
STS: Complex Spatio-Temporal Sequence Mining in
Flickr�

Chunjie Zhou and Xiaofeng Meng

School of Information, Renmin University of China, Beijing, China
{lucyzcj,xfmeng}@ruc.edu.cn

Abstract. Nowadays, due to the increasing user requirements of efficient and
personalized services, a perfect travel plan is urgently needed. In this paper we
propose a novel complex spatio-temporal sequence (STS) mining in Flickr, which
retrieves the optimal STS in terms of distance, weight, visiting time, opening
hour, scene features, etc.. For example, when a traveler arrives at a city, the sys-
tem endow every scene with a weight automatically according to scene features
and user’s profiles. Then several interesting scenes (e.g., o1,o2,o3,o4,o5,o6) with
larger weights (e.g., w1,w2,w3,w4,w5,w6) will be chosen. The goal of our work
is to provide the traveler with the optimal STS, which passes through as many
chosen scenes as possible with the maximum weight and the minimum distance
within his travel time (e.g., one day). The difficulty of mining STS lies in the
consideration of the weight of each scene, and its difference for different users,
as well as the travel time limitation. In this paper, we provide two approximate
algorithms: a local optimization algorithm and a global optimization algorithm.
Finally, we give an experimental evaluation of the proposed algorithms using real
datasets in Flickr.
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1 Introduction

With the rapid development of modern society, people are concentrating more on ef-
ficient and personalized services. In the tourist industry, a perfect traveling plan can
help people to visit their favorite scenes as many as possible, and save a lot of time
and energy. However, at present it is hard for people to make a proper and personal-
ized traveling plan. Most of them follow other people’s general travel trajectory, but do
not consider their own profile and the best visiting order of scenes in this trajectory.
So only after finishing their travel, do they know which scene is their favorite, which
is not, and what is the perfect order of visits. Let’s consider such a scenario: a person
plans to travel on a holiday, but does not have a specific destination. In order to make a
better plan, they scan the tourist routes on the Internet or they seek advice from travel
companies. Then they choose a popular travel trajectory suggested by other people, but
do not consider their own interests. As a result, this sightless travel plan may cause the
following aftereffects: 1) waste a lot of time on the road among scenes; 2) waste lots of
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Fig. 1. Two different sequences (red, blue) including six chosen scenes with different weights on
Google Maps and their timelines. Scenes of each sequence which have been visited are presented
in the order of visitation. On the timelines, transitions between tourist scenes are depicted by
rectangles and visiting time is given in minutes.

unnecessary money; 3) do not have enough time to visit their real favorite scenes, etc.
However, with increasing interests in perfect travels and modern advanced services,
more wonderful and personalized travel suggestions need to be supplied urgently.

In this paper, we propose a novel spatio-temporal sequence (STS) mining in Flickr.
The goal of STS is to provide a user with the optimal STS, which minimizes the total
traveling distance and maximizes the total weight within his limited travel time. In
consequence a user can make a perfect and personalized travel plan based on his own
profile before he starts to travel. The implementation of STS is based on two basic
pieces of knowledge. 1) the user’s profile. The methods of mining user’s profile have
been studied a lot [1]. Here we assume that every user’s profile is already stored in
his accompanied mobile devices. So when a user arrives at a city, the system can get
his profile from his mobile devices directly. 2) scene features. The methods of mining
scene features according to photos and tags in Flickr has been studied in our previous
work [6]. So here we directly use the database in [6] that stores the features of each
scene in each city. In this paper, we consider solutions for the STS problem as graphs
where tourist scenes are nodes and paths between these scenes are edges. To the best of
our knowledge, no prior work considers both point weight and edge distance together,
which are inversely proportional.

Efficient STS evaluation could become a new important feature of advanced services
in Flickr, and be useful for LBS (Location Based Services). The quality of these services
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can be greatly improved by supporting more advanced query types, like STS. An exam-
ple of STS is shown in Figure 1. When a traveler arrives at a city, the system endows
every scene with a weight automatically according to scene features and user’s pro-
files. Then six interesting scenes (e.g., o1,o2,o3,o4,o5,o6) with larger weights (e.g.,
w1,w2,w3,w4,w5,w6) will be chosen. Given these six certain scenes, a database that
stores the features of scenes will compute a proper STS (i.e., the red sequence) effi-
ciently. The blue sequence is created by a user who follows others’ general trajectory.
These two different sequences are presented in Figure 1. Tourist visits cover not only the
visiting time of scenes, but also the transitional cost among scenes (i.e., rectangles on
the timelines)[16]. Because of the different visiting order of the scenes, the duration of
these two sequences is variable, from under six hours (e.g., the red sequence) to over 9
hours (e.g., the blue sequence). Clearly, an ideal method is to propose an optimal tourist
sequence that not only re-arranges the order in which these scenes are visited with the
maximum value (see Section 2.1), but also should be within a limited travel time. For
the red sequence, there are only two significant transitions (i.e., 56 min between Wilcox
Lake and Ticonderoga, 30 min between Ticonderoga and High Peeks). The first three
visited tourist scenes (Ferris Lake, Silver Lake and Wilcox Lake) and the last two ones
(High Peeks and Varderwhacker) are adjacent and the tourist makes no pause between
them. Some factors influencing visiting order, for example, personal preferences (i.e.,
scene weight) and travel time must be taken into account.

STS can be considered as a special case of the knapsack problem (KSP) which is NP-
hard. The reduction from STS to KSP is straightforward. Given a set of m scenes from
which we select some interesting scenes to be included in the spatio-temporal sequence
in a limited travel time Ttotal . Each scene has a weight and a duration time. The objective
is to choose the set of ordered scenes that optimize the STS and maximize the travel
value (i.e., a minimum distance and a maximum tourist scene weight). By regarding
distance as the multiplication of velocity and time, each scene of STS can be reduced
to an item of KSP. There are also some differences between STS and KSP: 1) the goods
in KSP is disordered, but the scenes in STS is strictly ordered; 2) KSP has only one
objective function, but STS has two independent objective functions.

Contributions: This paper proposes a novel spatio-temporal sequence mining in Flickr
and studies methods for solving it efficiently. Two approximate algorithms that achieve
both local and global optimization are presented. In particular:

– We present a novel STS mining in Flickr, which can minimize the total traveling
distance and maximize the total weight within a limited travel time. This type of
mining has not been considered before.

– We give a formal definition of STS in road network. The weights of chosen scenes
are specified according to personal preferences. This is more similar to the real
world applications.

– We propose two types of algorithms for STS. Local optimization algorithms include
approximation in terms of distance, weight and value respectively.

– We perform an extensive experimental evaluation of the proposed algorithms on
real datasets in Flickr.
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Paper Organization: The rest of the paper is organized as follows: Section 2 gives
the problem definition and related works. The approximate algorithms are presented in
Section 3. An experimental evaluation of the proposed algorithms using real datasets is
presented in Section 4. Finally, we give the conclusion and future works.

2 Preliminaries

This section formally defines the STS problem and introduces the basic notation that
will be used in the rest of the paper. Furthermore, a concise overview of related works
is presented.

2.1 Problem Definition

Table 1 lists the main symbols we use throughout this paper. Following standard nota-
tion, we use capital letters for sets (e.g., P is a set of all scenes), and lowercase letters
for vectors (e.g., oi ).

Table 1. Symbols

Symbol Definition and Description
V the value of the sequence { o1, ...,ok }
P a set of all scenes { P1, ...,Pm }
R a chosen subset of scenes { o1, ...,ok }
Q a travel sequence
N the road network
Ttotal the total travel time
T (oi,o j) the time cost from the scene oi to o j

T (oi) the duration time of scene oi

DdisN
the distance among scenes in road network

wi the weight of the chosen scene oi

oi the ith chosen scene
α a balance factor
m the number of all scenes
k the number of chosen scenes

We consider solutions for the STS problem as graphs where tourist scenes are nodes
(labeled with scene’s name) and paths between these scenes are edges. Given a graph
G(O,ξ ) with n nodes O= {o1, ...,on} and s edges ξ = {e1, ...,es}, each node in the graph
has a weight denoting the interest percentage of the traveler. The value of traversing
a scene sequence (oi, ...,o j) is expressed as V (oi, ...,o j) ≥ 0, which means the score
of the sequence. As shown in Eq.(1), the value of the sequence is in proportion to the
total weight of all chosen sences, but in contrast to the total distance. Here, we consider
distance among scenes in road network, which is more meaningful in the real travel
application scenario. Suppose that the average velocity of the traveler is υ , the distance
DdisN (oi,o j) can be denoted as υ*T (oi,o j). A balance factor α is defined between
weight and distance, which may be changed in different situations.
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V (oi, ...,o j) = α ∗ (wi + ...+ wj)+ (1−α)∗ 1
j

∑
k=i

DdisN (ok,ok+1)

= α ∗
j

∑
k=i

wk +(1−α)∗ 1
j

∑
k=i

υ ∗T (ok,ok+1)

(1)

Given a set of m scenes P = {P1, ...,Pm} (where m ≤ n) and a mapping function π :
Pj→oi that maps each scene Pj ∈ P to a node oi ∈ N. So scenes can be regarded as
special nodes, and be denoted by node symbols. In the rest of this paper, scenes and
nodes will share the same symbols. The STS problem can be defined as follows:

Definition 1. Given a set R⊆ P (R= {o1,o2, ...,ok}), a source scene S and a destination
scene E, identify the traveling scene sequence Q= {S,o1, ...,ok,E} from S to E that visits
as many scenes in R as possible (i.e., maximize the total weight of the sequence), and
takes the minimum possible distance DdisN (Q) (i.e., for any other feasible sequence Q′
satisfying the condition DdisN (Q) ≤ DdisN (Q′)) in a limited travel time Ttotal .

The time constraint condition is in the following, which includes not only the duration
time of scenes, but also transitional cost among scenes. The duration time of scenes
can be achieved by [16], which is not our focus in this paper. We mainly consider the
temporal cost among scenes, namely, the distance between each couple of scenes.

k

∑
i=1

T (oi)+
k

∑
i=1, j=i+1

T (oi,o j)≤ Ttotal (2)

2.2 Related Work

Rattenbury et al. [2] was an early attempt to discover both event and place names from
Flickr geolocated textual metadata, resulting in an application [3] for geographic image
retrieval, with representative and popular tags overlaid on a scalable map. Quack et al.
[4] downloaded 200,000 georeferenced Flickr images from nine urban areas and clus-
tered them using local image descriptors to discover place names and events, linking
some places to their Wikipedia articles. In contrast to [4] and [5], we do not limit our-
selves to geographic information of photographs since temporal information are also
important for mining STS. Elsewhere [6], we detailed methods for mining the features
of each scene in each city. Here we exploit these same results but shift our focus towards
mining spatio-temporal sequence according to personal preferences.

Zheng et al. [7] recorded GPS tracks of 107 users during a year to determine the in-
terestingness of tourist scenes. Cao et al. [8] presented techniques capable of extracting
semantic locations from GPS data. The authors of [9] also focused on mining similar
traveling sequences from multiple users’ GPS logs while the authors of [10] retrieved
maximum periodic patterns from spatio-temporal metadata. Girardin et al. [11] ana-
lyzed the tourist flows in the Province of Florence, Italy, based on a corpus of georef-
erenced Flickr photos and their results contribute to understanding how people travel.
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Chen et al. [12,13] studied a problem of searching trajectories by locations, and the tar-
get was to find the K best-connected trajectories from a database such that it connected
the designated locations geographically. None of these approaches considers scene fea-
tures combined with user’s profile, which are central pieces of our approach. Whereas
[7] or [9] relied on accurate GPS traces for small scale regions and obtained from a rel-
atively reduced number of users. Flickr data is noisy, but covers most interesting tourist
regions of the world. As a result, we are able to propose itineraries in any region of the
world that is sufficiently covered by Flickr data.

Visiting duration is an important characteristic of trips and it is classically estimated
by domain experts [14]. The automatic extraction of visiting duration from Flickr meta-
data was only recently explored [15] but no separation between sightseeing and sight-
seeing + interior visits was proposed. Building on this latter work, Popescu et al. [16]
used visual image classification to separate these two types of visits and to calculate
typical visiting time of each case. In this paper, we use the method in [16] directly to
get the visiting time of scenes, which is not our focus here. We mainly consider the time
cost among scenes, namely, the distance between each couple of scenes.

Researches in spatial databases also address applications in spatial networks repre-
sented by graphs, instead of the traditional Euclidean space. Recent papers that extended
various types of queries to spatial networks were [17]. Clustering in a road network
database has been studied in [18], where a very efficient data structure was proposed
based on the ideas of [19]. Li et al. [20] discussed a trip planning query in both Eu-
clidean space and road network, which retrieved the best trip passing through at least
one point from each category. However, they did not consider the point weight and the
order of points. Likewise, we also study the STS problem in road network.

3 Approximation Algorithms

In this section we present two approximate algorithms for answering the spatio-temporal
sequence mining.

3.1 Local Optimization Algorithms

Three local optimization algorithms in terms of distance, weight and value will be pro-
vided in the following.

Approximation in terms of distance: The most intuitive algorithm for solving STS
is to form a sequence by iteratively computing the 	m/2
 nearest neighbor scenes of
the current scene, comparing the value of them, choosing the scene whose value is
maximum from all scenes that have not been visited yet. Then refresh the total time
by adding this scene’s duration time and the time cost between this scene and the last
scene. If the total time is less than Ttotal , add this scene to the sequence; else, restore
the total time and ignore this scene. Formally, given a partial sequence Qk with k<m,
Qk+1 is obtained by inserting the scene ok+1 whose value is larger than any scene in the
	m/2
 nearest neighbor of ok. Meanwhile, this scene should not been covered yet and
satisfy the time limitation. In the end, the final sequence is produced by connecting ok

to E . We call this algorithm d-LOA , which is shown in Algorithm 1.
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Algorithm 1. d-LOA
Input:

The start scene, o = S;
The end scene, E;
The set of scene IDs, I = {1, ...,m};
The initial spatio-temporal sequence, Qa = {S};
The limited time, Ttotal ;

Output:
The d-local optimal spatio-temporal sequence, Qa;

1: loc = S;
2: t = Ttotal ;
3: while ( I is not empty) and (t > 0) do
4: define an array DS for storing the distances from loc to other scenes;
5: for each n ∈ I do
6: DS(loc,n)=DdisN

(loc,n);
7: end for
8: HI = the set of 	m/2
 smallest DS scene IDs;
9: define an array V for storing the values from loc to other scenes;

10: for each n ∈ HI do
11: if T (n)+T (loc,n) ≤ t then
12: V (loc,n)=α*(wloc+wn)+(1-α)* 1

DS(loc,n) ;
13: end if
14: end for
15: o = the scene whose value is maximum in V ;
16: loc = o;
17: pop o from I;
18: put o to Qa;
19: t = t-(T (o)+T (loc,o));
20: end while
21: Qa ← { E };
Algorithm 2. w-LOA
Input:

The start scene, o = S;
The end scene, E;
The set of scene IDs, I = {1, ...,m};
The initial spatio-temporal sequence, Qa = {S};
The limited time, Ttotal ;

Output:
The w-local optimal spatio-temporal sequence, Qa;

1: loc = S;
2: t = Ttotal ;
3: while ( I is not empty) and (t > 0) do
4: for each n ∈ I do
5: HI = the set of 	m/2
 largest wi scene IDs;
6: end for
7: define an array V for storing the values from loc to other scenes;
8: for each n ∈HI do
9: if T (n)+T (loc,n) ≤ t then

10: V (loc,n)=α*(wloc+wn)+(1-α)* 1
DS(loc,n) ;

11: end if
12: end for
13: o = the scene whose value is maximum in V ;
14: loc = o;
15: pop o from I;
16: put o to Qa;
17: t = t-(T (o)+T (loc,o));
18: end while
19: Qa ← { E };
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Approximation in terms of weight: Another algorithm for solving STS is to form a
sequence by iteratively performing the following operations. Choose the 	m/2
 maxi-
mum weight scenes, which connect to the current scene and have not been visited yet.
Compare the value of these 	m/2
 scenes, and select the scene whose value is maxi-
mum. Then refresh the total time by adding this scene’s duration time and the time cost
between this scene and the last scene. If the total time is less than Ttotal , add this scene
to the sequence; else, restore the total time and ignore this scene. We call this algorithm
w-LOA, which is similar to d-LOA and shown in Algorithm 2.

Approximation in terms of value (i.e., distance and weight): A hybrid local opti-
mization algorithm for solving STS is to form a sequence by iteratively performing the
following operations. Compute the values between the current scene and every other
scenes that have not been visited yet. Choose the scene whose value is maximum. Then
refresh the total time by adding this scene’s duration time and the time cost between
this scene and the last scene. If the total time is less than Ttotal , add this scene to the
sequence; else, restore the total time and ignore this scene. Formally, given a partial se-
quence Qk with k<m, Qk+1 is obtained by inserting the scene ok+1 whose value is larger
than any scene in R. Meanwhile, this scene should not been covered yet and satisfy the
time limitation. In the end, the final sequence is produced by connecting ok to E . We
call this algorithm v-LOA, which is shown in Algorithm 3.

Algorithm 3. v-LOA (G,R,S,E)
Input:

The start scene, o = S;
The end scene, E;
The set of scene IDs, I = {1, ...,m};
The initial spatio-temporal sequence, Qa = {S};
The limited time, Ttotal ;

Output:
The v-local optimal spatio-temporal sequence, Qa;

1: loc = S;
2: t = Ttotal ;
3: while ( I is not empty) and (t > 0) do
4: define an array V for storing the values from loc to other scenes;
5: for each n ∈ I do
6: if T (n)+T (loc,n) ≤ t then
7: V (loc,n)=α*(wloc+wn)+(1-α)* 1

DS(loc,n) ;
8: end if
9: end for

10: o = the scene whose value is maximum in V ;
11: loc = o;
12: pop o from I;
13: put o to Qa;
14: t = t-(T (o)+T (loc,o));
15: end while
16: Qa ← { E };

3.2 Global Optimization Algorithm

This section introduces a novel heuristic algorithm, called GOA. This algorithm achieves
a much better result in comparison with the previous algorithms. GOA can find the op-
timal sequence if the heuristic function never overestimates the actual minimal value of
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reaching the goal. Here we select the heuristic as the value in Euclidean space, as it is
always less than or equal to the actual value in road network in this scenario (see Defi-
nition 2). This can guarantee the sequence optimality in terms of road network value.

Definition 2. For two scenes u and v (u,v∈N), DdisN (u,v) is the road network distance,
and DdisE (u,v) is the Euclidean distance. Correspondingly,VN (u,v) denotes the value of
the sequence from u to v in road network, while VE (u,v) means that in Euclidean space.
In this paper, we care more about personal preferences, namely, we set the balance
factor α larger than 0.5. So according to Eq.(1), VE (u,v) ≤ VN (u,v).

Maximum value sequence finding method. We can find the maximum value from
the current scene to any scene in R using the heuristic algorithm GOA. This can be
explicitly described by Theorem 1.

Theorem 1. For an intermediary scene o along the sequence between u and v, the
sequence with the maximum value VNE (u,o,v) is formalized by the sequence passing o.
Then, the following Eq. (3) holds:

VNE(u,o,v) = VN(u,o)+VE(o,v) (3)

Proof. Here VN (u,o) represents the value from the source scene u to the intermediary
scene o, while VE (o,v) is the heuristic function that estimates the value from o to the
destination scene v. According to the concept of naive heuristic algorithm, Eq. (3) holds.
Then, VN (u,o) and VE (o,v) can be obtained by Lemma 1 and Lemma 2 respectively.

Lemma 1. Assume that a source scene u:=o0 and a destination scene v:=ok. A road
network traveling sequence (o0,o1, · · · ,ok−1,ok) is a sequence of k+1 interesting scenes.
VN (o0,ok) denotes the value of the sequence from o0 to ok via o1, · · · ,ok−1:

k

∑
i=1

VN(oi−1,oi) = VN(o0,ok) (4)

Proof. The value function VN (o0,ok) accounts for a total value of the traveling sequence
from o0 to ok in road network. That is, this value is the cumulative sequence value
from the source scene o0 to a destination scene ok via as many scenes as possible from
o1, · · · ,ok−1. So the total value VN (o0,ok) can be divided into VN(o0,o1) + VN(o1,o2) +

· · · + VN(ok−1,ok), namely,
k

∑
i=1

VN(oi−1,oi).

Lemma 2. Let node o and v be the current scene and the destination scene respectively.
h(o) is the heuristic estimator. Then, for the value function VE (o,v) of a heuristic value,
the following Eq.(5) holds:

h(o)≤VE(o,v)≤VN(o,v) (5)

Proof. The heuristic estimator can find an optimal traveling sequence to a destination
scene if the destination scene is reachable. Hence, according to Definition 2, the heuris-
tic employs the value in Euclidean space as a lower bound value of a sequence from o
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to v. For that reason, h(o)≤VE (o,v) holds when h(o) as the estimator is approximately
equal to the value in Euclidean space. Also, for the sequence value between o and v,
Eq. (5) holds by VE (o,v) ≤ VN (o,v). Because although the Euclidean distance is less
than or equal to the network distance, the balance factor is larger than 0.5, as follows:

VN(o,v) = α ∗ (wo + woi + ...+ wo j + wv)+

(1−α)∗ 1

DdisN (o,oi)+
j−1

∑
k=i

DdisN (ok,ok+1)+ DdisN (o j,v)

VE(o,v) = α ∗ (wo + wv)+ (1−α)∗ 1
DdisE (o,v)

So

ΔV = VN(o,v)−VE(o,v) = α ∗ (woi + ...+ wo j)+ (1−α)∗ 1
ΔDdis(o,v)

> 0

and this completes the proof.

Efficient optimal scene search. This paper employs the branch-and-bound technique
[21] to search an optimal traveling sequence (i.e., a minimum distance and a maximum
tourist scene weight). The technique is used to prune all of the unnecessary scenes from
multiple neighbor scenes connected with a given current scene by Theorem 2. That is,
to find the optimal STS whose value is maximum. This technique can select the tourist
scene oi, which has the minimum distance DdisNE (u, oi, v) out of the adjacent scenes
o1,o2, · · · ,oi, · · · ,ok emanating from u (i.e., DdisN (u, o1, v), DdisN (u,o2, v),· · ·, DdisN (u,
oi, v),· · ·,DdisN (u, ok, v) in road network. Meanwhile, this technique can also select
the tourist scene o j, which has the maximum traveling weight w (u, o j, v) among all
chosen scenes o1,o2, · · · ,o j, · · · ,ok. Hence, we define the optimal traveling sequence as
follows:

Definition 3. Let u and v be a source scene and a destination scene respectively. The
optimal traveling sequence is a set of ordered scenes from u to v with the maximum
value VNE (u, oi, v) (i.e., a minimum distance DdisNE (u, oi, v), and a maximum weight
w(u, oi, v)), where oi is a chosen scene adjacent to u.

Theorem 2 presents how to find the optimal traveling sequence by the branch-and-
bound technique and achieve V ∗NE (u, oi, v) from VNE (u, oi, v).

Theorem 2. Given two scenes u and v (u,v ∈ N) in road network, if there exist a set
of chosen scenes o1,o2, · · · ,oi, · · · ,ok connected to scenes u and v, Eq. (6) holds by
Definition 3:

V ∗NE(u,oi,v) = max
1≤i≤k

(VNE(u,oi,v)) (6)

Proof. Let adjacent chosen scenes oi, ...,o j be connected with a given scene u. If VNE

(u, oi, v) is larger than the value of any other adjacent chosen scenes, that is VNE (u, oi,
v) > VNE (u, ok, v), for ∀ k ∈ (i, j]. Hence, VNE (u, oi, v) can be the optimal traveling
sequence via oi among adjacent scenes connected to both u and v.
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According to Theorem 2, the branch-and-bound technique can prone some scenes by
pre-calculating values from the adjacent scenes to a destination scene.

Efficient traveling sequence finding. The result of STS query is the traveling sequence
of the ordered scenes and the paths to them. Figure 2 shows an example of finding
efficient STS from k scenes. First, we select a path from the source tourist scene S to
each of other chosen scenes by Eq. (3). This procedure begins with the selection of
the first scene with the maximum value to the source scene by Eq. (1) and then finds
the path to it. In order to prevent the predetermined paths from being re-searched, we
must allocate the heap for the optimal value of a scanned scene calculated by VN (S,oi)
and the path from S to oi. In Figure 2, we find STS starting from scanning the source
scene S to scenes o1, o2 and o3, choosing the scene o2, whose value is maximum in the
heap. Then calculate VNE (S, o2,o1), VNE (S, o2,o3) and VNE (S, o2,o4). In order to find
the optimal scene, we calculate V ∗NE (S, o2,o4) by Eq. (6) and store the intermediary
path into the heap. As a result, the procedure yields the sequence S→ o2 → o4 whose
value is maximum. Next, we refresh the sequence to other unvisited scenes with the
maximum value to the destination scene by Eq. (3). In the same way, if the total time
the sequence is less than or equal to the limited time Ttotal , we iteratively refresh the
sequence to remaining scenes.

Fig. 2. Find the efficient traveling sequence

Algorithm 4 describes our GOA algorithm. At first, add the start scene to the OPEN
list. Line 2 chooses a scene whose value is maximum from the OPEN list. We regard this
scene as the current scene. From Line 3 to Line 6, if the destination scene is added to the
CLOSE list, then the STS has been found, and the cycle stops. Else repeat the following
operations from Line 7 to Line 28. Choose a scene whose value is maximum from the
OPEN list. Then refresh the total time by adding the sum of this scene’s duration time
and the time cost between this scene and the last scene. If the total time is less than
Ttotal , switch this scene to the CLOSE list; else, restore the total time and ignore this
scene. For each of the other scenes adjacent to this current scene, if it is not walkable
or it is in the CLOSE list, ignore it. Otherwise do the following operations. If it is not
in the OPEN list, add it to the OPEN list. Regard the current scene as the parent of this
scene, and calculate the value of the scene. If it is already in the OPEN list, check if
there is other better path according to the value of the current sequence. If so, change
the parent of the scene to the current scene, and recalculate the value of the scene.
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Algorithm 4. GOA
Input:

The start and end scene, o = S, E;
The set of scenes ID, I = {1, ...,m};
The limited time, Ttotal ;

Output:
1: The global optimal spatio-temporal sequence, Qa;

The array OPEN which stores all chosen but not visited scenes
2: OPEN = [S];

The array CLOSE which stores all visited scenes
3: CLOSE = [];
4: while OPEN IsNotEmpty and Ttotal > 0 do
5: pop the first scene in OPEN to o
6: put it into CLOSE;
7: if o equal E then
8: break;
9: end if

10: M=the number of children scenes of o in I;
11: for each s ∈M do
12: if T (o)+T (o,s) ≤ Ttotal then
13: calculate the estimated value, EV (o,s)=α*(wo+ws)+(1-α)* 1

DdisN (o,s) ;

14: if s is not in OPEN or CLOSE then
15: pop s from I
16: put s into OPEN
17: else if s is in OPEN then
18: if EV (o,s) > EV (OPEN) then
19: update the value of OPEN;
20: end if
21: else
22: if EV (o,s) < EV (CLOSE) then
23: update the value of CLOSE;
24: pop s from CLOSE
25: put s into OPEN;
26: end if
27: end if
28: end if
29: end for
30: put o into CLOSE;
31: sort the scenes in OPEN by the EV descending
32: Ttotal = Ttotal-T(o)+T (s));
33: end while
34: reverse CLOSE
35: Qa = CLOSE;
36: return Qa;

4 Experimental Evaluation

This section presents a comprehensive performance evaluation of the proposed methods
for STS using Flickr datasets.

Experimental Setup. We obtained the real dataset in the city of Beijing with 286 scenes
and 658 edges. In this dataset, we generated some interesting scenes according to scene
features combined with user’s profile. Datasets with a varying number of interesting
scenes, varying balance factor, as well as varying limited total time were generated.
The total number of interesting scenes is in the range m ∈ [1,20], the balance factor is
in the range α ∈ [0,1], while the limited total time is in the range Ttotal ∈ [1h,8h], where
h denotes the time granularity “hour”.
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Performance Results. In this part we study the performance of the proposed four al-
gorithms. In order to prove the advantage of our algorithms, we compared them with
ARM (average random method). ARM is achieved by choosing scene randomly for 30
times, and taking the average value of them.

First, we study the effects of α and Ttotal on the value of STS. Figure 3 plots the value
of STS as a function of α , when Ttotal =8h. Figure 4 plots the value of STS as a function
of Ttotal , when α =0.7. In both cases, GOA outperforms v-LOA, d-LOA, w-LOA and
ARM obviously. The value of ARM is the lowest. With the increase of α and Ttotal ,
the performance of all algorithms increases. The algorithm d-LOA is greatly affected
by the relative locations of scenes, because it greedily follows the nearest 	m/2
 scenes
from the remaining scenes irrespective of its direction with respect to the destination
scene E . With the increase of α and Ttotal , the probability that d-LOA wanders off the
correct direction increases. In Figure 4 the trends of algorithm w-LOA and v-LOA are
almost the same. Because when α =0.7, the distance has little effect on the value of the
sequence, and the value of both algorithms is similar.

Fig. 3. The trend of VN with different α Fig. 4. The trend of VN with different Ttotal

Figure 5 plots the results of road network distance of STS as a function of Ttotal ,
when α =0.7. Figure 6 plots the total weight of STS as a function of Ttotal , when α
=0.7. With the increase of Ttotal , both the distance and the weight of STS in all algo-
rithms increase. The distance of algorithm d-LOA is less than the other four algorithms,
because it always greedily follows the nearest 	m/2
 scenes from the remaining scenes.
The weight of algorithm GOA outperforms v-LOA, d-LOA and w-LOA in Figure 6. So
our four algorithms can get better results than ARM.

Fig. 5. The trend of DdisN
with different Ttotal Fig. 6. The trend of w with different Ttotal
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We also study the average length of STS as a function of Ttotal , when α =0.7 in Figure
7. In general, the algorithm GOA includes more scenes than the other four ones. The
reason is that GOA can get the global optimal sequence in road network. The number
of scenes in ARM is the smallest. From Figure 8 we can see the value of GOA is the
maximum, v-LOA and w-LOA are almost the same, which depends on the choice of α .
The value of ARM is the minimum.

We examine the trend of runtime with different number of scene set in Figure 9.
When the number of scene set is more than 50000, the runtime of v-LOA, d-LOA, and
w-LOA increase much faster. The trend of runtime with different Ttotal is examined in
Figure 10, when the number of scene set is 10000. In both cases, with the increase of
scene set, the runtime of all algorithms increase. The runtime of v-LOA is the maxi-
mum, and ARM’s is the minimum. The difference is the increase speed of runtime in
Figure 10 is slower than that in Figure 9.

Fig. 7. The length of STS with different Ttotal Fig. 8. The trend of VN of different algorithms

Fig. 9. Runtime with different NumSet Fig. 10. The trend of runtime with different Ttotal

5 Conclusions and Future Work

The goal of this paper is to provide users with the optimal spatio-temporal sequence that
passes through as many chosen scenes as possible with the maximum weight and the
minimum distance within a limited travel time. We first argued that this problem is NP-
hard, and gave a simple proof. Then formally defined the STS problem. We considered
solutions for the STS problem as graphs where tourist scenes were nodes and paths
between these scenes were edges. Two approximate algorithms: local optimization
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algorithms and a global optimization algorithm were provided. The experimental study
using real datasets in Flickr demonstrated the effectiveness of our proposed algorithms.
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