
MixSL: An Efficient Transaction Recovery

Model in Flash-Based DBMS

Yulei Fan and Xiaofeng Meng

School of Information, Renmin University of China, Beijing, China
{fyl815,xfmeng}@ruc.edu.cn

Abstract. With the development of flash technologies, flash disks have
become an alternative to hard disk as external storage media. Because
of the unique characteristics of flash disks such as fast random read ac-
cess and out-place update, shadow paging technology can be adopted to
support transaction recovery in flash-based DBMS. Inspired by shadow
paging and logging, we propose a new transaction commit model named
MixSL which can be used in databases built on MLC flash disks. Based
on MixSL, we detail normal processing, garbage collection and recov-
ery. For improving system performance and raising the utilization ratio
of flash disks, we extend MixSL to support group commit. Our perfor-
mance evaluation based on the TPC-C benchmark shows that MixSL
outperforms the state-of-the-art recovery protocols.

Keywords: Flash Memory, Recovery, Database, Shadow Page.

1 Introduction

With the development of semiconductor technologies, flash disks have been a
competitive alternative to traditional magnetic disks as external storage media
in portable devices, new-generation laptops and enterprise servers. Flash disks
have the unique characteristics such as fast random access, low power consump-
tion, high shock resistance, small dimensions and light weight[1]. In fact, single-
level-cell (SLC) flash disks and multiple-level-cell (MLC) flash disks have been
two popular flash devices as external storage. SLC flash disks have a favorable
characteristic of partial page programming, but their capacity are usually less
than MLC flash disks because of the density of single bit per cell, which leads
to decrease in the unit of read, write and erase operations. This leads to high
production costs, so SLC flash disks are very expensive. MLC flash disks have
the preponderance of price and capacity because of lower production costs and
higher density of multiple bits per cell. But the lifetime of MLC flash disks is less
than SLC flash disks. In this paper, we contribute to flash-based DBMSs built
on MLC flash disks by investigating how transaction recovery can be supported
to improve performance and raise the utilization ratio of flash disks.

As a vital part of DBMSs, transaction recovery guarantees atomicity and
durability of transactions. There are two predominant approaches to support
transaction recovery for DBMSs, namely write ahead logging (WAL)[2] and

J. Wang et al. (Eds.): WAIM 2013, LNCS 7923, pp. 393–404, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

394 Y. Fan and X. Meng

shadow paging[3]. For WAL based on in-place update, in addition to undo/redo
log records, we need some special log records to record significant events during
transaction processing. For short transaction, WAL needs frequent write opera-
tions which are not preferable on flash disks. But group commit[3] can be used to
improve the performance of transaction recovery. Different from WAL, shadow
paging adopts out-of-place update style which is good suit for flash memory
because of the erase-before-write limitation. In shadow paging, a page mapping
table mapping page IDs to disk addresses is the key to access data, which is
an indispensable component in flash translation layer(FTL)[4] of flash disks. Be-
cause of the unique characteristic of flash disks, some issues, such as maintaining
the mapping between logical addresses and physical addresses, no longer exist
for flash disks. These render shadow paging an appealing solution to support
efficient transaction recovery on flash disks.

In this paper, based on shadow paging and logging, we propose a new commit
scheme, named MixSL, for supporting efficient transaction recovery in flash-
based DBMSs built on MLC flash disks. Then we detail normal processing,
garbage collection and recovery. Simultaneously we extend MixSL to group com-
mit for the system performance and the utilization ratio of MLC flash disks. On
the whole, the contributions of this paper are summarized as follows:

– We propose a new commit model, called MixSL, assisting shadow paging
with logging, which supports efficient transaction recovery in flash-based
DBMSs built on MLC flash disks.

– Based on MixSL, we detail normal transaction processing including updating
data pages, committing and aborting transactions. And then we present the
garbage collection and recovery algorithms.

– We extend MixSL to support group commit for improving transaction pro-
cessing performance and the utilization ratio of flash disks.

– We conduct a performance evaluation of MixSL based on the TPC-C bench-
mark.

The rest of this paper is organized as follows. Section 2 introduces the back-
ground and related work of our research, including flash disks and flash-based
recovery approaches. In the section 3, we present MixSL and normal transaction
processing, garbage collection, and recovery. Section 4 discusses how to extend
MixSL to support group commit. We present the performance evaluation re-
sults of MixSL in section 5. Finally, we conclude this paper and discuss future
directions in section 6.

2 Background and Related Work

In this section, we describe the relevant characteristics of MLC flash disks as well
as the flash translation layer (FTL). And then we present related work about
flash-based transaction recovery.

MixSL: An Efficient Transaction Recovery Model in Flash-Based DBMS 395

2.1 Flash Characteristics

A flash disk consists of a number of flash memory chips which are organized
in many blocks. Each block is composed of a fixed number of pages. A typical
page consists of 2K bytes data area and 64 bytes spare area. The spare area
often stores metadata such as the error correction code (ECC) and logical block
address (LBA), and so on. So, a typical block size is 128K+4K bytes (i.e., 64
pages). Erasure operations must be performed at the block level, while read
and write operations are performed at the page level. There are two types of
flash available in the current market: NOR and NAND. NOR flash is mainly
used to store the programs. NAND flash is designed as the mass storage devices
and also is the focus of this paper. Moreover, according to the number of bits
stored on each cell, NAND flash can be categorized into single-level cell(SLC)
and multi-level cell(MLC).

Flash disks possess a number of unique I/O characteristics[5]. First, because
flash disks have no any mechanical components, the latency of a request is only
linearly proportional to the amount of data transferred. Second, flash memory
is subject to an erase-before-write constraint. Out-place updating is often sup-
ported through flash translation layer (FTL) for addressing the erase-before-
write constraint. Third, another important characteristic of flash memory is
asymmetric read, write and erasure speeds, while magnetic disks have the sym-
metric read and write speed and there are no erase operation for hard disks.
Forth, each block can survive only a limited number of erasure operations, which
means that it wears out and becomes unreliable after limited number of writes on
flash disks. Typically, SLC flash supports 100K erasures per flash block, and the
MLC flash only supports about 10K erasures because of the higher bit density.

P7
P6
P5
P4
P3
P2
P1
P0

(1, 0)

(0, 0)
(1, 2)

(1, 3)
(1, 2)
(1, 1)
(1, 0)
(0, 3)
(0, 2)
(0, 1)
(0, 0)

LBA=2

LBA=6

LBA=3

Flash DiskMemory
Direct Mapping Table

LBA
(PageId)

PBA
(block,page)

PBA
(block,page) User Data Meta Data

Inverse Mapping
Table

Fig. 1. FTL Mapping Table

Flash translation layer(FTL) is an important component to emulate a hard
disk. FTL provides an interface to read and write flash pages and support trans-
actional operations (page writes, commit, abort, and recovery). As shown in
Figure 1, a direct mapping table in memory records the mappings between logi-
cal page addresses LBAs and physical page addresses PBAs; LBAs in the spare

396 Y. Fan and X. Meng

areas of flash pages form an inverse mapping table, which is used to re-build
the direct mapping table at boot time. The two mapping tables are crucial to
implement out-place updating. Every out-of-place update operation leaves an
obsolete page on the flash, so FTL maintains a free block list and has a garbage
collection module to reclaim obsolete pages. Wear leveling module in FTL is used
to spread writes/erasures uniformly across the entire disk space for lengthening
the lifetime of flashes.

2.2 Related Work

Early works attempted to emulate the interfaces of traditional magnetic disks, so
there are many work about FTL. According to mapping address granularity, FTL
algorithms can be divided into four categories[6]: page-level mapping, block-level
mapping, hybrid mapping with page and block granularity, and other mapping.

Recently, flash disks have been exploited to enhance the performance of file
systems and database systems from various aspects. For flash-based storage man-
agement, log-based and log-structure mechanisms have been suggested to opti-
mize random write operations by sequential write operations, such as IPL[7] and
FlashStore[8], and so on. In addition, for index and buffer management, there
are many new index structure[9] and new buffer replacement algorithms[10] pro-
posed for flash devices. Simultaneously query processing techniques have also
been intensively studied[11].

In contrast, not much work has been done on flash-aware transaction man-
agement. For flash-based file system, Prabhakaran et al.[12] have developed a
shadow paging-based scheme, called cyclic commit. Based on this idea, they
proposed two protocols, SCC and BPCC, but they are not fit for flash-based
DBMSs. First, the current shadow page must be buffered until the arrival of the
next shadow page for forming a cyclic linked list. Second, uncommitted pages
must be frequent erased in SCC. Third, in BPCC, a complicated garbage collec-
tion mechanism need be performed. In [13], Wu proposed a fast recovery scheme
for flash-based log-based file systems, so the log records are much different from
log records in DBMSs. And the log records are committed into a special area on
flash disks in order to read the special area during recovery.

For flash-based DBMSs built on SLC flash disks, based on shadow paging, Sai
Tung On et al.[14] proposed a new flagcommit scheme for efficient transaction
recovery. It addresses these issues presented in[12]. Because SLC flash disks have
an unique characteristic of partial page programming, which allows a flash page
to be updated a few times before an erasure becomes mandatory, so they can
exploit this partial page programming feature to keep track of the transaction
status. Flagcommit stores a flag about a transaction status in spare area of
every flash data page. So transaction commit processing can be accomplished
by updating some flags in the style of in-place. But MLC flash disks have no
the unique characteristic of partial page programming. And some extra read
operations need be performed for locating the data page when the transaction
is aborted or committed. Moreover, during collecting the obsolete pages, some
in-place operations have to be done for keeping track of the transaction status.

MixSL: An Efficient Transaction Recovery Model in Flash-Based DBMS 397

3 MixSL: Shadow Paging + Logging

Inspired by shadow paging and logging, we presents the new commit model,
MixSL, as shown in Figure 2, which exploits out-of-place update style of Flash-
based SSDs and keeps track of the transaction status by logging. And then we
will detail normal transaction processing, garbage collection and recovery.

3.1 Commit Model: MixSL

The basic idea of commit model MixSL is to use shadow paging to keep track of
update operations, and use logging to keep track of transactions’ status. Based
on MixSL, there are a link and the transaction ID in each shadow page. The
link pointing to the preceding version page of the shadow page, can be used for
garbage collection and transaction recovery. The transaction ID is the identifier
of the transaction producing the page. However, different from SLC flash disks,
MLC flash disks have no unique characteristic of partial page programming in
SLC flash disks, so we must keep track of the transaction status by logging. Due
to good performance of writing fixed area[5], log records related to transaction
commit protocol are maintained in the fixed flash area. Log records in the fixed
flash area and metadata in every shadow page can be used to undo the updates
and recovery during transaction rollback or system restart.

2
6
6

3
2
3

LBA

T0
T1
T0

T1
T1
T0

XID

Null
(1, 0)
Null

(0, 0)
(1, 2)
Null

Link

Meta Data

P7
P6
P5
P4
P3
P2
P1
P0

(1, 1)

(0, 2)
(0, 1)

(1, 3)
(1, 2)
(1, 1)
(1, 0)
(0, 3)
(0, 2)
(0, 1)
(0, 0)

Flash DiskMemory
Direct Mapping Table

LBA PBA PBA User Data

-Mapping Table

P6
P3
P2

(1, 0)
(0, 0)
(1, 2)

LBA PBA
T1
T1
T1

XID

In progress
Status

T1
XID

Transaction Table
T0

Log Area

1

Log

Page

Log

Page

Log

Page

C/AXID

1
0

XID-bitmap

T0
T1

1
0
0
0

PBA-bitmap

(0,0)
(0,1)
(0,2)
(0,3)

1
0
1
0

(1,0)
(1,1)
(1,2)
(1,3)

PBA Status

1
0

T2
T3

StatusXID

Fig. 2. Commit Model: MixSL

In traditional disk-based DBMSs, data buffer pool caches the frequently ac-
cessed disk pages of the database, and log buffer pool caches the log records
produced by running transaction. The buffer management policy has an impact
on the transaction recovery mechanism. In this paper, MixSL model works with
steal and force polices. For log buffer management, because there are only some
transaction log records but no redo/undo log records, force policy is adopted in

398 Y. Fan and X. Meng

log buffer management. In other words, when a transaction commit, log buffer
page must be flushed into the fixed flash area of flash disks. For data buffer
management, we need make some assumptions. First, a page-level concurrency
control protocol is adopted to handle update conflicts. Second, we used a write-
back buffer: a shadow page is not created on the flash disk until the page is
evicted from the buffer pool or the corresponding transaction commits. For im-
proving the write performance of DBMSs and the lifetime of flash disks, so in
section 4, we extend MixSL to support group commit.

To complete normal transaction processing, garbage collection and recovery,
some data structures should be maintained in memory as shown in Figure 2.
Transaction Table stores each transaction ID XID and its status Status (i.e.,
in progress, committed, or aborted). Δ-mapping Table stores all in-progress
transactions IDs XID as well as the logical-to-physical mappings <LBA, PBA>
produced by them. Direct mapping Table maintained the newest committed
logical-to-physical mappings <LBA, PBA>. For each transaction, there is a bit
in XID-bitmap (aborted transaction: ’0’ (default value), committed transac-
tion: ’1’). For each physical page, there is a bit in PBA-bitmap (valid page: ’1’
(default value), invalid page: ’0’). XID-bitmap and PBA-bitmap are only built
during garbage collection and recovery.

As shown in Figure 2, the whole flash disk space is divided into two regions:
Data Area and Log Area . Every flash data page consists of a data area and
a spare area. Data area stores users’ data, but spare area stores some metadata
including LBA, XID, Link. LBA is the logical page ID of this physical flash data
page. XID is the ID of the transaction T producing this data page. Link points
to the preceding version data page (NULL if it is the first version data page),
by which all obsolete data pages are chained together. Log area stores all log
records keeping track of all transactions’ final status. Every log record consists
of XID and C/A. XID stores a transaction ID. C/A represents the transaction’s
final status (’1’ if transaction is committed; otherwise, ’0’).

3.2 Normal Processing

Based on MixSL, we detailed normal transaction processing including updating
a data page on flash disk, committing a transaction and aborting a transaction.

Update. When a transaction T* with the ID xid updates a logical page lp
with the logical address lpa, MixSL performs the following three steps. First, if
the transaction T* doesn’t have existed in transaction table, the transaction T*
and its status in-progress are inserted into it. Second, we create a shadow page
pp’ on flash disks with the physical address ppa’, and simultaneously filling in
the LBA, Link and XID fields in the spare area of pp’ with lpa, ppa’ and xid.
Last, an entry <lpa, T*, ppa’> is inserted into Δ-mapping table. It is used to
complete the transaction T* and guarantee the correctness of direct mapping
table.

Commit. When a transaction T* with the ID xid commits, MixSL performs
the following three steps. First, a log record <T*, 1> is inserted into log buffer
and then flushed into fixed flash area. Second, all entries <lpa, T*, ppa> of

MixSL: An Efficient Transaction Recovery Model in Flash-Based DBMS 399

the transaction T* in Δ-mapping table are merged into direct mapping table
to replace entries <lpa, ppa’> with the same lpa. Simultaneously these entries
<lpa, T*, ppa> of the transaction T* need be deleted from Δ-mapping table.
Last, transaction T* must remove from transaction table.

Abort. When a transaction T* with the ID xid aborts, MixSL performs the
following three steps. First, a log record <T*, 0> is inserted into log buffer and
then flushed into fixed flash area. Second, all entries same as <–, T*, –> of the
transaction T* must be deleted from Δ-mapping table. Last, transaction T*
must remove from transaction table.

3.3 Garbage Collection

When the amount of free space on flash disks becomes lower than some pre-
set threshold, garbage collection is triggered to reclaim the obsolete pages. The
obsolete pages include three following types: (1) the uncommitted page; or (2)
the aborted page; or (3) the committed out-of-date page. The transaction status
becomes critical on identifying the 1st and 2nd kinds of pages, so we need create

Algorithm 1. Garbage Collection

begin
Initialize XID Bitmap(0);
Initialize PBA Bitmap(1);
for each page in fixed log area do

for each record in the page do
xid = XID field of log record;
stat = Status field of log record;
if stat == 1 then

Set XID Bitmap(xid,1);

for each page on flash disks do
xid = XID field in the spare area;
lpa = LBA field in the spare area;
ppa = Physical address of the data page;
prelink = Link field in the spare area;
stat = Get XID Bitmap(xid);
if stat == 0 then

Set PBA Bitmap(ppa,0);
else

Set PBA Bitmap(prelink, 0);

for each bit in PBA bitmap do
flag = the bit value;
if flag == 0 then

ppa = TransferLocation();
Free Page(ppa);
Add Free Block List(block num);

end

400 Y. Fan and X. Meng

XID-bitmap. The transaction status in XID-bitmap and Link field in spare area
of flash pages are combined for identifying the 3rd kind of page. So the garbage
collection is shown in algorithm 1.

The first step is to create and initialize XID-bitmap and PBA-bitmap with
0 and 1 respectively. The first two For loops set XID-bitmap by reading log
records. The 3rd For loop reads and processes data pages on flash disks one by
one. If the transaction producing a data page is uncommitted or aborted, the
data page can be collected, i.e., it is invalid. So the bit corresponding to the data
page in PBA-bitmap is set as 0. If the transaction is committed, we can make
sure that pre-version of the data page is invalid, so the bit corresponding to Link
in PBA-bitmap is set as 0. By now, we identify whether every data page is valid
or invalid, so we can perform garbage collection for every block including invalid
data pages in the last For loop. During collecting garbage, we need change the
direct mapping table because valid data pages need be moved. At last, the erased
blocks need be inserted into free block list.

3.4 Recovery

After a normal shutdown or system failure, a recovery procedure is invoked
when the system restarts. It recovers the newest committed version data page
and rebuilds the direct mapping table. As same as garbage collection, we need
identify whether every data page on flash disks is valid or invalid. So the first
three steps of recovery procedure are very like these of garbage collection as
shown in algorithm 2.

The first 3 For loops are same as these in algorithm 1, so the status (i.e.,
valid or invalid) of every data page can be known by getting every bit value of
PBA-bitmap. In the last For loop, we random read valid data pages, and then
gain their LBA fields in spare area, and insert <lpa, ppa> into direct mapping
table. Recovery is only related to random read, because of good random read

Algorithm 2. Recovery

begin
Initialize XID Bitmap(0);
Initialize PBA Bitmap(1);
//The first 3 For loops are same as these in algorithm 1;
page num = 0;
for each bit in PBA bitmap do

flag = Get PBA Bitmap(page num);
if flag == 1 then

Random Read Page(page num);
lpa = LBA field in the spare area;
ppa = Physical address of the data page;
Insert Direct Mapping Table(lpa, ppa);

page num = page num + 1;

end

MixSL: An Efficient Transaction Recovery Model in Flash-Based DBMS 401

performance of flash memory, so the performance of recovery is only determined
by the number of needed pages.

4 Extended MixSL: Group Commit

In this section, we extend MixSL to support group commit for improving the
performance of flash-based databases and advancing the utilization ratio of flash
space. Because a force buffer policy is adopted by log buffer, for every transac-
tion, if it commits or aborts, we must immediately flush log buffer page into flash
disk. But this may bring several problems, first, it leads to frequent write opera-
tions. Second, the flushed log page can be not full, so the flash space is dissipated.
Because the unit of read and write operations is page, the log buffer page can
not be smaller than one flash page. Group commit means that some transactions
can be committed at the same time. So some transactions must be postponed
committing or aborting. There are two protocols based on group commit. The
first is to group commit fixed number of transactions, where the number can be
specified by user according the buffer size and the application system. The sec-
ond is to group commit dynamic number of transactions, which is more suitable
to a complex application system. For the second protocol, we can group commit
transactions when all the log records produced by these transactions can be fill
in one log buffer page.

5 Performance Evaluation

In this section, we evaluate the performance of our proposed MixSL based on
the TPC-C benchmark. Firstly, we describe the experiment setup for simulating
MixSL and FlagCommit [14]. And then we compare MixSL with the CFC and
AFC protocols in FlagCommit.

5.1 Experiment Setup

For showing performance, we implement a trace-driven SSD simulator which can
simulate SLC SSD and MLC SSD by configuring its parameters. For compar-
ing the performance of FlagCommit and MixSL, we configured the simulator to
emulate a 32GB SLC SSD and a 32G MLC SSD with a wear-aware garbage col-
lection. Similar to [12], 10% of the flash blocks were reserved for handling garbage
collection, and the threshold to trigger the garbage collection was set to 5%. And
then we implemented MixSL, CFC and AFC protocols based on FlagCommit
with a Strict Two-Phase Locking (2PL) protocol. For the buffer management,
LRU strategy is applied to cache previously disk pages accessed. The on-line
transaction processing workload, TPC-C benchmark, is used for evaluating the
performance of MixSL and FlagCommit. We generated the workload trace by
executing TPC-C transactions on PostgreSQL 8.4 and recording their data ac-
cess requests. For the generator, we set 50 clients and 20 data warehouses(2G

402 Y. Fan and X. Meng

Table 1. Default Parameter Settings

Parameter Default Setting

SLC Block/Page size 128KB/2KB

SLC Page write/read latency 0.2ms/0.08ms

SLC Partial programming latency 0.2ms

SLC Block erasure delay 1.5ms

MLC Block/Page size 512KB/8KB

MLC Page write/read latency 0.65ms/0.25ms

MLC Focus programming latency 0.5ms

MLC Block erasure delay 5ms

Logical page size 8KB

Buffer pool size 512

data). Simultaneously, the transaction abort ratio was set to 5% by default. As
shown in [14], the cost of partial programming was also same as that of a page
write. So we summarize the default parameter settings in table 1.

We conducted our experiments on a HP computer running Ubuntu Linux with
an Intel Xeon E5620 2.40 GHz cpu. We measured the transaction throughput,
transaction execution time, recovery cost, and garbage collection overhead.

5.2 Comparison with FlagCommit

We compare the proposed MixSL with CFC and AFC protocols [14].

(a) Transaction Throughput (b) Transaction Execution Time

Fig. 3. Transaction Throughput and Execution Time

Transaction Throughput and Execution Time. As shown in Figure 3(a),
transaction throughput of MixSL does not outperform these of CFC and AFC.
Simultaneously the average running time of every transaction in MixSL is bigger
than these in CFC and AFC. The main reason is that read/write latency of
SLC flash is less than that of MLC flash. But the gap of transaction processing
performance between SLC flash and MLC flash is less than the gap of read/write
performance between them because page size of MLC is more than that of SLC.

MixSL: An Efficient Transaction Recovery Model in Flash-Based DBMS 403

(a) Garbage Collection (b) Recovery

560
580
600
620
640
660
680
700
720
740
760
780

CFC AFC MixSL

T
im

e(
se

c)

0

100

200

300

400

500

600

CFC AFC MixSL

T
im

e(
se

c)

Fig. 4. Recovery and Garbage Collection

Recovery and Garbage Collection. To gain more insight, we further measure
their garbage collection overhead and plot the results in Figure 4(a). MixSL
outperforms AFC because garbage collection in AFC need read some pages for
locating the first valid page and marks the page when the list of pages belonging
one transaction is split. we can also see that MixSL is same as CFC, because of
good performance of read/write of SLC flash and fast locating the page which
need be marked in CFC. Figure 4(b) shows the recovery performance results
which is similar with garbage collection because the part procedure of recovery
is same as part of garbage collection.

Group Commit. Because of group committing transactions, flushing transac-
tion log records into fixed area of flash memory is decreased. Group committing
transactions leads to bring down the average running time of every transaction.
Transaction throughput of MixSL supporting group commit (short for G-MixSL)
is bigger than MixSL. So as is shown in Figure 3, the average execution time of
every transaction in G-MixSL is less than that in MixSL.

6 Conclusions and Future Works

In this paper, we have proposed a new transaction commit model MixSL for
database built on MLC flash memory. Our main idea is to exploit the fast ran-
dom read access, out-place updating and per-page metadata to optimize the
performance of transaction processing and recovery by combining shadow pag-
ing and logging technologies. Simultaneously we extend MixSL to support group
commit for improving the performance of flash-based databases and advancing
the utilization ratio of flash space. Our performance evaluation based on the
TPC-C benchmark shows that MixSL outperforms the state-of-the-art recovery
protocols. As for future work, we plan to extend MixSL to support for no-force
buffer management, fine-grained concurrency control and checkpoint, and so on.

404 Y. Fan and X. Meng

Acknowledgments. This research was partially supported by the grants
from the Natural Science Foundation of China (No. 60833005, 61070055,
91024032, 91124001); the National 863 High-tech Program (No. 2012AA010701,
2013AA013204); the Fundamental Research Funds for the Central Universities,
and the Research Funds of Renmin University(No. 11XNL010).

References

1. Gray, J., Fitzgerald, B.: Flash disk opportunity for server applications. Queue 6(4),
18–23 (2008)

2. Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., Schwarz, P.: ARIES: A trans-
action recovery method supporting fine-granularity locking and partial rollbacks
using write-ahead logging. ACM Trans. Database System 17(1), 94–162 (1992)

3. Ramakrishnan, R., Gehrke, J.: Database Management Systems. McGraw-Hill
(2003)

4. Chung, T.-S., Park, D.-J., Park, S., Lee, D.-H., Lee, S.-W., Song, H.-J.: A survey
of Flash Transalation Layer. Journal of Systems Architecture - Embedded Systems
Design(JSA) 55(5-6), 332–343 (2009)

5. Bouganim, L., Jónsson, B.T., Bonnet, P.: uFLIP: Understanding flash IO patterns.
In: Proceedings of CIDR (2009)

6. Ma, D., Feng, J., Li, G.: LazyFTL: A Page-level Flash Translation Layer Optimized
for NAND Flash Memory. In: Proceedings of ACM SIGMOD 2011 (2011)

7. Lee, S.-W., Moon, B.: Design of flash-based DBMS: An in-page logging approach.
In: Proceedings of ACM SIGMOD (2007)

8. Debnath, B., Sengupta, S., Li, J.: FlashStore: High throughput persistent key-value
store. In: Proceedings of VLDB (2010)

9. Agrawal, D., Ganesan, D., Sitaraman, R., Diao, Y.: Lazy-adaptive tree: An opti-
mized index structure for flash devices. In: Proceedings of VLDB (2009)

10. Ou, Y., Härder, T., Jin, P.: CFDC: a flash-aware replacement policy for database
buffer management. In: Proceedings of DaMoN (2009)

11. Tsirogiannis, D., Harizopoulos, S., Shah, M.A., Wiener, J.L., Graefe, G.: Query
processing techniques for solid state drives. In: Proceedings of SIGMOD (2009)

12. Prabhakaran, V., Rodeheffer, T.L., Zhou, L.: Transactional flash. In: Proceedings
of the 8th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 2008), San Diego, CA, USA (2008)

13. Wu, C.-H., Kuo, T.-W., Chang, L.-P.: Efficient initialization and crash recovery for
log-based file systems over flash memory. In: Proceedings of the ACM Symposium
on Applied Computing, SAC 2006 (2006)

14. On, S.T., Xu, J., Choi, B., Hu, H., He, B.: Flag Commit: Supporting Efficient
Transaction Recovery in Flash-based DBMSs. IEEE Transactions on Knowledge
and Data Engineering (2011)

15. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrecy Control and Recovery
in Database Systems. Addison Wesley (1987)

	MixSL: An Efficient Transaction RecoveryModel in Flash-Based DBMS
	1 Introduction
	2 Background and Related Work
	2.1 Flash Characteristics
	2.2 Related Work

	3 MixSL: Shadow Paging + Logging
	3.1 Commit Model: MixSL
	3.2 Normal Processing
	3.3 Garbage Collection
	3.4 Recovery

	4 Extended MixSL: Group Commit
	5 Performance Evaluation
	5.1 Experiment Setup
	5.2 Comparison with FlagCommit

	6 Conclusions and Future Works
	References

