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Abstract. Publication of the private set-valued data will provide enormous op-
portunities for counting queries and various data mining tasks. Compared to those
previous methods based on partition-based privacy models (e.g., k-anonymity),
differential privacy provides strong privacy guarantees against adversaries with
arbitrary background knowledge. However, the existing solutions based on dif-
ferential privacy for data publication are currently limited to static datasets, and
do not adequately address today’s demand for up-to-date information. In this pa-
per, we address the problem of differentially private set-valued data release on an
incremental scenario in which the data need to be transformed are not static. Mo-
tivated by this, we propose an efficient algorithm, called IncTDPart, to incremen-
tally generate a series of differentially private releases. The proposed algorithm is
based on top-down partitioning model with the help of item-free taxonomy tree
and update-bounded mechanism. Extensive experiments on real datasets confirm
that our approach maintains high utility and scalability for counting query.
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1 Introduction

Set-valued data, in which a set of items are associated with an individual, is common
in database ranging from web query logs, to credit card transactions, and to shopping
transaction databases of customers’ behavior. Publishing and sharing set-valued data
is important, since they enable researchers to analyze and explore interesting patterns
and knowledge. For example, revealing strong correlations and trends from collected
patient health records can be a valuable knowledge base for society; for a retail com-
pany, analyzing common customer behavior from online shopping data can provide
useful information for advertising. However, such data usually contains specific sensi-
tive information (e.g., pregnancy test, health care), and directly releasing raw data could
violate individual privacy and may result in unveiling the identity of the individual as-
sociated with a particular transaction. To prevent such information leakage, set-valued
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data must be sanitized before release. Previous works have been made in addressing the
problem of set-valued data publication. Terrovitis et al. [1] propose a local and global
recoding method km-anonymity, and He and Naughton [2] enhanced [1] by a top-down,
partition-based approach to handling the same question. However, recent efforts have
shown that the above partition-based privacy models are vulnerable to many types of
privacy attacks, such as composition attack [3], and foreground knowledge attack [4].
Recently, differential privacy [5] has emerged as one of the most promising models for
releasing different types of private data, because it can provide strong privacy guaran-
tees against adversaries with arbitrary background knowledge (this claim may not be
valid in some cases where there exist correlations among records [6], but in this paper
we assume that records are independent of each other). The main idea of differential
privacy is to inject noise into a dataset so that an adversary cannot decide whether a
particular record is included in the dataset or not. The noise level is controlled by pri-
vacy budget ε . There have been a few set-valued data publishing algorithms proposed
in the recent work, such as [7, 8], that efficiently publish such data under differential
privacy. These approaches, however, only deal with static set-valued data releases. That
is, all these approaches assume that they work in a one-time fashion: sanitize the entire
database and obtain the statistic information. This assumption often heavily limits the
applicability of these differentially private methods, as in many dynamic applications
set-valued datasets are updated incrementally.

Example 1. Consider a supermarket’s store T, shown in Table 1, which is required
to share the transactional items purchased by its various customers with market re-
searchers. In order to protect customers’ privacy, the supermarket sanitize all the items
prior to releasing. At first glance, the task seems reasonable straightforward, as existing
techniques in [7, 8] can efficiently anonymize the items. The challenge is, however, that
T is growing daily due to the appending of newly purchased items for existing customers
and/or insertion of new shopping items for new customers, shown in Table 2, and it is
critical for the market researchers to receive up-to-date items in timely manner.

Table 1. The original database T

TID Items Purchased
T1 {apple,banana,cherry,melon}
T2 {apple,cherry}
T3 {cherry,melon}
T4 {apple,melon}

Table 2. The Incremental Update ΔT1

TID Items Purchased
T5 {banana,cherry,melon}
T6 {melon,cherry}
T7 {apple,melon}

Due to the inherent dynamics and high-dimensionality of set-valued data in the context
of incremental updates, it is challenging to apply differential privacy to incrementally
publishing set-valued data. In the real world transactional data usually arrives in batches
to update original database incrementally. Thus, a differentially private mechanism must
periodically update the published statistics as new data items are inserted or removed.
We assume the coming update is large enough that it can support differential privacy.
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In order to employ the existing methods to publish the updates, two straightforward
solutions may be developed.

Solution 1: Sanitizing Incremental Updates. Support a series of updates arriving. This
solution is to sanitize and publish each update independently so that it satisfies differ-
ential privacy. For example, we employ DiffPart method [7] to separately release Table
1 and Table 2. Then researchers can merge multiple those released datasets together
for comprehensive analysis. Although straightforward, the major drawback of this so-
lution is when researchers merge multiple noisy statistics, the error is accumulated in
the merged results. So the results become noisier over time, which may lead to lower
data quality.

Solution 2: Publishing Sanitization of Current Versions. This solution is to sanitize
and publish the entire dataset whenever the dataset is augmented with new updates
(e.g., merging the update ΔT1 to T ). In this way, researchers are always provided with
up-to-date statistics information. Although this can be easily accomplished by using the
existing methods, there are two significant drawbacks. First, K such updates will raise
the privacy budget to Kε . This means that the more updates we have, the higher the
amount of noise we need to add to each release. Another, if the number of updates is
infinite, then ε-differential privacy will be eroded.

In the above solutions, the error increases with the number of updates, either because
the noise accumulates (as in solution 1), or because the amount of noise relies on the
number of updates (as in solution 2). This means that we cannot have an infinite number
of updates. In other words, streaming approaches proposed in [10, 9] cannot be applied
in our scenario because data stream has its own characteristics such as dynamics, con-
tinuity, and infinity. To tackle the above challenges, we investigate the problem of how
to publish set-valued data against incremental updates while maintaining ε-differential
privacy. First, we design a update-bounded mechanism to limit the number of updates
which can help to reduce the error caused by the above two solutions. Second, based
on update-bounded mechanism, we propose an efficient algorithm, called IncTDPart
(Incrementally Top-Down Partitioning manner) to release set-valued data with the help
of item-free taxonomy tree. In our algorithm, we incrementally maintain a tree struc-
ture, called TBP-Tree (Taxonomy-Based Partitioning Tree), in which leaf nodes store
p-sum value (i.e., accumulated noisy counts) that can be used to construct a release after
each update. Third, extensive experiments on several real datasets demonstrate that the
proposed methods generate high utility for incrementally counting queries and scales to
large datasets.

The remainder of this paper is organized as follows: Section 2 discusses related work.
Section 3 briefly overviews ε-differential privacy and problem statement. Section 4
proposes a differentially private algorithm IncTDPart to support set-valued data releases
against incremental updates. The experimental evaluation of our methods is presents in
Section 5, and Section 6 concludes our work.

2 Related Work

The notion of differential privacy was presented by Dwork et al in [5]. The same authors
also propose the addition of Laplace noise to guarantee differential privacy [11]. Work
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on differential privacy has initially focused on answering statistical queries (e.g., count
queries, range queries). However, a few recent works started addressing non-interactive
data release that achieves differential privacy such as histograms publication [13, 12],
and search logs releases [14]. McSherry et al [15]. present differentially private rec-
ommendation algorithms in Netflix prize competition. More recently, several works
studied differentially private mechanism for releasing set-valued data [8, 7]. Chen et
al. [7] presented the publishing of set-valued data while satisfying differential privacy,
and in [8] they studied differentially private transit data publication. They present al-
gorithms in [8, 7], which partition the set-valued data in top-down fashion guided by
taxonomy tree, and release the noisy counts of the set-valued data at leaf nodes. Their
methods generate synthetic set-valued data which can support counting queries. How-
ever, the existing publication approaches are currently limited to static datasets, do not
adequately address the incremental updates. Among the existing approaches, the ones
most related to ours are by Chan et al. [10] and Dwork, et al. [9], which continuously
release statistics in the context of data streams. Due to the characteristics of data stream
itself, their methods are not favorable to releasing set-valued datasets against updates.

In addition, there is a series of works [16, 18, 17] which are based on partition-based
privacy models (e.g., k-anonymity) for incrementally releasing relational databases.
The work [16] is among the first to identify possible attacks in the dynamic scenario.
This work analyzes various inference channels that may exist in multiple anonymized
datasets and discusses how to avoid such inferences. Xiao et al. [17] propose the novel
m-invariance framework. This simple yet elegant method is the first work that success-
fully anonymizes a fully dynamic dataset. To enhance the methods in [17], He et al.
[18] propose a graph-based anonymization algorithm to cope with equivalence attack.
However, recent works have shown that these methods based on partition-based models
are much weaker privacy notion than differential privacy.

3 Preliminaries

Let I={I1, I2, ..., I|I|} be the universe of items, where |I| is the size of the universe. The
T={t1, t2, ..., t|T |} denotes the initial set-valued table as it is created before updating,
where each record ti ∈ T is a non-empty subset of I. Let ΔT1, ΔT2,... present the in-
cremental updates (insertions only in this paper) to the table T . We assume that in the
series of tables T, ΔT1, ΔT2,..., the item domain is fixed, that is, the universe of items is
not changed. Suppose the item universe I={I1, I2, I3, I4}, Table 3 presents an example of
initial set-valued database T . Table 4 and Table 5 present the incremental updates ΔT1,
ΔT2 to Table 3.

Fig. 1. IFT-Tree

Table 3. initial T

TID Items
t1 {I1, I2}
t2 {I2}
t3 {I1}

Table 4. update ΔT1

TID Items
t4 {I1, I2, I3, I4}
t5 {I2, I4}
t6 {I2}

Table 5. update ΔT2

TID Items
t7 {I1, I2, I3, I4}
t8 {I2, I3, I4}
t9 {I1, I2}
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3.1 Item-Free Taxonomy Tree

In this paper, we assume that the series of tables T , ΔT1, ΔT2,..., are associated with
a single taxonomy tree. In classical generalization mechanism, taxonomy tree relies
on the original semantic of generalization to map several differential items to a single
value in the destination nodes. In our method, we release only original items and counts,
regardless of their semantics. Therefore, the taxonomy tree could be item free.

Definition 1. (Item-Free Taxonomy Tree). An Item-Free Taxonomy Tree (IFT-Tree) is
a taxonomy tree, whose internal nodes consist of their leaves, not necessarily to take
into account the semantic generalization of the leaves.

For example, Fig. 1 presents an item-free taxonomy tree for Table 3, Table 4, and Table
5, and one of its internal nodes I{3,4}={I3, I4}. An item can be mapped to an internal
node if it is in the node’s set. In this example, items {I1, I2} can be generalized to I{1,2},
items {I3, I4} can be generalized to I{3,4}, and the two sets I{1,2}, I{3,4} can be further
generalized to I{1,2,3,4}.

3.2 Differential Privacy

Differential privacy, in general, guarantees that changing or removing any record from
a database has negligible impact on the output of any analysis based on the databases.
Therefore, an adversary will learn nothing about an individual, regardless of whether
her record is present or absent in the database. Formally, in the context of incremental
updates, differential privacy [5] is defined below.

Definition 2. (ε-Differential Privacy). A randomized mechanism Ag for supporting in-
cremental updates satisfies ε- differential privacy, iff for any output O of Ag and for any
two neighbor databases T1 and T2, we have

Pr[Ag(T1) = O] ≤ exp(ε) ·Pr[Ag(T2) = O] (1)

where ε is the privacy budget, and the probability is taken over the randomness of Ag.
The neighbor database is obtained by removing on arbitrary record from either the
original set-valued data, or any of the updates.

A principal technique for achieving differential privacy is Laplace mechanism [11]. A
fundamental concept of this technique is the global sensitivity of a function f that maps
underling databases to vectors of reals.

Definition 3. (Global Sensitivity). For any function f : T→ R
d, the sensitivity of f is

defined as follow.

Δ f = max
T1,T2

‖ f (T1)− f (T2)‖1 (2)

for all T1,T2 differing in at most one record.
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The global sensitivity is also called L1-sensitivity due to the L1-norm used in its defini-
tion, which takes the maximum over all pairs of neighboring databases.

Laplace Mechanism. Dwork et al. [11] propose the Laplace mechanism which takes a
database T, a function f, and the privacy budget ε . It first computes the true output f (T ),
and then adds properly calibrated Laplace noise to the output. The noise is sampled from
a Laplace distribution with the probability density function Pr(x|b)= 1

2b e−|x|/b, where b
is dominated by both Δ f and the allocated privacy budget ε .

Theorem 1. For any function f : T→ R
d, the private mechanism Ag

Ag(T ) = f (T ) + 〈Y1(Δ f /ε),Y2(Δ f /ε), ...,Yd(Δ f /ε)〉 (3)

gives ε-differential privacy, where Yi(Δ f /ε)(1 ≤ i ≤ d) are i.i.d Laplace variables with
scale parameter Δ f /ε .

Differential privacy has two important properties that are extensively used when differ-
ential privacy is employed to support combined computations. These two properties are
known as sequential and parallel compositions [18].

3.3 Utility Metrics

In the incremental update case, sanitized set-valued data is mainly used to answer count
queries that are crucial to counting queries task. We employ relative error [19] to mea-
sure the utility of the sanitized data. Given a series of databases T,ΔT1,ΔT2, ..., and let
Ti be T ∪i

j=1 ΔTi after appending the i-th incremental update (i ≥ 1).

Definition 4. (Incremental Count Query). Given an initial dataset T , after the i-th
incremental update (i ≥ 1), for a given set of items I′ drawn from the universe I, an
incremental count query Q over Ti is defined to be Q(Ti)=|{t ∈ Ti : I′ ∈ t}|.
relative error(RE): This measures the error to the actual answer on the actual database
Ti, which is formalized as follows.

RE =
|Q(T̃i)−Q(Ti)|
max{Q(Ti),b} (4)

where Q(T̃i) denotes the answer on the sanitized database T̃i, Q(Ti) denotes the true
answer on the actual database Ti, and b denotes a sanity bound used to mitigate the
influences of queries with extremely small selectivities.

Problem Statement. Given a private parameter ε , a transactional table T and a series
of updates ΔT1,ΔT2, ... to T, our objective is to generate a series of publications which
satisfy differential privacy against incremental updates.

4 Update-Bounded Sanitization Algorithm

In our setting, due to the set-valued dataset incremental update, a private mechanism
must update the published statistics as new updates arrive. Thus, traditional differen-
tially private mechanisms either fail to apply directly to our setting, or result in an
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unsatisfactory loss in terms of utility or privacy if applied naively (e.g., Solution 1 and
Solution 2). To tackle the drawbacks caused by Solution 1 and Solution 2, we propose
a novel constraint method, called Update-Bounded Mechanism, to limit the number of
incremental updates.

Definition 5. (Update-Bounded Mechanism). Given U ∈ N, an incremental release
mechanism Ag is U-bounded if it only accepts updates at most U. In other words, Ag
needs to require a priori knowledge of an upper bound on the number of updates.

Based on update-based mechanism, we present the IncTDPart algorithm that recur-
sively partitions the series of set-valued datasets with the help of an IFT-Tree against
incremental updates.

We first provide an overview of our IncTDPart algorithm in Algorithm 1. The al-
gorithm first builds the IFT-tree H by iteratively grouping f nodes from one level to an
upper level until a root is reached. If the size of the item universe is not divided by f , the
remainder can be as a group. Given Ti={T,ΔT1,ΔT2, ...}, a privacy budget ε , an upper
bound of updates U and an IFT-Tree H, it returns a series of sanitized databases satisfy-
ing differential privacy. Based on the given IFT-Tree H, we employ DiffPart method to
sanitize the initial dataset T, and release T̃ . IncBuildTBP-Tree incrementally maintains
a noisy taxonomy-based partitioning tree by a top-down manner, and releases the series
of sanitized datasets T̃i.

Algorithm 1. IncTDPart
Input: T,ΔT1,ΔT2, ...,ΔTU : The initial dataset T, and a series of updates; U :
The upper bound on updates; ε: The privacy budget; f : The fan-out of IFT-Tree
Output: The sanitation T̃ , T̃i,...
1: SemiEmSet ← /0; NoEmSet ← /0;
2: Construct an IFT-Tree H with fan-out f ;
3: ε ′ ← ε

U+1 ;
Sanitizing the initial dataset T
4: T BP-Tree(0) ← Di f f Part(T,H,ε ′);
5: SemiEmSet←semi-non empty nodes of T BP-Tree(0);
6: NoEmSet←non empty nodes of T BP-Tree(0);
7: Release T̃ ;
Sanitizing the incremental updates
7: for each ΔTi(1 ≤ i ≤U) do
8: Root of T BP-Tree(i−1) ← all records in ΔTi;
9: T BP-Tree(i) ← IncBuildTBP-Tree(ΔTi, ε ′,H);
10: Update SemiEmSet, NoEmSet;
11: Release leaf nodes’ information of T BP-Tree(i);
12: Return T̃ , T̃i,...;

4.1 The Initial Dataset Sanitization

In principle, we can use any set-valued data sanitization algorithm to sanitize the initial
dataset, as long as the sanitized results are differentially private. For example, given the
initial dataset T , ε ′, and H, we use DiffPart method to release T̃ . The method recursively
distributes the records in T into disjoint sub-datasets with more specific representations
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in a top-down manner. In this method, ε ′
2 budget is used to guide the partitioning process

of sub-datasets, and the rest ε ′
2 plus the budget left from the partitioning process to

construct the release in the leaf nodes. In the top-down partitioning manner, all the
records in T can be generalized a common generalization, called hierarchy cut which
consists of a set of nodes in H. A record can be generalized to a hierarchy cut if every
item in the record can be generalized to a node in the cut and every node in the cut
generalizes some items in the record. For example, the record t1={I1, I2} in Table 1
can be generalized to the cuts {I{1,2}} and {I{1,2,3,4}}, but not {I{1,2}, I{3,4}}, while
t4={I1, I3} in Table 2 can be generalized to the cut {I{1,2}, I{3,4}}. Fig.2 demonstrates
partitioning the three records T ={t1, t2, t3} into three leaf nodes of the TBP-tree such
that each node contains the noisy count (e.g., 1 is the noisy count of the leftmost leaf
node). Every node in the TBP-Tree consists of three fields: hierarchy cut, records, and
nc, where hierarchy cut denotes the generalization of children of the node, records
registers which records contain the hierarchy cut or its subsets, and nc refers to the
accumulated noisy counts from the initial dataset T to the current update ΔTi.

Fig. 2. The TBP-Tree on the initial dataset T

To conveniently partition the nodes in TBP-Tree, we propose an noisy p-sum mech-
anism to record the accumulated noisy counts. That is, each node v (or a hierarchy cut)
in the TBP-Tree is associated with a p-sum(v). After a new batch of incremental up-
dates, the IncTDPart method will release noisy versions of these p-sums in leaf nodes
in TBP-Tree.

Definition 6. (noisy p-sum). The noisy p-sum of a hierarchy cut in each node of TBP-
Tree is the number of records in consecutive updates which contain the hierarchy cut
or its subsets. Let 1≤ m ≤ n. We use the notation ∑[m,n] = ∑n

j=m nc j({Ii}) to denote
the noisy p-sum involving the hierarchy cut {Ii} m trough n, where m and n denote the
update timestamps in the sequence of updates.

For example, in Fig.2, the p-sum of the hierarchy cut {I2} is ∑[0,0]=nc0({Ii})=2. Ac-
cording to the definition, the ∑[m,n] of some hierarchy cut can be computed by ∑[1,n]-
∑[1,m]. This is quite consentient for researchers to obtain the noisy counts at every
update step or any range of updates.

4.2 TBP-Tree Incremental Construction

Our strategy for IncBuildTBP-Tree is to recursively group records in ΔTi into disjoint
subsets based on H, either allocate records into relative nodes of the previous T BP-
Tree(i−1), or create some new nodes that do not exist in the previous tree. Procedure 1
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presents the details of IncBuildTBP-Tree. To incrementally build TBP-Trees based on
the coming updates, we employ a uniform privacy budget allocation scheme, that is,
divide the total privacy budget ε into equal portions ε ′= ε

U+1 , each is used for incre-
mentally maintaining a TBP-Tree. For constructing the nodes of the TBP-Tree in each
update, we use the same budget allocation scheme as DiffPart method that reserves ε ′

2 to

generate the noisy sizes of leaf nodes, and the rest ε ′
2 to guide the top-down partitioning

process.

Procedure 1. IncBuildTBP-Tree
Input: ΔTi: The i-th update; ε ′: The allocated privacy budget for i-th update; H:
The IFT-Tree; T BP-Tree(i−1): The (i-1)-th TBP-Tree after the (i-1)-th update;
Output: The i-th taxonomy-based partition tree T BP-Tree(i)

1: Vector V1 ←all sub-partitions of T,ΔT1,ΔT2, ...,ΔTi−1;
2: Partition p ←all records in ΔTi;
3: Add p to the root of T BP-Tree(i−1);
4: p.cut ← the root of H;

5: p.ε̃ ′= ε ′
2 ; p.α= p.ε̃ ′

|InternalNodes(p.cut)| ;
6: Select a node v from p.cut to partition;
7: Generate all non-empty sub-partition to P;
8: Allocate record in ΔTi to P;
9: for each sub-partition pi ∈ P do
10: if pi ∈V1 then
11: if pi ∈ NoEmSet and pi is not a leaf node then
12: FollowPreviousTraces(pi,H, p.α);
13: if pi ∈ SemiEmSet and pi.(∑i−1

j=0 nc j + nci) ≥ θ1 then

14: pi.ε̃ ′=p.ε̃ ′-p.α;

15: pi.α= pi.ε̃ ′
|InternalNodes(pi.cut)| ;

16: Add pi to V1;
17: else
18: if pi.nci ≥ θ1 then
19: Repeat Lines 14-16;
20: for j = 1, j ≤ 2l-|P| do // l is the number of v′s children
21: if p j.nc ≥ θ1 then
22: Randomly generate an empty sub-partition p′j;
23: Repeat Lines 14-16;
24: if pi.nci ≥ θ2 and pi is a leaf node then
25: Add nci copies of pi.cut to T̃i;
26: else
27: Add pi to V1;
28: Return T BP-Tree(i);

To make the partition process easier in the updates, we define Non-Empty node and
Semi-Non Empty node in each TBP-Tree.

Definition 7. (Non-Empty node and Semi-Non Empty node). Let θ1 be a pre-defined
threshold. Give any non-leaf node v of the TBP-Tree(i), and let p-sum(v)=∑i−1

j=0 nc j +nci

be its current accumulated noisy counts. The two concepts are defined as follow.
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v =

⎧⎨
⎩

Non-Empty node, i f p-sum(v) ≥ θ1

Semi-Non Empty node, i f 0 < p-sum(v) < θ1

(5)

NoEmSet and SemEmSet are two node sets that consist of Non-Empty nodes, and Semi-
Non Empty nodes, respectively.

As the description of Procedure 1, on the i-th update ΔTi arriving, we first insert the
records in ΔTi into the root of T BP-Tree(i−1), and recursively partitions them into dis-
joint subsets. If some records is added to those non-leaf nodes which are non-empty,
we call FollowPreviousTraces to track the children traces of the non-leaf nodes in T BP-
Tree(i−1), and allocate relative records (Lines 11-12). To some records are allocated to
semi-non empty nodes which are in internal levels, we check whether the p-sums of the
semi-non empty nodes exceed the threshold θ1. If so, then we either further to partition
the nodes or start to construct new releases in leaf level (Lines 14-16). If some records
are added to new nodes that do not exist in T BP-Tree(i−1), Lines 18-19 are called to
check whether to further partition or release these new nodes.

During partitioning ΔTi, many empty nodes will be generated, which are associated
with zero number of records. It is critical to prune out the empty nodes in that may lead
to poor utility of the release. [20] has indicated that the number of empty nodes k fol-
lows the binomial distribution B(m, pθ1 ), where m is the total number of empty nodes

we have to check and pθ1= exp(−αθ1)
2 . We can select k uniformly random empty nodes

without replacement with noisy counts sampled from the cumulative distribution func-
tion P(x)=1-exp(αθ1 −αx) (∀x ≥ θ1). Lines 20-23 show the details of how to generate
the empty nodes. Each non-leaf partition pi.cut in Procedure 1 tracks its unused privacy
budget ε̃ ′ and computes the portion of privacy budget α for the next partition operation.

To calculate the budget α , we have to obtain the maximum number of partition op-
erations InternalNodes(pi.cut) from pi.cut to leaf nodes. Chen et al. [7] points out that
|InternalNodes(pi.cut)|=∑ui∈cut |InternalNodes(ui,H)|, where |InternalNodes(ui,H)|
denotes the number of internal node of the subtree of H rooted at ui. After the i-th up-
date, in the leaf node level of the T BP-Tree(i), if a leaf node pi satisfying pi.nci ≥ θ2

(Lines 24-25), we add nci copies of pi to the T̃i. Fig.3 shows the sanitized release after
the ΔT1, ΔT2 appended the initial dataset T .

Fig. 3. The TBP-Tree after ΔT1, ΔT2 updates
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Example 2. Given the update ΔT2 in Table 5, the privacy budget ε ′, Procedure 1 works
as follows (see Fig.3 for an illustration). It first distributes t9 into the v1 node, and t7,
t8 into the v2 node. Due to the same partitioning traces of the v1 node in T BP-Tree(2)

as TBP-Tree(1), we directly add t9 to the v3 leaf node. The p-sum(v3) is 3 that equals
nc0(v3)+nc2(v3). The v2 node in T BP-Tree(1) is semi-non empty node in terms of p-
sum(v2) ≤ θ1. The inserted t7, t8 records change the node into a non empty node. So,
we further split the v2 node, and obtain three leaf nodes (e.g., the v4 node).

4.3 Thresholds θ1, θ2 Computation

A node in the T BP-Tree(i) is further expanded if its p-sum value is not less than the
threshold θ1. In the static scenario of TBP-Tree, the threshold of non-empty and empty
nodes θ1=C1

√
2

α (constant times of the standard deviation of noise), and the threshold of

leaf nodes publication θ2=C2
√

2
α , where α is the privacy budget assigned to the nodes.

However, for the incremental updates, θ1 and θ2 may be changed at each time of up-
date. A straightforward scheme would be using a fixed multiple value of the standard
deviation of noise, that is, in different nodes of each TBP-Tree , one can use multiple
value of standard deviation of noise to guide the partitions in terms of the budget α .
Differing from the simple method, we propose an more significant scheme using the
mean of multiple value of the standard deviation of noise. Let αi, ...,α j be the allocated
privacy budgets in the series of datasets T,ΔT1, ...,ΔTU for a non-empty or empty node.
The threshold θ1 (i.e., mean) can be defined as follow. According to the same idea as
θ1, we can obtain θ2. Here, C1,C2 are two constants defined by data publishers.

θ1 =
∑ j

m=i

√
2C1
αm

j− i + 1
(6)

θ2 =
∑ j

n=i

√
2C2
αn

j− i + 1
(7)

Example 3. In Fig.3, there are four records t4, t5, t7, t8 in node v2, two of which came
from ΔT1, the other two from ΔT2. In T BP-Tree(1), the privacy budget assigned to v2 is

α1= ε ′
6 , and α2= ε ′

6 in TBP-Tree(2). According to the above equations, we get θ1= 3
√

2C1
ε ′ .

Due to p-sum(v2) ≥ θ1, we further partition the node v2.

4.4 Analysis

Privacy Analysis. We give the differential privacy guarantee of our method below.

Theorem 2. Each of the updates of IncTDPart algorithm is ε
U+1 -differentially private,

where U is the upper bound on the number of the updates.

Proof. We prove the theorem by the definition of ε-differential privacy. Consider two
neighboring datasets T1 and T2. We first consider Lines 7-11 of Algorithm 1, that is, the
incremental construction of TBP-Tree. Let this part be denoted by Ag. Given any update
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timestamp i(1 ≤ i ≤U), and ε ′ (ε ′= ε
U+1 ), and let the i-th TBP-Tree be denoted by Treei.

In essence, Treei is constructed on the noisy answers to a set of incremental counting
queries. Let each root-to-leaf path be indexed by k. We denote a node in level l and path
k by vkl , its privacy budget by ε ′kl , and its incremental count in T1 and T2 by Q(T1)kl and
Q(T2)kl , respectively. We first claim that a single record can only affect at most 2c (c≤ f )
root-to-leaf paths, where 2c is the children number of the node vkl . Then we have

Pr(Ag(T1) = Treei)

Pr(Ag(T2) = Treei)
=

h

∏
l=1

2c

∏
k=1

exp(−ε ′kl
|TC(vkl )−Q(T1)kl |

2c )

exp(−ε ′kl
|TC(vkl )−Q(T2)kl |

2c )

≤ exp
(

∑h
l=1 ∑2c

k=1 ε ′kl |Q(T1)kl−Q(T2)kl |
2c

)
≤ exp

(
1
2c ∑h

l=1 ∑2c

k=1 ε ′kl

)
where TC(vkl) is the true count of the node vkl , h is the height of the Treei.
Since ∑l ε ′kl=ε ′, we have Pr(Ag(T1)=Treei)

Pr(Ag(T2)=Treei)
≤ exp(ε ′).

The use of privacy budget on different updates follows sequential composition [18].

Theorem 3. (Sequential Composition). If a randomized algorithm Ag runs a sequence
of Ag1(T ), Ag2(T ),..., AgU(T ) over the dataset T, where each Agi provides εi differen-
tial privacy, then Ag(T) is ∑U

i=1 εi-differentially private.

We now show that Algorithm 1 satisfies ε-differential privacy.

Theorem 4. IncTDPart algorithm is ε-differentially private.

Proof. Given the upper bound U on updates. According to the Theorem 2, we obtain
that each of the updates of IncTDPart algorithm satisfies ε

U+1 -differential privacy. Be-
sides the initial dataset, we run IncTDPart algorithmU +1 times. According to Theorem
3, we get ∑U+1

i=1
ε

U+1 =ε . Therefore, IncTDPart algorithm is ε-differentially private.

5 Experiments

In this section, we evaluate the utility of our proposed algorithm in terms of utility for
incremental counting queries, and examine the scalability of our method for processing
large-scale datasets. Our implementation was done in C++, and all experiments were
performed on an Intel Core 2 Duo 2.94GHz Pc with 4GB RAM. Extensive experiments
were performed on two real datasets, MSNBC [21], and kosarak [22], which record the
URL categories visited by users in time order, and clickstream data, respectively.

Table 6. Shows more details of the two datasets

Dataset N |I| Avg|t|
MSNBC 989,818 17 1.72
Kosarak 990,002 41,270 8.1

The characteristics of the datasets are summarized in Table 6, where N is the number
of records in each datasets, |I| the number of distinct items and Avg|t| the average record
length. We compare the utility and scalability of our method IncTDPart described in
Algorithm 1 to the two straightforward solutions discussed in Section 1. We use Stra-
Solu1 and Stra-Solu2 to denote the two basic methods, respectively.
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5.1 Utility

Based on the above two datasets, we perform our experiment to demonstrate the util-
ity of our method under different number of updates. In the experiment, we randomly
chose 400,000 records as the initial dataset T from MSNBC and Kosarak, respectively,
and chose another 10,000 records without replacement as the incremental update ΔTi.

Effect of U on Utility. In the first set of experiments, we examine the relative error
(RE) of incrementally counting queries on the sanitized datasets under varying the up-
per bound U from 10 to 50, and fixing f =10. For each dataset, we randomly generate
a counting query whose items is drawn from I. Fig. 4 and Fig.5 show the relative error
of IncTDPart, Stra-Solu1, and Stra-Solu2 with respect to different privacy budget ε .
The relative error decreases when ε varies from 0.5 to 1.0 because less Laplace noise
is injected. From the two figures, we can see that the error of the two straightforward
solutions are larger than that of IncTDPart algorithm in all cases. When the upper bound
U increases, the performances of Stra-Solu1 and Stra-Solu2, especially Stra-Solu1, de-
teriorate sharply because they do not employ the update-bounded mechanism to incre-
mentally release the sanitized datasets.
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Fig. 4. Relative error under MSNBC dataset
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Fig. 5. Relative error under Kosarak dataset

5.2 Scalability

In the last set of experiments, we examine the scalability of our method against Stra-
Solu1 and Stra-Solu2. The runtime is used as our performance metric, which is dom-
inated by the datasets size and item universe size. We first evaluate the efficiency of
the three algorithms by varying the dataset size from 500K to 900K and setting ε=1.0,
U=50, and f =10. Fig.6(a) and Fig.6(b) show the runtime of the three methods under the
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two datasets MSNBC and Kosarak. As dataset size grows, in particular, the size exceeds
600K, the runtime of Stra-Solu1 and Stra-Solu2 increase more dramatically. This is be-
cause when increasing dataset size, the two methods have to take more time to partition
numerous candidate nodes under lacking the help of taxonomy-based partitioning tree.
As expected, the runtime of our method is linear of the dataset size. Fig.6(c) presents
how the runtime varies under different item universe size on the dataset Kosarak, where
ε=1.0, U=50, and f =10. From the Fig.6(c), it can be seen that the runtime of our algo-
rithm scales linearly with the increase of universe size, however, the runtime of Stra-
Solu1 and Stra-Solu2 grows quickly.
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Fig. 6. Scalability under MSNBC and Kosarak datasets

6 Conclusions

In this paper, we have studied the problem of releasing set-valued data against incre-
mental updates in the framework of differential privacy. Based on the update-bounded
mechanism, we first proposed an efficient algorithm IncTDPart for answering the in-
crementally counting queries with the help of taxonomy-based partitioning tree. We
dynamically maintained the tree to partition the incremental records. Then we proved
our algorithm that satisfied ε-differential privacy. Experiments on real datasets show
that our algorithm outperforms the two straightforward solutions. As the future work,
we will investigate how to preserve ε-differential privacy against incremental updates
for other application scenarios (e.g., releasing sequential data, and temporal data).
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