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Abstract In location-based services, a density query
returns the regions with high concentrations of moving
objects. The use of density queries can help users
identify crowded regions so as to avoid congestion. Most
of the existing methods try very hard to improve the
accuracy of query results, but ignore query efficiency.
However, response time is also an important concern
in query processing and may have an impact on user
experience. In order to address this issue, we present
a new definition of continuous density queries. Our
approach for processing continuous density queries
is based on the new notion of a safe interval, using
which the states of both dense and sparse regions are
dynamically maintained. Two indexing structures are
also used to index candidate regions for accelerating
query processing and improving the quality of results.
The efficiency and accuracy of our approach are shown
through an experimental comparison with snapshot
density queries.

Keywords continuous density queries, safe interval,
query efficiency

1 Introduction

Thanks to the rapid advances in mobile communications,
positioning techniques, and geographic information pro-
cessing, moving objects (MOs) such as mobile phone
users, vehicles, and craft with navigation devices, can
be traced accurately. Motivated by this, much research
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has emerged aimed at providing efficient spatial query
services. Density queries have been recently receiving
increased attention from the research community. By
definition, a density query returns the regions with high
concentrations of MOs at some current or future time.
Density queries have wide applications in various areas
such as crowded region detection, traffic control, animal
behavior monitoring, and evolution analysis of celestial
bodies. For example, Tom wants to go to a peaceful gar-
den with his girlfriend. So before going, he can issue a
density query which returns all crowded regions of a cer-
tain area, so that Tom can avoid going to the crowded
gardens.

A number of algorithms for processing density queries
have been proposed in recent years. These algorithms
can be divided by space into Euclidean-space queries
and road-network queries, or divided by time into static
queries and dynamic queries. Most previous work focuses
on improving the quality of density query results by elim-
inating overlaps or by making candidate regions (CRs)
as flexible as possible both in size and shape [1–3]. In
[1], Hadjieleftheriou et al. gave a simple density-query
model, which divides the spatial universe into unified
grid cells and maintains a counter for each grid cell. Sev-
eral grid-based techniques have been developed to opti-
mize the query processing. In [2], Jensen et al. index the
current and near-future positions of MOs with a Bx-tree,
which guarantees no answer misses but leads to region
overlapping. In [3], Ni et al. suggested a new definition
of dense regions that allows arbitrary shapes and sizes,
based on which two query processing methods, an exact
one and an approximate one, were presented to obtain
the results with high accuracy.

The work mentioned above mainly concentrates on the
accuracy and integrity of query results, which are not,
however, the only performance issues users are concerned
with. In particular, the approaches employed in previ-
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ous work deal with density queries by answering each of
them as a snapshot query whenever it is issued, which
leads to a significant delay in query response time. In
fact, users may prefer an instant query response with a
relatively low accuracy rather than precise results with
a long waiting time. Another important issue ignored
by previous work is the frequent changing of MOs’ ve-
locities, which costs the central server a lot of time in
data updates. How to enhance the update efficiency is
of great importance to improve the overall system per-
formance. For all these reasons, a good tradeoff between
query efficiency and quality needs to be exploited.

Being aware of the urgency of enhancing the efficiency
of density queries for practical use, in this paper, we pro-
pose a new continuous-query approach to efficiently an-
swer density queries. During a short time period, the
server may have to deal with numerous density queries
issued by different users. Taking into account the fact
that the states of some CRs may not change during the
query period, it is unnecessary to update the density
of each CR every time a query is processed. Thus, we
present the problem of continuous density queries and
define the notion of a safe interval to record the time pe-
riod during which the corresponding region remains its
current state. In this way, the total computation time
is substantially reduced. In addition, we use two index-
ing structures, Quad-tree and TPR-tree, to improve the
query efficiency as well as the quality of results. In the
Quad-tree based method, we partition the whole space
into hierarchical CRs, which achieves high efficiency but
may lead to the problem of answer misses. In the TPR-
tree based method, a TPR-tree is modified to index MOs
and CRs at the same time. The locations of the CRs can
be arbitrary and the number of missed answers is mini-
mized.

Our goal is to obtain query results that are as accu-
rate as possible and also to achieve high query efficiency.
However, there are two challenges which need to be ad-
dressed to achieve our goal. The first challenge is the
dynamic maintenance of region states. Since we use safe
intervals to continuously maintain the states of CRs, we
develop efficient algorithms to compute the safe intervals
of both dense and sparse regions. The second challenge
is the frequent changing of MO velocities. When the ve-
locity of an MO is changed, recalculating the affected
safe interval as infrequently as possible is of vital impor-
tance. Thus, we analyze the affected safe intervals by
classifying them into four categories, based on which a
low-cost updating algorithm is proposed.

The main contributions of this paper can be summa-
rized as follows:

• We introduce the problem of continuous density
queries, based on which density queries issued
within a short time period can be efficiently pro-
cessed.

• We propose the notion of a safe interval to answer

continuous density queries. Our approach enables
dynamic maintenance of region states and substan-
tially enhances query efficiency.

• We leverage two indexing structures, Quad-tree and
TPR-tree, to accelerate query processing and to im-
prove the quality of results.

• We measure how the safe intervals of CRs are af-
fected by velocity changes. To minimize recalcula-
tions of safe intervals during velocity changes, an
efficient updating algorithm is developed.

Related work is discussed in Section 2. Section 3
gives definitions used in our work. Section 4 provides an
overview of our approach for continuous density queries.
Sections 5 and 6 propose the Quad-tree based method
and the TPR-tree based method, respectively. Experi-
mental results are presented and analyzed in Section 7.
Finally, this paper is concluded in Section 8.

2 Related work

In this section, we give a brief survey of the works re-
lated to continuous density queries, including snapshot
density queries, density queries on road networks, and
continuous spatio-temporal queries.

2.1 Snapshot density queries

Density query in spatio-temporal databases, that is on-
line discovery of spatial regions whose densities are above
some threshold, was first investigated in [1]. The authors
define the density of a region as the ratio of the minimum
number of MOs in the region during a time period to
the area of the region. Based on this definition, density
queries are divided into two categories, snapshot density
queries (SDQ) and period density queries (PDQ). An-
swering a SDQ is to return all dense regions at a partic-
ular time instance, e.g., “finding the regions whose densi-
ties are above 1 000 MOs per square kilometer in Zhong-
guancun at 3:30 pm”. As for a PDQ, the target is to
discover all the dense regions during a time period, e.g.,
“finding the regions with densities higher than 500 MOs
per square kilometer in the next ten minutes”. In terms
of real applications, SDQ is more useful than PDQ [2],
because in most situations, PDQ has a serious problem
of inaccuracy in accounting for the mutable velocities of
MOs. However, with a high velocity-changing frequency,
repeatedly issuing SDQs does not work well either.

Based on this observation, Jensen et al. [2] aimed at
the dynamic maintenance of dense regions in current or
future time. In [2], the movements of MOs are simu-
lated with linear equations, while the whole space is di-
vided into unified grid cells with a histogram monitoring
the numbers of MOs in every grid cell. Additionally, [2]
solved the answer missing problem existing in [1]. How-
ever, the cost of maintaining a histogram is huge and
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the proposed algorithm may lead to a new problem of
overlapping.

After analyzing and discussing the prior works, Ni et
al. [3] believed that the main reason for the poor query
quality of previous algorithms is that the definition of
dense regions is too rigid. In order to solve this problem,
they proposed a new definition for dense regions, namely
the Pointwise-Dense Region, which makes the candidate
regions flexible in both shape and size. However, the
algorithm is unable to dynamically maintain the query
results and has to answer each query by processing an
SDQ.

2.2 Density queries on road networks

The works mentioned above focus on the MOs in Eu-
clidean space, where density queries are simplified to re-
turn pre-defined grid cells or to process specific answer-
miss-free queries due to the difficulty in region definition
or query evaluation.

As for density queries on road networks, dense regions
consist of road segments with numerous MOs. The shape
and length of road segments are relatively flexible, and
the density of a segment is determined by its length and
the number of MOs on it. The discovery of dense road
segments can be used to monitor traffic jams. In [4],
taking into account road network characteristics, Chen
et al. added several constraints to the definition of den-
sity queries on road networks so as to guarantee accu-
rate and complete query results. In addition, a cluster-
based method was proposed to compute dense road seg-
ments. In the pre-processing stage, MOs on each road
segment are divided into cluster blocks by their locations
and moving patterns. After that, the cluster blocks are
dynamically maintained. In order to achieve high effi-
ciency, a two-stage method is adopted to identify the
dense regions with general information of cluster blocks.

2.3 Continuous spatio-temporal queries

Continuous queries in spatio-temporal databases have
been studied intensively in the literature [5–14]. In [6]
and [7], two approaches were proposed to return the valid
scope of query results. In [8], Xu et al. proposed to cache
the previous query results in the client side with a valida-
tion mechanism. The cached query results can be used to
prune new results of dynamic queries [9]. Monitoring of
continuous queries was investigated in [10–13]. In [10],
Mokbel et al. developed an algorithm for incremental
evaluation of continuous spatio-temporal queries, where
the execution of spatio-temporal queries is abstracted
as a join between a set of MOs and a set of queries.
Then, the query processor outputs positive and negative
updates of previously reported answers. In [11], Hu et
al. first addressed the location updating issue and pro-
vided a generic framework for monitoring various spatial

queries. In [12], a protocol was designed for concurrent
continuous query processing in multi-user environments.
Continuous NN queries and range queries were studied
in [14–16]. A continuous NN query retrieves the nearest
neighbor of every point on a line segment [14], e.g., “find-
ing all the nearest gas stations on my route from point s

to point e”. The results contain a set of (point, segment)
tuples, such that point is the NN of all points on the
corresponding segment.

The aforementioned techniques are interested in the
MOs around some location point. In contrast, in our
work, continuous density queries only care about the dis-
tributions of MOs. In the following, we first give a def-
inition of continuous density queries, and then give an
efficient solution to processing such queries.

3 Definitions

In this section, we give several definitions used in our
study. We assume each MO is capable of reporting its
location and velocity to the central server, and whenever
the velocity of an MO changes, it sends the new velocity
information to the central server immediately.

Definition 1 (Moving object): An MO is represented
by a 5-tuple (x, y, vx, vy, t), where (x, y) and (vx, vy) are
its location and velocity, respectively, at time t. The
location ci of an MO at any future time ti can be com-
puted as follows

ci = (x + (ti − t) ∗ vx, y + (ti − t) ∗ vy), (1)

where t is the time of the last update of the MO. With
this formula, the central server can predict the location
of the MO at any future time.

Definition 2 (Region density): The region density is
defined as the ratio of the number of MOs in the region
to the area of the region. A region is called a dense

region if its density is above some pre-defined threshold;
otherwise, the region is sparse.

Definition 3 (Continuous density query): A continu-
ous density query must return the regions satisfying the
following two conditions:
1) The region density is no less than the given density

threshold ρ.
2) The region has an area no less than the given area

threshold s.
Condition 1) ensures that each returned region has a
high concentration of MOs. Condition 2) guarantees
that the regions with a too small area are not returned,
since they are meaningless to users.

Definition 4 (Safe interval): The safe interval of a
region is the time period during which the region main-
tains its current state (i.e., dense or sparse).
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For example, if a region is dense at present, then it will
remain dense for at least the period of the safe interval.
That is to say, the state of the region will definitely not
change during its safe interval, but may change after the
safe interval. In this paper, we focus only on the lifetime
of region states, while ignoring the specific changes in
the number of MOs in a region.

4 Solution overview

In this section, we present a solution for processing con-
tinuous density queries, which consists of two stages: safe
interval computation and query processing.

4.1 Safe interval computation

As mentioned before, the safe interval of a candidate re-
gion (CR) is how long the region will maintain its current
state. For a dense region, it means how long it will re-
main dense, while for a sparse one, it means how long it
will remain sparse.

To calculate an exact and tight safe interval for a CR,
we need to compute entrance times for all external MOs
and departure times for all internal MOs, which is costly.
For efficiency reasons, we develop a method to calculate
an estimated safe interval, which is usually shorter than
the tight one. Taking into account the fact that MOs
close to the CR are more likely to enter it than distant
ones in the near future, we expand the CR to a larger
region by a length l, shown in Figs. 1 and 2. For external
MOs, we only need to consider those in the expanded
region. In the rest of this paper, safe interval refers to
the estimated interval computed by our methods.

Next, we will discuss the safe interval computation for
both dense and sparse CRs. o 4o 6 o 7

o 8o 1o 5 o 3 o 2 C R 1 lE x p a n d e d r e g i o n
Fig. 1 An example of a dense CR and its expanded region

4.1.1 Safe interval of dense CR

For ease of exposition, we assume the area of the CR is 1
and the density threshold ρ is 4 in the running example.
Figure 1 illustrates a dense region CR1 and its expanded
region. Suppose that each MO oi(1 ≤ i ≤ 8) leaves CR1

at time lti. For each MO oi(5 ≤ i ≤ 8) in the expanded
region, it enters CR1 at time eti. Note that each MO
in the expanded region has both entrance and departure
times. Assume that all entrance and departure times are
et6, lt1, et8, lt3, lt2, et5, lt6, lt4, lt5, et7, lt8 and lt7
in chronological order. We monitor the state of CR1 at
each time point mentioned above. Before lt2, the density
is always no less than 4. However, when o2 leaves at
time lt2, it causes the state of CR1 to be sparse since
its density becomes 3, which is less than the threshold.
Therefore, we set the safe interval of CR1 to lt2.

It is notable that MOs outside the expanded region
are not considered here. This can be explained with the
following reason: when an MO outside the expanded re-
gion enters a dense CR, it causes no state change within
the safe interval; the CR will remain dense after the safe
interval if some MOs outside the expanded region enter
it. Although in this case the safe interval is less accurate,
the computation cost is sharply reduced, which is more
important in an online query situation.

4.1.2 Safe interval of sparse CR

Figure 2 illustrates a sparse CR and its expanded region.
Similarly, departure time lti of MO oi(1 ≤ i ≤ 6) is
calculated one by one. While computing entrance times
of external MOs, two categories, inside or outside the
expanded region, need to be considered respectively.

C R 2o 1 o 2o 3 o 4
o 5o 6 E x p a n d e d r e g i o nl

Fig. 2 An example of a sparse CR and its expanded region

Case 1: For MOs outside the expanded region, we
assign their entrance times to a constant ET0, which is
set to the minimum time they would need to enter the
CR. Being aware of the fact that ET0 largely determines
the life cycle of safe intervals, we should properly set its
value to avoid high-frequency updating of safe intervals.
The details on how to calculate ET0 are discussed later.

Case 2: For MOs in the expanded region, their en-
trance times need to be calculated individually.

While computing entrance (departure) times, an MO
may never enter (leave) the CR or its entrance (depar-
ture) time is larger than ET0. In such cases, we simply
set its entrance (departure) time to ET0 instead. In fact,
ET0 is the upper bound for the safe interval of sparse
CRs using this method. In this way, the state of a region
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Fig. 3 An example of a Quad-tree and its CRs

will definitely not change during the safe interval, and its
state may still not change after the safe interval, since
the safe interval is computed in a conservative manner.

After assigning all entrance and departure times, the
safe interval is finally calculated in a way similar to dense
CRs. Here we give an example. As shown in Fig. 2,
suppose that the entrance and departure times of the
six MOs are lt2, et6, lt1, et4, et5, lt3, ET0, ET0, and
ET0 in chronological order. The last three entrance or
departure times are larger than ET0, so we set them to
ET0 instead. Finally, we set the safe interval of CR2
to et5, because CR2’s state will change from sparse into
dense when o5 enters.

4.2 Query processing

Processing a density query requires going through all
CRs to find the ones which satisfy the given conditions.
We start by obtaining the states and safe intervals of all
CRs. For each CR, we recalculate its state and safe inter-
val if its safe interval has expired; otherwise, we return it
as a result if its state is dense. For the purpose of speed-
ing up query processing and improving the result quality,
in this paper, we use two structures, Quad-tree[17] and
Modified TPR-tree, to index the CRs. Methods based
on these two structures are developed in the following
sections.

5 Quad-tree based method

In this method, we use a Quad-tree to hierarchically in-
dex CRs. An auxiliary TPR-tree [18] is used to index all
MOs so as to quickly locate them while computing states
and safe intervals.

5.1 Indexing structure

Specifically, the whole Euclidean space is divided into
hierarchical CRs, where a CR is recursively partitioned

into four quadrants until the area of the quadrant is less
than the threshold s given in Definition 3. Figure 3 shows
an example of a Quad-tree and the CRs partitioned by
it. The root node r0 represents the whole space with an
area of 8 × 8, which is divided into four quadrants rep-
resented by node r1, r2, r3, and r4, respectively. Given
the minimum area s = 2, the partition finally stops at
level 2, since otherwise the area of CRs in level 3 will be
1, which is less than the minimum area threshold.

Algorithm 1 TimeCompute1(oi, CR)
Input: MO oi in expanded region, CR

Output: entrance time of oi, departure time of oi

Begin
1: if (oi.vx is positive)
2: then etx = CR.xmin−oi.x

oi.vx
, ltx = CR.xmax−oi.x

oi.vx

3: else if (oi.vx is negative)
4: then etx = CR.xmax−oi.x

oi.vx
, ltx = CR.xmin−oi.x

oi.vx

5: else etx = MAX , ltx = MAX

6: end if
7: if (oi.vy is positive)
8: then ety = CR.ymin−oi.y

oi.vy
, lty = CR.ymax−oi.y

oi.vy

9: else if (oi.vy is negative)
10: then ety = CR.ymax−oi.y

oi.vy
, lty = CR.ymin−oi.y

oi.vy

11: else etx = MAX , ltx = MAX

12: end if
13: eti = max(etx, ety)
14: lti = min(ltx, lty)
15: if (lti > eti)
16: then return eti and lti
17: else return Tmax and Tmax

18: end if
End

A node in a Quad-tree is represented by a 6-tuple
(xmin, ymin, xmax, ymax, state, safeInterval), where
(xmin, ymin, xmax, ymax) are the lower and upper
bounds of the CR represented by the node. If the node
is a leaf node, its state can be 0 or 1, indicating the
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corresponding region is sparse or dense, respectively.
For a non-leaf node, the state can be 0, 1 or 2, where 0
means all its children are sparse, 1 means all its children
are dense, and 2 means that its children consist of both
dense and sparse nodes. As defined before, safeInterval

is the valid time during which the persistence of the
state can be predicted. Note that the safe interval of
a non-leaf node is set to the minimum safe interval of
all its leaf descendants. We do not have to maintain a
counter of MOs for each CR, instead, we dynamically
maintain the overall state for each CR. For example,
node r1 is described as (0, 0, 4, 4, 2, 5). According to the
definition, the state of r1 is 2 since its children consist
of both dense and sparse nodes. The safe interval of r1
is set to 5, which is the minimum safe interval of all its
leaf descendants.

5.2 Safe interval computation

As discussed in section 4, to get the safe interval of a
CR, we start with calculating entrance and departure
times. Then we need to develop different computation
algorithms respectively for dense and sparse CRs.

5.2.1 Entrance and departure time calculation

First of all, we calculate entrance and departure times of
MOs in the expanded region.

Consider an MO oi. It will be in the CR if and only if
the projections of oi in both vertical and horizontal di-
rections are in the CR at the same time. The projections
are in the CR if times tx and ty satisfy the following two
inequalities

CR.xmin < oi.x + oi.vx ∗ tx < CR.xmax,

CR.ymin < oi.y + oi.vy ∗ ty < CR.ymax.

Depending on this, we can calculate oi’s entrance and
departure times in two directions(Algorithm 1, line 1–
12). Entrance time eti of oi is the maximum of the two
entrance times(line 13), and departure time lti is the
minimum of the two departure times(line 14). If the
departure time is larger than the entrance time(line 15),
return eti and lti(line 16); otherwise, oi will not enter
CR, and we set its entrance time and departure time to
a large constant Tmax(line 17).

The second step is to compute departure times of MOs
in CR one by one. We define the departure time of an
MO as the time it first arrives at an edge of the CR, which
is the minimum of the two departure times in horizontal
and vertical directions.

The procedure is shown in Algorithm 2. For each MO
oi in CR, we first compute two distances, lxi and lyi,
that oi needs to move in vertical and horizontal direc-
tions(line 1-12). Then return the minimum time in the
two directions as its departure time(line 15). Note that

Algorithm 2 TimeCompute2(oi, CR)
Input: MO oi in CR, CR

Output: departure time of oi

Begin
1: if (oi.vx is positive)
2: then lxi = CR.xmax − o.x

3: else if (oi.vx is negative)
4: then lxi = oi.x − CR.xmin
5: else lxi = MAX

6: end if
7: if (oi.vy is positive)
8: then lyi = CR.ymax − o.y

9: else if (oi.vy is negative)
10: then lyi = o.y − CR.ymin
11: else lyi = MAX

12: end if
13: if lxi = MAX and lyi = MAX

14: then return Tmax as the departure time
15: else return min( lxi

vx
, lyi

vy
) as the departure time

End

if oi is stationary(line 5, 11, 13), we simply return Tmax

as its departure time(line 14).

5.2.2 Safe interval of dense and sparse CRs

Safe interval calculation of dense CRs is summarized in
Algorithm 3, in which we use a linked list LL to store
all entrance and departure times. Delta is the number
of MOs that need to leave CR to cause CR to become
sparse and is set to N −area(CR)∗ρ+1, where N is the
number of MOs already in the CR. We deal with MOs in
expanded region(line 1–5) and in the CR(line 6–9) sep-
arately. For each MO in the expanded region, compute
its entrance and departure times(line 2), then insert the
values into LL(line 3–4). In terms of MOs in the CR,
we just compute their departure times(line 7) and insert
the values into LL(line 8). Note that LL should always
be arranged in an increasing order. After assigning all
time values, traverse LL and check whether each time
point is an entrance time or a departure time. If it is
a departure time(line 14), Delta decreases by one(line
15); otherwise, it increases by one(line 16). The traver-
sal ends when Delta becomes 0(line 11), which means
that the CR becomes sparse at this time point. We then
set this time point as the safe interval of the CR(line 12).

Safe interval calculation of sparse CRs has a minor
difference to those with dense CRs. As analyzed before,
while computing the safe interval of a sparse CR, we need
to consider the entrance situations of MOs outside the
expanded region as well. For those MOs, we set their
entrance times to a constant ET0, which is calculated as
follow

ET0 =
l

|vmax|
, (2)
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Algorithm 3 SIofDenseCR(CR)
Input: a dense CR

Output: safe interval of the CR
LL is a linked list. Insert(t, LL) is to insert a time
value t into LL and make sure that values in LL

is always in increasing order. Delta is set to N −
area(CR) ∗ ρ + 1, where N is the number of MOs
already in CR and ρ is the density threshold.
Begin
1: for each MO oi in the expanded region
2: eti, lti = T imeCompute1(oi, CR)
3: Insert(eti, LL)
4: Insert(lti, LL)
5: end for
6: for each MO oi in the CR
7: lti = T imeCompute2(oi, CR)
8: Insert(lti, LL)
9: end for
10: for each time ti in LL

11: if (Delta equals 0)
12: then return ti as the safe interval
13: end if
14: if (ti is a departure time)
15: then Delta − −
16: else Delta + +
17: end if
18: end for
End

where l is the expanded length and also the shortest mov-
ing distance for an external MO to enter the CR, and
vmax is the maximum speed of all MOs. Eq. (2) guaran-
tees that ET0 is the minimum time that an external MO
needs to enter the CR.

Since we can only guarantee that MOs outside the ex-
panded region won’t enter the CR within a time interval
of ET0, the computed safe interval is right only if it is
smaller than or equal to ET0. Otherwise, we just set the
safe interval to ET0.

5.3 Updating of safe intervals

There are two cases in which we need to recalculate safe
intervals. First, when a safe interval expires, which would
not affect the safe intervals of other CRs. Second, when
the velocity of an MO changes, some affected safe in-
tervals need to be recalculated. In real applications, ve-
locities of MOs update frequently, so it is important to
reduce the updating cost to the minimum. In the follow-
ing, we discuss the second case in detail.

Suppose that o is the MO whose velocity updated. We
classify all CRs into three types listed below, according
to their positional relationship with o.

• Type 1: CRs that contain o, like CR3 in Fig. 4. A
type-1 CR has to recalculate its safe interval only if

it satisfies one of the two conditions:
– Condition 1: The CR is dense and the new

departure time of o is earlier than the old one.
In such case, it is possible that the CR will
become sparse before the safe interval expires,
as a result of o departing early.

– Condition 2: The CR is sparse and the new
departure time of o is later than the old one.
The recalculation is inevitable because o de-
parting later makes it possible that the CR will
become dense during the safe interval.

Fig. 4 Different types of CRs

• Type 2: CRs whose expanded regions contain o,
like CR4 in Fig. 4. In such circumstances, the re-
calculation is necessary for the difficulty to decide
how the change of o’s velocity will affect the safe
intervals.

• Type 3: CRs without o in them or in their ex-
panded regions, like CR5 in Fig. 4. If a type-3
CR is dense, it is unnecessary to recalculate its safe
interval. The reason is that the entrance of an exter-
nal MO stretches the time interval the CR remains
dense. That is to say, the previously calculated safe
interval remains correct. If a type-3 CR is sparse,
it is still unnecessary to recalculate its safe inter-
val, because the entrance times of MOs outside the
expanded region have already been considered and
set to the minimum value that any MO could possi-
bly achieve. In short, velocity updates of o will not
affect safe intervals of type-3 CRs.

The analysis above indicates that only two kinds of
CRs, those containing the MO with some limits and
those whose expanded regions contain the MO, are influ-
enced and need to recalculate their safe intervals when
the velocity of the MO changes.

5.4 Query processing

Having obtained the states and safe intervals of all nodes,
we are ready to determine the dense CRs. In the Quad-
tree based method, we search the Quad-tree in a bottom-
up manner, where the search of a dense region stops
when an ancestor is not dense and its dense children
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Algorithm 4 DensityQuery1(qT ree, t)
Input: Quad-tree qT ree, query time t

Output: dense regions
Begin
1: for every leaf node n in qT ree

2: if (n.safeInterval >= t) then
3: if (n.state is sparse) then break
4: else
5: n′ = n

6: while ( n′.parent.state is dense
and n′.parent.safeInterval >= t )

7: n′ = n′.parent
8: end while
9: output n′

10: ignore other descendants of n′ and get the
next leaf node
11: end if
12: else
13: count the number of MOs in CRn.
14: if (count(n) >= area(CRn) ∗ ρ)
15: then SIofDenseCR(CRn)
16: else SIofSparseCR(CRn)
17: end if
18: if (n.state or n.safeInterval changes)
19: then adjust ancestors of n and take n as the
next node
20: end if
21: end if
22:end for
End

are returned as query results. In addition, when the safe
interval of a leaf node expires, an update of its state and
safe interval, as well as an adjustment to its ancestors, is
triggered.

In order to explain it clearly, we give an example of
query processing. As shown in Fig. 3, some states and
safe intervals of Quad-tree nodes are already known, and
the safe interval of an intermediate node is the minimum
safe interval of its leaf descendants. Suppose that the
query time is 8. The process starts from the leftmost
leaf node c1, whose safe interval is beyond the query time
and whose state is 0. As a result, we drop c1 and move
to the next leaf node. Since the safe interval of c2 has
expired, a recalculation as well as an adjustment to its
ancestors is necessary. Suppose the new safe interval of
c2 is 15 and the new state is 1. Since the state of r1 is 2,
we just return its children c2 and c4 as the dense regions
and move to the next leaf node. As for c5, its parent r2
is the most distant ancestor with a dense state; so we
return r2 as a dense region. At last, c2, c4, and r2 are
returned as the query results.

The pseudo code of query processing is given in Al-
gorithm 4. For each leaf node n, we first check whether
the query time is within the safe interval (line 2). If so,

and the state of n is dense, we check its ancestors and
return the most distant one with a dense state (lines 4-
11). Then, we ignore the other leaf descendants of the
ancestor and get the next leaf node. If the query time is
beyond the safe interval, we need to recalculate its state
and safe interval (lines 12-21). Note that we also need to
adjust the state and safe interval of each of its ancestors
when the recalculation takes place (line 19).

We now take an overall look at how the Quad-tree
based method works. On the server side, we first build a
Quad-tree for all CRs and initialize their states and safe
intervals. After that, the server runs two algorithms, one
of which is to answer continuous density queries and the
other one is to handle frequent velocity updating. As for
the client side, to launch a density query, it needs to send
only one parameter t, which is the current time, to the
server.

Fig. 5 Results of the Quad-tree based method and answer miss
problem

It is noteworthy that the size, shape, and location of
the CRs are greatly restricted by the partition method
of the Quad-tree. This may lead to an answer miss prob-
lem. As shown in Fig. 5, the two framed regions in the
left diagram are results of a continuous density query
using the Quad-tree based method and the framed re-
gion shown in the right diagram is also dense, which is
however missed in the results.

6 Modified TPR-tree based method

In order to enhance the accuracy of results in continuous
density queries and avoid answer misses, we try to use
a new structure, the Modified TPR-tree, to index the
CRs. Different from the Quad-tree based method, in
this method, no auxiliary indexing structure is needed
to index the MOs. We use the unique Modified TPR-
tree to index both CRs and MOs.

6.1 Indexing structure

TPR-tree is a classical indexing structure for the cur-
rent or anticipated future positions of MOs [18], which
naturally extends the R*-tree [19]. Traditionally, each
leaf node of a TPR-tree points to an MO, while in our
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Fig. 6 An example of the modified TPR-tree and its CRs

method, the TPR-tree is modified to index both MOs
and CRs at the same time. Different from the Quad-tree
based method, each CR in the TPR-tree based method
is a square centered at an MO, see Fig. 6. That is to
say, the number of CRs is equal to the number of MOs,
and more importantly, a CR moves in the exactly same
way as the corresponding MO does. In a TPR-tree based
structure, answer misses will be minimized since the lo-
cations of CRs are more arbitrary. More specifically, the
following modifications are made on the TPR-tree:

1) Two attributes, state and safe interval, are added
to the leaf node of the TPR-tree, so that
each leaf node can be expressed as a 3-tuple:
(MO, state, safeInterval). Each CR has a size of
s (given in Definition 3) and is centered at the the
corresponding MO. Therefore, if the CR is dense,
the corresponding MO is also dense and vice versa.
SafeInterval is a time interval, during which the
CR maintains its current state. The right hand di-
agram in Fig. 6 gives an example of a space contain-
ing six CRs, which are represented by the MOs of the
TPR-tree in the left hand diagram. The two solid
frames represent two dense regions while the other
four dashed frames represent the sparse regions.

2) All MOs in the TPR-tree are linked in order to accel-
erate the procedure of query processing. More details
of query processing are given later.

An example of the modified TPR-tree is shown in the
left hand diagram of Fig. 6, where non-leaf nodes index
the MBRs and leaf nodes point to MOs and their CRs.

6.2 Safe interval computation and updating

The general idea of safe interval computation and updat-
ing is similar to the Quad-tree based method, except for
a few details in implementation listed below:

1) When computing entrance or departure time of an
MO, we make use of the relative speed between the
MO and the CR. This is because in this method the
CRs are dynamically moving around rather than sta-
tionary.

2) In terms of computing the safe interval of a sparse
CR, the entrance time ET0 of the MOs outside CRi’s
expanded region is obtained by Eq. (3), where vmax
is the maximum velocity of all MOs and vi is the
velocity CRi

ET0 =
l

|vi| + |vmax|
. (3)

3) The safe interval of an additional CR, the one cen-
tered at MO o, is affected when o updates its velocity.
No matter whether the CR is dense or sparse, its safe
interval changes, since the velocity of o is actually the
velocity of the CR.

6.3 Query processing

The query processing algorithm is given in Algorithm 5.
All MOs in the leaf nodes are stored in a linked list, which
is used to accelerate processing, and examined node by
node. For each MO, we recalculate the safe interval if
it is earlier than the query time (lines 3–13) and decide
whether to return the CR or not by checking its current
state (lines 14–18).

An example of TPR-tree based query processing is
given in Fig. 6, where the states and safe intervals of
MOs in the tree are given and the query time is set to
8. The processing starts from the leftmost MO in the
linked list, whose safe interval is 10 and the state is 0. We
drop this MO since its current state is sparse. The safe
interval of the second MO is 5, which is earlier than the
query time, so that we need to recalculate its state and
safe interval. Suppose that the new state is still dense,
and so we output CR2 as a dense region. The procedure
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Algorithm 5 DensityQuery2(list, t)
Input: linked list of all leaf nodes, query time t

Output: dense regions
Begin
1: while ( list.currentnode() is not null )
2: node n = list.currentnode()
3: if (n.safeInterval< t)
4: count number of MOs in CRn.
5: if (count(n) >= area(CRn) ∗ ρ)
6: then
7: SIofDenseCR(CRn)
8: set n.state to dense
9: output n

10: else
11: SIofSparseCR(CRn)
12: set n.state to sparse
13: end if
14: else
15: if(n.state is dense)
16: output n

17: end if
18: end if
19: list moves to the next node
20. end while
End

continues until all MOs are checked and finally CR2 and
CR3 are returned as the query results.

7 Experiments

In this section, we design experiments to test the effi-
ciency and accuracy of continuous density queries. The
first experiment compares the efficiency of three meth-
ods, i.e., Quad-Tree based method, TPR-Tree based
method, and Snapshot Density Query method. The sec-
ond experiment compares the result quality of the two
continuous methods. In the final experiment, updating
efficiency is tested.

7.1 Setup and datasets

We conducted our experiments on a PC equipped with a
Quad core 2.66 GHz CPU and 4GB memory. The code
was implemented in Java.

Three datasets are used, where one of them is a real
dataset that contains GPS records of Beijing taxis on
July 14, 2007 [20], and the other two datasets are a
simulated Gaussian dataset and the Brinkhoff dataset
of Oldenburg [21]. For the real dataset, there are ten
thousand MOs running on a region with an area of 5 000
m × 5000 m. As for Gaussian and Brinkhoff datasets,
we generate ten thousand MOs moving on a 5 000 m ×
5 000 m region for each of them. Four experimental pa-

rameters are evaluated and their values are set in Table
1, where the default values are in bold.

Table 1 Parameter settings

Parameters Values

Minimum area s (m×m) 50*50, 60*60, 70*70, 80*80,
90*90, 100*100

Density threshold ρ (10−3) 1, 2, 3, 4, 5, 6, 7, 8, 9
Number of MOs k (103) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
Expanded length l (m) 10, 20, 30, 40, 50, 60

7.2 Query efficiency

To evaluate query efficiency, we issue 100 continuous den-
sity queries and measure the average query time.

The results on the real dataset are shown in Fig. 7.
The left hand chart shows how the minimum area s af-
fects the average query time. When s gets larger, it
means that there are fewer CRs to maintain for SDQ and
Quad-tree based methods, so less CPU time is needed. In
the TPR-tree based method, when s increases, more MOs
with similar moving patterns are included in the CR. As
a result, the safe interval stretches and the query time
is reduced. In the second chart, when density threshold
ρ increases, average query time of the two continuous
methods becomes shorter and that of SDQ method re-
mains high. In the real dataset, there are more sparse
CRs than dense CRs, so safe intervals of sparse CRs
largely determine the average query time. For the two
continuous methods, with ρ getting larger, safe intervals
for sparse CRs become longer, so both methods reduce
their average query time. As for SDQ, no matter how
much the density threshold is, it has to calculate the state
of every CR, so the average query time doesn’t change
much. The third chart presents the trend of query time
when the number of MOs k increases. Clearly, all three
methods become less efficient as k increases. For the
Quad-tree based method, when k increases, more time
is needed to monitor MOs in CRs. For the TPR-tree
based method, more MOs mean more CRs to maintain.
For the SDQ method, more MOs requires more scanning
time. As a result, all three methods suffer reduced ef-
ficiency of different levels. As shown in the final chart,
SDQ has a stable but still low efficiency, because this
method is not effected by the expanded length l. We
mentioned previously that estimated safe intervals are
always shorter than real ones. With l increasing, the
safe interval of each CR becomes more and more accu-
rate, and when the expanded region grows large enough
to contain all MOs, we get a real and tight safe inter-
val. For the two continuous methods, the reason why
their query time shows decreasing trends in the begin-
ning is that increasing l stretches the safe intervals of
CRs. After the lowest point, however, the average query
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Fig. 7 Query efficiency on real dataset
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Fig. 8 Query efficiency on simulated datasets. (a) Gaussian dataset; (b) Brinkhoff dataset

time increases, because the estimated safe intervals are
finally stabilized and the continued growth of expanded
region costs more and more time in the recalculation of
safe intervals.

Figure 8(a) shows query efficiency on the Gaussian
dataset. The left hand chart plots the relationship be-
tween query time and minimum area s. For the SDQ
and Quad-tree based methods, the number of CRs re-
duces as s increases. Therefore, less CPU time is needed
to monitor CRs. Different from the real dataset, in the
Gaussian dataset, the locations and velocities of MOs are
randomly generated. So, in the TPR-tree based method,
with s getting larger, there are more MOs for each CR
to monitor but the total number of CRs remains un-
changed, which certainly costs more query time. It can
be observed from the second chart that density threshold
ρ has only a moderate effect on query efficiency, which
is mainly because ρ doesn’t change the number of CRs.
As discussed before, safe intervals of sparse CRs are usu-
ally shorter than dense CRs, because we set an upper
bound ET0 to safe intervals of sparse CRs. As ρ grows,
sparse CRs increase and dense CRs decrease. Therefore,
increasing ρ results in a small increasing of query time in
the two continuous methods. As illustrated in the third
chart, with the number of MOs k increasing, all three
methods take up more query time for a similar reason to

the real dataset. The final chart demonstrates how ex-
panded length l affects query efficiency. The trend is sim-
ilar to the real dataset and the most efficient expanded
lengths are 20m and 30m for Quad-tree and TPR-tree
based methods, respectively.

Results on the Brinkhoff dataset are shown in Fig.
8(b). The left hand chart suggests that when the mini-
mum area s increases, the average query time goes down.
Similar to the real dataset, MOs in Brinkhoff dataset fol-
low certain movement patterns. As s grows, more MOs
in the same moving pattern are included in the CR, so
that the safe intervals of dense CRs are lengthened. As
a result, fewer safe intervals need recalculating and less
time is needed. It can be inferred from the second chart
that there is no relationship between efficiency and den-
sity threshold. In fact, increasing ρ may shorten the safe
intervals of dense CRs and lengthen the safe intervals of
sparse CRs. The positive and negative effects cancel each
other out, so that the number of recalculated safe inter-
vals stays stable. Meanwhile, the total number of CRs
does not change. As a result, average query time simply
fluctuates over a small range. Query time for different
numbers of MOs k is shown in the third chart. All three
methods increase in query time as k grows. As shown in
the final chart, expanded length l affects efficiency in a
similar way with previous datasets. With the increasing
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(a) (b) (c)
Fig. 9 Results of Quad-tree based method on (a) real dataset; (b) Gaussian dataset; (c) Brinkhoff dataset

(a) (b) (c)
Fig. 10 Results of TPR-tree based method on (a) real dataset; (b) Gaussian dataset; (c) Brinkhoff dataset

of l, more MOs need to be considered while computing a
safe interval, so that the efficiency eventually goes down.
That is to say, accurate safe intervals do not always mean
better query efficiency. We should choose an appropriate
expanded length to achieve the best efficiency.

Generally speaking, the two continuous methods gain
much higher query efficiency than SDQ. The Quad-tree
based method is particularly suited to the Gaussian
dataset, where MOs are uniformly and randomly dis-
tributed, because in such circumstances, safe intervals
in the Quad-tree based method are usually longer than
in TPR-tree based method due to the computing algo-
rithms. On the contrary, the TPR-tree based method
works better on datasets with certain movement pat-
terns, such as the real dataset and the Brinkhoff dataset.
This is mainly because in the real and Brinkhoff datasets,
Quad-tree has to maintain many useless CRs with few
or even no MO in them, while TPR-tree can focus on
regions with high concentrations of MOs as a result of
its MOs-centered features.

7.3 Result quality

In order to take a closer look at the query results, we il-
lustrate snapshots of dense regions within 1000m×1000m
on the three datasets (see Figs. 9 and 10). The results
are obtained using default settings while using the Quad-
tree and TPR-tree based methods. In general, the results
of the Quad-tree based method, shown in Fig. 9, are not
as good as the TPR-tree based method, shown in Fig.

10. Clearly, the TPR-tree based method discovered more
dense regions and their results are more accurate. Tables
2-4 compare the number of dense regions each method
gets, where in almost every setting the TPR-tree based
method returns many more dense regions than Quad-
tree. The main reason is that Quad-tree divides the space
into fixed CRs, which causes a high probability of answer
misses. Meanwhile, CRs in the TPR-tree based method
are MOs-centered, which makes the region flexible and
thus the results more accurate. These results verify our
analysis in section 6, stating that the TPR-tree based
method can obtain results with higher quality than the
Quad-tree based method.

Table 2 Number of dense regions vs. minimal area s

s 50*50 60*60 70*70 80*80 90*90 100*100

TPR 3602 2709 2169 1601 1329 1267
Quad 1282 933 757 520 379 362

Table 3 Number of dense regions vs. density threshold ρ

ρ/10−3 1 2 3 4 5 6 7 8 9

TPR 3602 1779 1136 987 834 776 714 587 447
Quad 1282 661 271 150 79 59 36 28 20

Table 4 Number of dense regions vs. number of MOs k

k/103 1 2 3 4 5 6 7 8 9 10

TPR 134 346 567 897 1205 1608 2037 2497 3009 3602
Quad 55 156 284 435 586 753 905 1039 1165 1282

It is notable that the TPR-tree based method obtains
dense regions with overlaps. From a user perspective,
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Table 5 Number of recalculation vs. minimal area s

s 50*50 60*60 70*70 80*80 90*90 100*100

TPR 3.86 4.05 4.32 4.56 4.72 4.89
Quad 8.71 8.50 8.02 7.35 6.13 3.47

Table 6 Number of recalculation vs. density threshold ρ

ρ(10−3) 1 2 3 4 5 6 7 8 9

TPR 3.86 3.84 3.90 3.82 3.85 3.86 3.81 3.88 3.89
Quad 8.71 8.51 8.77 8.63 8.65 8.74 8.76 8.70 8.74

Table 7 Number of recalculation vs. number of MOs k

k(103) 1 2 3 4 5 6 7 8 9 10

TPR 1.09 1.17 1.26 1.50 1.81 2.12 2.39 2.69 3.50 3.69
Quad 8.71 8.57 8.69 8.58 8.57 8.73 8.72 8.68 8.62 8.64

Table 8 Number of recalculation vs. expanded length l

l 10 20 30 40 50 60

TPR 2.24 2.53 2.82 3.15 3.56 3.86
Quad 2.09 3.22 4.80 6.73 8.53 8.71

the overlapping regions will not affect their query ex-
perience. Instead, they will improve user experience by
providing more-accurate query results. Besides, our pre-
vious experimental results show that the TPR-tree based
method achieves high query efficiency. So, with respect
to our main concern of improving user experience, some
duplicates in the TPR-tree based method are tolerable.

7.4 Update Efficiency

We now evaluate the update efficiency caused by veloc-
ity changes of MOs. For each experimental setting, 1,000
updates are executed and we calculate the average num-
ber of recalculated safe intervals (see Tables 5-8) and the
average update time (see Fig. 11) as measure. For ease
of exposition, we assume that o is an MO whose velocity
is updated. As discussed in section 5.3, for CRs con-
taining o and CRs whose expanded regions contain o, it
is possible to recalculate their safe intervals when o up-
dates its velocity. As shown in Table 5, with minimal
area s increasing, more CRs or their expanded regions
contain o in the TPR-tree based method, so the aver-
age number of recalculations increases. However, in the
Quad-tree based method, a larger s means that the to-
tal number of CRs decreases. So fewer CRs or their
expanded regions contain o, and the number of recalcu-

lations is reduced. Table 6 infers that density threshold
ρ has little effect on the number of recalculations, since
it does not change the number or the size of CRs. As for
increasing k, shown in Table 7, it has little impact in the
Quad-tree based method, while in the TPR-tree based
method, the number of recalculations increases as a re-
sult of the increasing number of CRs. Finally, expanded
length l largely increases the number of recalculations in
both methods (see Table 8), because o becomes located
in more expanded regions as l extends. As shown in Fig.
11, the update time shows similar trends to the number
of recalculations. On the whole, update efficiency of both
methods is both high, and the TPR-based method out-
performs the Quad-tree based method most of the time.
In the best case, both methods achieve an average up-
date time of less than 0.02s. In the worst case, it costs
an average update time of 0.05s for TPR-tree and 0.09s
for Quad-tree, which is still acceptable.

8 Conclusion

In this paper, we have presented a study on the prob-
lem of continuous density queries. Our main purpose
is to propose an approach to answer continuous density
queries with both high efficiency and high quality. We
handled two important issues, one of which is the fre-
quent density queries and the other is frequent velocity
updates. For the first issue, we proposed a notion of a
safe interval to enable dynamic maintenance of region
states. In order to improve efficiency and quality, two
methods based on two indexing structures, Quad-tree
and TPR-tree, were proposed. For the update issue, we
classified all CRs into three types so as to reduce the up-
date cost to a minimum. Experimental results show that
compared to the existing approach, our methods achieve
both high efficiency and result quality while dynamically
monitoring and maintaining dense regions for MOs.
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