5http://www.stats.govt.nz/Census/2006CensusHomePage/

MeshblockDataset.aspx

593 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Table 2: KLD on four datasets (ϵ=1)
Datasets AHP NF SF PHP GS
Location 0.018 0.843 1.242 0.621 1.451

Social Network 0.071 1.001 2.051 0.801 2.611
Search Log 0.054 1.582 2.085 0.132 2.115
NetTrace 0.153 2.839 3.835 0.904 4.816

Table 3: KLD on four datasets (ϵ=0.1)
Datasets AHP NF SF PHP GS
Location 0.203 1.381 2.983 0.805 1.539

Social Network 0.309 2.753 2.054 0.602 3.251
Search Log 0.103 2.467 3.457 0.159 4.157
NetTrace 0.572 4.726 4.359 2.026 6.917

issued within a 90-minute interval. NetTrace describes
the IP-level network traces collected from a university
intranet. Each bin gives the number of external hosts
connected to an internal host. We summarize the char-
acteristics of these four datasets in Table 1.

Data Distribution. In the first set of experiments,
we demonstrate the utility of AHP for data distribution
in terms of KLD. Tables 2-4 present the KLD for all
datasets under various privacy parameters (ϵ = 0.01,
0.1 and 1 [16, 1]). It can be observed that AHP

performs significantly better than the other methods in
all cases. It is worth mentioning that Social Network
and NetTrace are originally sorted, and therefore the
sorting procedure of our solution does not really help.
In this case, the improvement of KLD is solely due to
the greedy clustering strategy. It confirms that our
clustering strategy indeed identifies better clusters.

Range Query. In the second set of experiments,
we examine the performance of all methods on range
queries with respect to varying range sizes and different
privacy parameters. We follow the evaluation scheme
from previous works [16, 1] and report their accuracy in
terms of MSE. The results are shown in Figures 2-5. All
figures exhibit the same trend: MSE increases when ϵ
decreases or when the query range size increases, which
conforms to the theoretical analysis.

We can observe that AHP outperforms all competi-
tors in all cases. In particular, on Location and Search
Log that are not originally sorted, the improvement of
MSE is substantial (more than 8 times). This suggests
that the sorting procedure is very important to unsorted
datasets. On Social Network and NetTrace that are
originally sorted, AHP still achieves smaller MSE, though
its MSE is close to PHP when ϵ is relatively large (e.g.,
0.1 and 1). This is because PHP inherently fits sorted
histograms best, where its “local” clustering becomes
“global”.

7 Conclusion

In this paper, we investigated the problem of publish-
ing histograms under differential privacy. Based on the

Table 4: KLD on four datasets (ϵ=0.01)
Datasets AHP NF SF PHP GS
Location 0.467 2.588 4.948 1.076 3.803

Social Network 0.825 3.099 6.058 1.019 5.112
Search Log 0.189 5.584 5.340 0.86 7.046
NetTrace 1.229 6.926 6.841 2.280 8.187

observation that the existing clustering (or grouping)
based schemes do not fully exploit the power of cluster-
ing, we introduced a new clustering framework. In par-
ticular, we proposed three different clustering strategies.
All of them effectively balance the trade-off between the
approximation error and the Laplace error, and there-
fore achieve better accuracy. We prove the superiority of
our solution by both theoretical analysis and extensive
experiments on different standard real-life and synthetic
datasets.

Acknowledgement This research is partially supported
by the grants from Natural Science Foundation of China
(61379050, 91224008), National 863 High-tech Program
(2013AA013204), Specialized Research Fund for the Doc-
toral Program of Higher Education(20130004130001), and
RGC/GRF HKBU (210811).

References

[1] G. Acs, C. Castelluccia, and R. Chen. Differentially
private histogram publishing through lossy compres-
sion. In Proc. of ICDM, pages 1–10, 2012.

[2] B. Barak, C. Dwork, S. Kale, F. McSherry, and K. Tal-
war. Privacy, accuracy, and consistency too: a holis-
tic solution to contingency table release. In Proc. of
PODS, pages 273–282, 2007.

[3] D. P. Doane. Aesthetic frequency classifications.
American Statistician, 30:181–183, 1976.

[4] C. Dwork, F. McSherry, K. Nissim, and A. Smith.
Calibrating noise to sensitivity in private data analysis.
In Proc. of TCC, pages 265–284, 2006.

[5] M. Hay, V. Rastogi, G. Miklau, and D. Suciu.
Boosting the accuracy of differentially private his-
tograms through consistency. Proc. of VLDB Endow,
3(1):1021–1032, 2010.

[6] H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poos-
ala, K. C. Sevcik, and T. Suel. Optimal histograms
with quality guarantees. In Proc. of VLDB, pages 275–
286, 1998.

[7] G. Kellaris and S. Papadopoulos. Practical differential
privacy via grouping and smoothing. Proc. of VLDB
Endow, 6(5):301–312, 2013.

[8] J. Lei. Differentially private m-estimators. In Proc. of
NIPS, pages 361–369, 2011.

[9] C. Li, M. Hay, G. Miklau, and A. McGregor. Optimiz-
ing linear counting queries under differential privacy.
In Proc. of PODS, pages 123–134, 2010.

[10] N. Li, W. H. Qardaji, and D. Su. On sam-
pling, anonymization, and differential privacy or, k-

594 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

100 200 300 400 500
10

2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

Range Size

M
SE

AHP PHP NF SF GS

(a) ϵ = 0.01

100 200 300 400 500
10

2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Range Size

M
SE

AHP PHP NF SF GS

(b) ϵ = 0.1

100 200 300 400 500
10

2

10
3

10
4

10
5

10
6

Range Size

M
SE

AHP PHP NF SF GS

(c) ϵ = 1

Figure 2: MSE on Location under different ϵ values. y-axis is in log-scale

100 200 300 400 500
10

4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

10
12

Range Size

M
SE

AHP PHP NF SF GS

(a) ϵ = 0.01

100 200 300 400 500
10

2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

Range Size

M
SE

AHP PHP NF SF GS

(b) ϵ = 0.1

100 200 300 400 500
10

2

10
3

10
4

10
5

10
6

10
7

Range Size

M
SE

AHP PHP NF SF GS

(c) ϵ = 1

Figure 3: MSE on Social Network under different ϵ values. y-axis is in log-scale

100 200 300 400 500
10

2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

Range Size

M
SE

AHP PHP NF SF GS

(a) ϵ = 0.01

100 200 300 400 500
10

2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Range Size

M
SE

AHP PHP NF SF GS

(b) ϵ = 0.1

100 200 300 400 500
10

2

10
3

10
4

10
5

10
6

Range Size
M

SE

AHP PHP NF SF GS

(c) ϵ = 1

Figure 4: MSE on Search Log under different ϵ values. y-axis is in log-scale

100 200 300 400 500
10

2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

Range Size

M
SE

AHP PHP NF SF GS

(a) ϵ = 0.01

100 200 300 400 500
10

2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Range Size

M
SE

AHP PHP NF SF GS

(b) ϵ = 0.1

100 200 300 400 500
10

2

10
3

10
4

10
5

10
6

10
7

Range Size

M
SE

AHP PHP NF SF GS

(c) ϵ = 1

Figure 5: MSE on NetTrace under different ϵ values. y-axis is in log-scale

anonymization meets differentail privacy. In Proc. of
ASIACCS, pages 32–33, 2012.

[11] F. McSherry. Privacy integrated queries: an extensible
platform for privacy-preserving data analysis. In Proc.
of SIGMOD, pages 19–30, 2009.

[12] F. McSherry and K. Talwar. Mechanism design via
differential privacy. In Proc. of FOCS, pages 94–103,
2007.

[13] V. Rastogi and S. Nath. Differentially private aggrega-
tion of distributed time-series with transformation end
encryption. In Proc. of SIGMOD, pages 735–746, 2010.

[14] H. A. Sturges. The choice of a class interval. Journal of

the American Statistical Association, 21:65–66, 1926.
[15] X. Xiao, G. Wang, and J. Gehrke. Differential privacy

via wavelet transform. In Proc. of ICDE, pages 225–
236, 2010.

[16] J. Xu, Z. Zhang, X. Xiao, and G. Yu. Differentially
private histogram publicaiton. In Proc. of ICDE, pages
32–43, 2012.

[17] G. Yuan, Z. Zhang, M. Winslett, X. Xiao, Y. Yang,
and Z. Hao. Low-rank mechanism: optimizing batch
queries under differential privacy. Proc. of VLDB
Endow, 5(11):1352–1363, 2012.

595 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

