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Abstract—Flash disks are being widely used as an important
alternative to conventional magnetic disks, although accessed
through the same interface by applications, their distinguished
feature, i.e., different read and write cost in the aspects of
time, makes it necessary to reconsider the design of existing
replacement algorithms to leverage their performance potential.

Different from existing flash-aware buffer replacement policies
that focus on the asymmetry of read and write operations, we
address the “discrepancy” of the asymmetry for different flash
disks, which is the fact that exists for a long time, while
has drawn little attention by researchers since most existing
flash-aware buffer replacement polices are somewhat based on
the assumption that the cost of read operation is neglectable
compared with that of write operation. In fact, this is not true
for current flash disks on the market.

We propose an adaptive cost-aware replacement policy (ACR)
that uses three cost-based heuristics to select the victim page,
thus can fairly make trade off between clean pages (their content
remain unchanged) and dirty pages (their content is modified),
and hence, can work well for different type of flash disks of large
discrepancy. Further, in ACR, buffer pages are divided into clean
list and dirty list, the newly entered pages will not be inserted
at the MRU position of either list, but at some position in the
middle, thus the once-requested pages can be flushed out from
the buffer quickly and the frequently-requested pages can stay in
buffer for a longer time. Such mechanism makes ACR adaptive to
workloads of different access patterns. The experimental results
on different traces and flash disks show that ACR not only
adaptively tunes itself to workloads of different access patterns,
but also works well for different kind of flash disks compared
with existing methods.

I. INTRODUCTION

Though primarily designed for mobile devices due to its
superiority such as low access latency, low energy consump-
tion, light weight and shock resistance, flash-based storage
devices have been steadily expanded into personal computer
and enterprise server markets with ever increasing capacity
of their storage and dropping of their price. In the past
several years, the density of NAND flash memory increased
twofold and this trend will continue until year 2012 [1].
Existing operating systems are already providing facilities to
take advantage of flash disks (e.g., Solid State Drive) [2].

Typically, a flash disk managed by an operating system
is a block device which provides the same interface type
as a magnetic disk, however, their I/O characteristics are
widely disparate. A flash disk usually demonstrates extremely
fast random read speeds, but slow random write speeds, and
the best attainable performance can hardly be obtained from

database servers without elaborate flash-aware data structures
and algorithms [3], which makes it necessary to reconsider
the design of IO-intensive and performance-critical software
to achieve maximized performance.

Buffer is one of the most fundamental component in modern
computing. It is widely used in storage systems, databases,
web servers, file systems, operating systems, etc. Any sub-
stantial progress in buffer replacement algorithms will affect
the entire modern computational stack. Assuming that the
secondary storage consists of magnetic disks and there is
no difference for the time delay between read and write
operations, the goal of existing buffer replacement policies
[4]–[10] is to minimize the buffer miss ratio for a given buffer
size. When the buffer is full and the current requested page
is not in the buffer, the replacement policy has to select an
in-buffer page as the victim, if the victim is a dirty page, it
will be written back to disk before paging in the requested
page so as to guarantee data consistency, which may be a
performance bottleneck since the process or thread requesting
for the requested page must wait until write completion. Early
in two decades ago, [11] has realized the fact that whether
a page is read only or modified is an important factor which
will affect the performance of a replacement policy and should
be considered in the replacement decision. As flash disks
are becoming an important alternative to magnetic disks, this
phenomena should be paid more attention than ever.

Considering the asymmetric read and write operation of
flash disks, researchers have proposed flash-aware replacement
algorithms [12]–[16] in the past yeas. Based on the assumption
that the cost of random read operation is neglectable compared
with that of random write operation, the fundamental idea
behind these policies is reducing random write operations
by firstly paging out clean pages arbitrarily no matter how
frequently they are requested, which means that the cost
of random write operations dominates the overall cost of a
replacement policy. However, from Fig. 1, we can get an
important observation that is not consistent with the above
assumption: the cost of random read operation should not be
neglected for all cases, since the time consumed by random
write and read operation for different type of flash devices
various largely. Though all flash devices demonstrate fast
random read speeds and slow random write speeds, it is not
difficult to see that paging out clean pages before dirty pages
without considering their reference frequency is not reasonable
for all cases.
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Fig. 1: The normalized proportion of time consumed by
random write (RW) and random read (RR) operations for
NAND flash disks. The numbers on the X axis represent 9 flash
disks, “1” is Samsung MCAQE32G8APP-0XA, “2” is Sam-
sung K9WAG08U1A, “3” is Samsung K9XXG08UXM, “4” is
Samsung K9F1208R0B, “5” is Samsung K9GAG08B0M, “6”
is Hynix HY27SA1G1M, “7” is Samsung K9K1208U0A, “8”
is Samsung K9F2808Q0B, “9” is Samsung MCAQE32G5APP
[17].

Moreover, since the cost of write operations is more expen-
sive than that of read operations, reducing write operations in
many cases will improve the overall performance. However,
for a sequence of write requests, the write operations cannot be
further reduced by keeping once-requested dirty pages in the
buffer for a long time, but by keeping frequently-requested
dirty pages from being paged out too early. Existing flash-
aware replacement algorithms do not differentiate between
frequently-requested dirty pages and once-requested dirty
pages, which makes them, though delay the time of evicting
a dirty page by paging out clean pages firstly, fail to make
further improvement on the hit ratio of frequently-requested
dirty pages when once-requested dirty pages occupying too
much space, such that previously frequently-requested dirty
pages may be paged out before some once-requested dirty
pages because of their different recency.

Further, [9] pointed out that “real-life workloads do not
admit a one-size-fits-all characterization. They may contain
long sequential request or moving hot spots. The frequency
and scale of temporal locality may also change with time. They
may fluctuate between stable, repeating access patterns and
access patterns with transient clustered references. No static,
a priori fixed replacement policy will work well over such
access patterns”.

Different from the previous buffer replacement policies that
focus on either the various access patterns with uniform access
cost, or the asymmetry of access cost of flash, in this paper,
we further address the impact imposed by the discrepancy
of the ratio of write cost to read cost on different flash
disks. This motivates us to design an adaptive cost-based

buffer replacement policy that possesses three features: (1) low
overall I/O cost of serving all requests based on flash disks
of different ratios of write cost to read cost, (2) constant-time
complexity per request, (3) adaptive to dynamically evolving
workloads.

We propose a new buffer replacement policy, namely,
Adaptive Cost-aware buffer Replacement (ACR). First, ACR
uses three cost-based heuristics to select the victim page, thus
can fairly make trade off between clean pages and dirty pages,
and hence, can work well for different kind of flash disks
with large discrepancy of the ratio between read and write
operations. Second, ACR organizes buffer pages into clean
list and dirty list, the newly entered pages are not inserted at
the MRU position of either list, but at some position in the
middle. As a result, the once-requested pages can be flushed
out from the buffer quickly and the frequently-requested pages
can stay in buffer for a longer time. This mechanism makes
ACR adaptive to workloads of different access patterns and
can really improve the hit ratio of frequently-requested pages
so as to improve the overall performance.

Moreover, ACR maintain a buffer directory, namely, ghost
buffer, to remember recently evicted “once-requested” buffer
pages. The hits on the ghost LRU lists are used to adaptively
determine the length of the buffer list and identify more
frequently-requested pages, such that ACR can adaptively
decide how many pages each list should maintain in response
to an evolving workload.

The remainder of this paper is organized as follows. Section
II introduces background knowledge about flash disks and
existing buffer replacement polices. Section III introduces our
ACR algorithm and the experimental results are presented in
Section IV. We conclude our work in Section V.

II. BACKGROUND AND RELATED WORK

In this section, we firstly review the most important hard-
ware characteristics of flash disks, then give a detailed discus-
sion of existing replacement policies, which motivates us to
devise the new replacement policy.

A. Flash Memory

Generally speaking, there are two different types of flash
memories: NOR and NAND flash memories1. Compared with
NAND flash memory, NOR flash memory has separate address
and data buses like EPROM and static random access memory
(SRAM) while NAND flash memory has an I/O interface
which control inputs and outputs. NOR flash memory was de-
veloped to replace programmable read-only memory (PROM)
and erasable PROM (EPROM) for efficient random access
while NAND flash memory was developed for data storage
because of its higher density. Flash disks usually consist of
NAND flash chips.

There are three basic operations on NAND flash memo-
ries: read, write, and erase. Read and write operations are
performed in units of a page. Erase operations are performed

1http://www.dataio.com/pdf/NAND/MSystems/MSystems NOR vs NAND.pdf



in units of a block, which is much larger than a page, usually
contains 64 pages. NAND flash memory does not support in-
place update, the write to the same page cannot be done before
the page is erased. Moreover, Each block of flash memory may
worn out after the specified number of write/erase operations.
To avoid the premature worn out of blocks caused by highly
localized writes, it is necessary to distribute erase operations
evenly over all blocks.

To overcome the physical limitation of flash memory, flash
disks employ an intermediate software layer called Flash
Translation Layer (FTL), which is typically stored in a ROM
chip, to emulate the functionality of block device and hide
the latency of erase operation as much as possible. One of
the key roles of FTL is to redirect a write request on a page
to an empty area erased previously. Therefore, FTL needs
to maintain an internal mapping table to record the mapping
information from the logical address number to the physical
location. This internal mapping table is maintained in volatile
memory. The reconstruction of the mapping table is at startup
or in case of a failure. The details of the implementation
of FTL are device-related and supplied by the manufacturer,
which are transparent to users.

Compared with magnetic disks, although NAND flash mem-
ories have various advantages such as small and lightweight
form factor, solid-state reliability, no mechanical latency, low
power consumption, and shock resistance [18], they also pos-
sess inherent limitations, say asymmetric operation latencies,
and the degree of the asymmetry various largely from one to
another. Specifically, a flash memory has asymmetric read and
write operation characteristics in terms of performance and
energy consumption. It usually demonstrates extremely fast
random read speeds, but slow random write speeds. Moreover,
as shown in Fig. 1, the ratio of the cost of write and read
operation for different flash disks various largely. Therefore
when designing flash-aware buffer replacement policy, not
only the asymmetry of read and write should be considered,
but also the discrepancy of the asymmetries of different flash
disks should be paid more attention.

B. Buffer Replacement Policies

Consider the typical scenario where a system consists of
two memory levels: main (or buffer) and auxiliary. Buffer
is significantly faster than the auxiliary memory and both
memories are managed in units of equal sized pages.

Assuming that the secondary storage consists of magnetic
disks and the costs of all eviction operations are equal to each
other, the goal of existing buffer replacement policies is to
minimize the buffer miss ratio for a given buffer size. The miss
ratio reflects the fraction of pages that must be paged into the
buffer from the auxiliary memory. For example, recent studies
on replacement algorithms such as 2Q [7], ARC [9], LIRS
[8], CLOCK [4], LRU-K [6], FBR [5] and LRFU [10] mainly
aim to improve the traditional LRU heuristic, which consider
page recency or balance both recency and frequency to reduce
miss rate. However, the above assumption is not hold anymore
when applied to flash disks because of the asymmetric access

Fig. 2: The CFLRU Replacement Policy

times. This adds another dimension to the management of flash
disk based buffer.

The replacement problem for buffers with non-uniform ac-
cess time can be modeled by the weighted buffering problem.
The goal is to minimize the total cost to serve the request
sequence. [19] proposed an optimal off-line algorithm for this
problem in O(sn2) time by reducing it to the minimal cost
maximum flow problem [20], where s is the buffer size and
n is the number of total requests. Unfortunately, this optimal
algorithm is resource intensive in terms of both space and time,
even though it knows all prior knowledge of the complete
request sequence.

For an online algorithm, any knowledge about the future
requests is unknown in advance. Recently, researchers have
proposed many online flash-aware buffer replacement policies.

The flash aware buffer policy (FAB) [13] maintains a block-
level LRU list, of which pages of the same erasable block are
grouped together. When a hit occurs on a page, the group
containing the page is moved to the beginning of the LRU
list. When a miss occurs, the group that has the largest number
of pages will be selected as victim and all dirty pages in this
group will be paged out. FAB is mainly used in portable media
player applications where most write requests are sequential.

BPLRU [14] also maintains an block-level LRU list. Differ-
ent from FAB, BPLRU [14] uses an internal RAM of SSD as
a buffer to change random write to sequential write to improve
the write efficiency and reduce the number of erase operation.
However, this method cannot really reduce the number of write
requests from main memory buffer.

Clean first LRU (CFLRU) [12] is a flash aware buffer
replacement algorithm for operating systems. It was designed
to exploit the asymmetric performance of flash IO by first
paging out clean pages arbitrarily based on the assumption
that writing cost is much more expensive. Fig. 2 illustrates
the idea of CFLRU. The LRU list is divided into two regions:
the working region and the clean-first region. Each time a
miss occurs, if there are clean pages in the clean-first region,
CFLRU will select the least recent referenced clean page in the
clean-first region as a victim. Only when there is no clean page
in the clean-first region, the dirty page at the LRU position of
the clean-first region is selected as a victim. The size of the
clean-first region is controlled by a parameter w called the
window size. Compared with LRU, CFLRU reduces the write
operations significantly.



TABLE I: Summary of notations
Notation Description

LC the LRU list containing clean pages
LCT the top portion of LC

LCB the bottom portion of LC

δC the number of clean pages contained in LCB

LD the LRU list containing dirty pages
LDT the top portion of LD

LDB the bottom portion of LD

δD the number of dirty pages contained in LDB

LCH the LRU list containing page id of once-requested clean pages
LDH the LRU list containing page id of once-requested dirty pages
Cr the cost of reading a page from a flash disk
Cw the cost of writing a dirty page to a flash disk
s the size of the buffer in pages
MLD

the number of physical operations on pages in LD

MLC
the number of physical operations on pages in LC

RLD
the number of logical operations on pages in LD

RLC
the number of logical operations on pages in LC

LC

LD

LCT LCB

LDT LDB LDH

LCH

C

D

Fig. 3: The ACR Replacement Policy

Based on the same idea, [15] makes improvements over
CFLRU by organizing clean pages and dirty pages into dif-
ferent LRU lists to achieve constant complexity per request.
Further, CFDC [16] improves the system performance by clus-
tering together dirty pages whose page numbers are close to
each other, thus can improve the efficiency of write operations.
In CFDC, a cluster has variable size determined by the set of
pages currently kept, which is different from block-level LRU
list.

III. THE ACR POLICY

A. Data Structures

As shown in Fig. 3, ACR splits the LRU list into two LRU
lists, say LC and LD. LC is used to keep clean pages and LD

is used to keep dirty pages. Assume that the buffer contains s
pages when it is full, then |LC∪LD| = s∧LC∩LD = ∅. Fur-
ther, LC is divided into LCT and LCB, and LCT ∧LCB = ∅,
LCT contains frequently-requested clean pages while LCB

contains once-requested clean pages and frequently-requested
clean pages that are not referenced for a long time. Similarly,
LD is also divided into LDT and LDB, and LDT ∧LDB = ∅.
LDT contains frequently-requested dirty pages while LCB

contains once-requested dirty pages and frequently-requested
dirty pages that are not referenced for a long time. The
sizes of LCB and LDB will dynamically change with the
change of access patterns, which are controlled by δC and

δD, respectively. Besides the pages that are in the buffer, we
use a ghost buffer to trace the past references by recording
the page id of those pages that are paged out from LC or
LD. The ghost buffer is also divided into two LRU lists, say,
LCH and LDH , which are used to keep the past references
of clean and dirty pages, respectively. All pages in LCH and
LDH are those that are never being requested again since they
were paged into the buffer last time, that is, they are the once-
requested pages. Fixing this parameter is potentially a tuning
question, in our experiment, |LCH∪LDH | = s/2. The notions
used in this paper are shown in Table I.

B. Cost-based Eviction

If the buffer is full and the currently requested page p is
in the buffer, then it is served without access the auxiliary
storage, otherwise, ACR will select from LC or LD a page x
for replacement according to the metrics of “cost”, not clean
or dirty. The cost associated to LC (LD), say CLC (CLD ),
is a weighted value denoting the overall replacement cost
caused by the pages in LC (LD). The basic idea behind our
replacement policy is that the length of LC (LD) should be
proportional to the ration of the replacement cost of the pages
in LC (LD) to that of all buffer pages according to recent
m requests, in our experiment, m equals to half the buffer
size, i.e., m = s/2. This ratio can be formally represented as
Formula 1:

β = CLC /(CLC + CLD ) (1)

The policy of selecting a victim page can be stated as: If
|LC | < β · s, which means that LD is too long, then the LRU
page in LD should be paged out, otherwise LC is too long
and the LRU page of LC should be paged out, the “s” in this
inequation is the buffer size in pages.

In the following discussion, we call the read and write
operations that are served in buffer are logical hereafter, while
ones that reach the disk are referred to as physical. The cost
of reading a page from the flash disk is Cr, while the cost of
writing a page to a random position in a flash disk is Cw. We
present a family of methods to compute the values of CLC

and CLD to decide the optimal scheme.
1) Conservative Scheme: Let MLC be the number of

physical operations on pages in LC and MLD the number of
physical operations on pages in LD. The first scheme used for
computing CLC and CLD , which we refer to as conservative,
is given by Formula 2 and Formula 3. Upon eviction, CLC

and CLD are examined to compute the value of β.

CLC =
{

Cr, MLC = 0
MLC · Cr, MLC �= 0 (2)

CLD =
{

Cw, MLD = 0
MLD · (Cw + Cr), MLD �= 0 (3)

Note that before LC or LD seeing the first physical opera-
tion, CLC and CLD are assigned with Cr and Cw, respectively.



The conservativity of Formula 2 and Formula 3 lies in that
they take into account only physical operations on pages, not
logical ones. Therefore the conservative scheme does not try to
induce the access pattern from the logical operation. Rather,
it waits until the logical operation has been translated into
physical accesses.

2) Optimistic Scheme: Though physical operations capture
the actual cost paid by LC and LD, their sequences are dictated
by logical operations. Moreover, while the pages remain in
the buffer, many logical operations may occur between two
consecutive physical operations. Formula 2 and Formula 3 will
only record physical operations on these pages, and thus, if
the workload changes, LC and LD will take many physical
operations before conservative adapts. This motives us to
design an “optimistic” version of the eviction scheme that
works only on logical operations and thus, can adapt to new
workloads as quickly as possible; the optimistic scheme is
given by Formula 4 and Formula 5, where RLC refers to the
number of logical operations on the pages of LC while RLD

the number of logical operations on the pages of LD. RLC

(RLD ) is incremented by 1 when a logical read (write) occurs
on a page in LC (LD). The two counters hold the total logical
read and write operations on LC and LD, respectively. Upon
eviction, our method will compute the total cost LC and LD

would pay if these operations were physical.

CLC = RLC · Cr (4)

CLD = RLD · (Cw + Cr) (5)

The optimistic scheme is not conservative in the number of
evicted pages. It assumes that when the workload changes
from read-intensive to write-intensive (or vice-versa), the
selection of a victim page should be changed from LD to LC

(or vice-versa). Thus, optimistic adapts quickly to changing
workloads. However, if the changes of the access pattern do
not last long enough for the eviction cost to be expensed, the
overall cost paid by the system grows.

Notice that the optimistic scheme tries to minimize the cost
of future physical operations on LC and LD based on its
history of logical operations. Consider the case that before
a new eviction, LC having been logically read a large number
of times, then LC upon eviction is found to be strongly read-
intensive and the selection of victim page is very probably
from LD, that is, the LRU page p of LD will be paged out.
After that, if there is a write request on p, an expensive write
cost is already paid by LD. In such a case, not only the benefit
from the cost-based eviction never realized, but also the system
performance degenerates.

3) Hybrid Scheme: Logical and physical operations are
two different operations, however, they all have impact on
the overall performance. Both the conservative and optimistic
scheme introduced above choose to consider only one of them,
therefore may not really work in some cases. To minimize the
total cost of physical operations, we introduce a hybrid scheme
that takes both physical and logical operations into account by

combining the strong points of the conservative and optimistic
scheme, while avoid their weak points.

Assume that n is the number of pages in a file and s the
number of pages allocated to the file in the buffer. Therefore
the probability that a logical operation will be served in the
buffer is s/n, and the probability that a logical operation will
be translated to a physical one is (1 − s/n). In our hybrid
scheme, the probability is used to compute the overall impact
of logical operations on LC and LD, as shown by Formula 6
and 7. Upon eviction, our method will compute the total cost
of LC and LD by considering the impacts of both logical and
physical operations.

CLC = (RLC · (1 − s/n) + MLC) · Cr (6)

CLD = (RLD · (1− s/n) + MLD) · (Cw + Cr) (7)

When selecting a victim page, the logical operations allow
our hybrid scheme to recognize changes in the access pattern
very quickly like the optimistic scheme. Moreover, it is also
not so eager as the optimistic scheme to page out the expensive
dirty page by considering the actually happened physical op-
erations. By taking into account the cost of actually happened
physical operations, the hybrid scheme has a realistic view of
the impact the logical operations imposed on the buffer.

C. The ACR Replacement Policy

We now introduce the whole ACR replacement policy that
adapts and tunes the length of LC and LD in response to an
observed workload. Before running, δC = δD = 0. For easier
discussion, we call a request on a page that is not in the buffer
a miss-request, otherwise a hit-request.

As show in Algorithm 1, in the beginning stage before the
buffer is full, i.e., |LC ∪ LD| < s ∧ |LCH ∪ LDH | = 0, if
the request on p is a miss-request and p′s page id is not in
LCH ∪ LDH , Algorithm 1 will execute the code in Case III.
Since |LC ∪LD| < s, ACR increases the logical and physical
counters according to the operation type, then fetch p into
the buffer and insert it to the MRU position of LCB or LDB

according to the value of T . At last, δC or δD will increase
by 1 by calling the procedure AdjustBottomProtionList(). If
the current request on p is a hit-request, that is, p ∈ LC ∪LD,
ACR will execute the code in Case I. Specifically, if p ∈ LCB

(LDB), it means that p should not stay anymore in LCB

(LDB), since LCB (LDB) is used to maintain once-requested
clean (dirty) pages and frequently-requested clean (dirty)
pages that are not requested yet for a long time. Then ACR
will move p to the MRU position of LCT or LDT and adjust
the size of LCB and LDB , respectively.

If the buffer is full. For a hit-request corresponding to Case
I (line 1-8 of Algorithm 1), the process is already discussed in
the above paragraph. If the current request is a miss-request,
then ACR will check whether p′s id is contained in LCH ∪
LDH or not. If p′s id is contained in LCH ∪ LDH , which
corresponds to Case II, it means that p has not been request
after it entered into LCB∪LDB . In this case, ACR will firstly



Algorithm 1: ACR(page p, type T ) /* ACR is triggered on each request on a page p, T denotes the type of
operation on p, T can be either “read” or “write”*/

Case I: p ∈ LC ∪ LD, a buffer hit has occurred.

1 if (p ∈ LC) then {RLC ← RLC + 1; if (p ∈ LCB) then {δC ← max{0, δC − 1};}};
2 else {RLD ← RLD + 1; if (p ∈ LDB) then {δD ← max{0, δD − 1};}}
3 if (T = read ∧ p ∈ LC) then {move p to the MRU position of LCT ;}
4 else if (p ∈ LD) then {move p to the MRU position of LDT ;}
5 else {move p to the MRU position of LDB;}
6 if (p is moved from LC to LD) then {p.hit← 0;}
7 else {p.hit← p.hit + 1;} /*p.hit is the number of hit occurred on p since it entered into LC or LD*/
8 AdjustBottomPortionList();

Case II: p ∈ LCH ∪ LDH , a buffer miss has occurred.

9 evictPage(); p.hit← 0;
10 if (p ∈ LCH) then {δC ← min{|LC|, δC + 1};}
11 else {δD ← min{|LD|, δD + 1};}
12 if (T = read) then {fetch p from the disk; insert it to the MRU of LCT ; MLC ←MLC +1; RLC ← RLC +1;}
13 else {fetch p from the disk; insert it to the MRU of LDT ; RLD ← RLD + 1;}
14 AdjustBottomPortionList();

Case III: p �∈ LC ∪ LD ∪ LCH ∪ LDH , a buffer miss has occurred.

15 p.hit← 0;
16 if (|LC ∪ LD| = s) then {evictPage();}
17 if (T = read) then {fetch p from the disk; insert it to the MRU of LCB;RLC ← RLC + 1; MLC ←MLC + 1;}
18 else {fetch p from the disk; insert it to the MRU of LDB;RLD ← RLD + 1;}
19 AdjustBottomPortionList();

Procedure evictPage()

1 β ← CLC /(CLC + CLD ); /*β is computed based on the recent s/2 requests*/

Case I: |LC | < β · s /* LD is longer than expected*/.

2 MLD ←MLD + 1;
3 let q be the page in the LRU position of LDB and q.hit the number of hit occurred on q since it entered into LD;
4 if (q.hit > 0) then {write q′s content to disk; delete q; return;}
5 if (|LCH ∪ LDH | = s/2) then {delete the item in the LRU position of LDH ;}
6 delete q and insert the page id of q as a new item in the MRU position of LDH ;

Case II: |LC | ≥ β · s /* LC is longer than expected*/.

7 let q be the page in the LRU position of LCB and q.hit the number of hit occurred on q since it entered into LC ;
8 if (q.hit > 0) then {delete q; return;}
9 if (|LCH ∪ LDH | = s/2) then {delete the item in the LRU position of LCH ;}
10 delete q and insert the page id of q as a new item in the MRU position of LCH ;

Procedure AdjustBottomPortionList()

1 if (|LC ∪ LD| = s) then
2 Move the MRU (or LRU) page of LCB and LDB (or LCT and LDT ) to LRU (MRU) position of LCT and LDT

(or LCB and LDB) to make |LCB| = δC ∧ |LDB| = δD;
3 else {δC ← |LCB|; δD ← |LDB|;}



call evictPage() to select a victim page and page it out to make
room for p, then δC or δD will increase by 1 since the size of
LCB or LDB is too small. After that, ACR will fetch p from
disk and insert it to the MRU position of LCT or LDT . At last,
ACR will adjust the length of LCB and LDB . If the current
request is a miss-request and p′s id is not in LCH ∪LDH , this
case corresponds to Case III. Compared with the case that
buffer is not full, ACR will firstly evict a page in this case.

Note that in ACR, pages that are served only once in the
whole processing will be inserted at the MRU position of LCB

or LDB , thus will be paged out earlier than those served more
than once. Moreover, the pages in LCT and LDT can further
utilize the space of LCB and LDB to make them staying longer
in the buffer, such that the hit ratio of frequently-requested
pages can be actually improved, especially for dirty pages.
By using a hash table to maintain the pointers to each page
in the buffer, the complexity of ACR for each page request is
O(1) and is only greater than the complexity of LRU by some
constant c.

1) Adaptivity: The adaptivity of ACR lies in two aspects:
(1) ACR continually revises the parameter δC and δD that are
used to control the size of LCB and LDB . The fundamental
intuition behind is: if there is a hit on page p of LCB(LDB)
that mainly contains once-requested pages, then p becomes a
frequently-requested page from now on and should be placed
in LCT (LDT ), and we should increase the size of LCT (LDT ).
Similarly, if p′s page id is in LCH(LDH) that records the
historical reference information of once-requested pages, then
we should increase the size of LCB(LDB). Hence, on a hit in
LCB(LDB), we decrease δC(δD), and on a hit in LCH(LDH),
we increase δC(δD). If the workload is to change from one
access pattern to another one or vice versa, ACR will track
such change and adapt itself to exploit the new opportunity.
(2) ACR will choose a page for replacement according to
the accumulative replacement costs of LC and LD, which
gives a fair chance to clean and dirty pages for competition.
Together, the two aspects of adaptivity makes ACR very
wise in exploiting the asymmetry of flash IO and the new
opportunity of various access pattern.

2) Scan-Resistant: When serving a long sequence of one-
time-only requests, ACR will only evict pages in LCB ∪LDB

and it never evicts pages in LCT ∪ LDT . This is because,
when requesting on a totally new page p, i.e., p �∈ LC ∪
LD ∪ LCH ∪ LDH , p is always put at the MRU position
of LCB or LDB . It will not impose any affect on pages in
LCT ∪ LDT unless it is requested again before it is paged
out from LCB or LDB . For this reason, we say ACR is
scan-resistant. Furthermore, a buffer is usually used by several
processes or threads concurrently, when a scan of a process
or thread begins, less hits will be encountered in LCB ∪LDB

compared to LCT ∪LDT , and, hence, according to Algorithm
1, the size of LCT and LDT will grow gradually, and the
resistance of ACR to scans is strengthened again.

3) Loop-Resistant: A loop requests is a sequence of pages
that are served in a special order repeatedly. We say that ACR
is loop-resistant means that when the size of the loop is larger

than the buffer size, ACR will keep partial pages of the loop
sequence in the buffer, and hence, achieve higher performance.
We explain this point from three aspects in the case that the
size of a loop is larger than the buffer size.

(1) the loop requests only pages in LC . In the first cycle
of the loop request, all pages are fetched into the buffer and
inserted at the MRU position of LCB sequentially. Before each
insertion, ACR will select a victim page q. If q is the LRU page
of LDB, then after the insertion of p in the MRU position of
LCB, ACR will adjust the size of LCB and p will be adjusted
to the LRU position of LCT ; otherwise p is still at the MRU
position of LCB. With the processing of the loop requests,
more pages of the loop sequence will be moved to LCT and
these pages are thus kept in buffer, therefore the hit ratio will
not be zero anymore. (2) the loop requests only pages in LD.
This is same to (1). (3) the loop contains pages in both LC

and LD. In this case, obviously, dirty pages will stay in buffer
longer than clean pages and the order of the pages eviction is
not same as they entered in the buffer, and hence, ACR can
process them elegantly to achieve higher hit ratio.

IV. EXPERIMENTS

A. Experimental Setup

The goal of our experiment is to verify the effectiveness of
ACR for flash disks of different characteristics on read and
write operations. For a flash disk, the performance of a buffer
replacement algorithm is affected by the number of physical
read and write. However, the implementation of FTL is device-
related and supplied by the disk manufacturer, and there is no
interface supplied for users to trace the number of write and
read. Therefore, we choose to use a simulator [21] to count the
numbers of read and write operations. We implemented three
existing state-of-the-art replacement policies for comparison,
i.e., LRU, CFLRU [12] and CFDC [16]. We implemented three
versions of ACR based on the three heuristics (Conservative,
Optimistic and Hybrid), which are denoted as ACR-C, ACR-
O and ACR-H, respectively. All were implemented on the
simulator using Visual C++ 6.0. For CFLRU, we set the
“window size” of “clean-first region” to 75% of the buffer
size, for CFDC, the “window size” of “clean-first region” is
50% of the buffer size, and the “cluster size” of CFDC is 64.

We simulated a database file of 64MB, which corresponds
to 32K physical pages and each page is 2KB, the buffer size
ranges from 2K pages to 8K pages.

We have generated 4 types of synthetical traces which will
access all pages randomly. The statistics of the four traces
are shown in Table II, where x%/y% in column “Read/Write
Ratio” means that for a certain trace, x% of total requests are
about read operations and y% about write operations; while
x%/y% in column “Locality” means that for a certain trace,
x% of total operations are performed in a certain y% of the
total pages.

We select two flash disks for our experiment, the first
is Samsung MCAQE32G5APP, the second is Samsung
MCAQE32G8APP-0XA [17]. The ratio of the cost of random



TABLE II: The statistics of the traces used in our experiment
Trace Total Requests Read/Write Ratio Locality

T1 3,000,000 90% / 10% 60% / 40%
T2 3,000,000 80% / 20% 50% / 50%
T3 3,000,000 60% / 40% 60% / 40%
T4 3,000,000 80% / 20% 80% / 20%

read to that of random write is 1:118 and 1:2, respectively. The
reason for the huge discrepancy of the two flash disks lies in
that the first flash disk is based on MLC NAND chip, while
the second flash disk is based on SLC NAND chip. Both type
of flash disks are already adopted as auxiliary storage in many
applications. In our experiment, the simulator assume that the
page size is 2KB, and each block contains 64 pages.

We choose the following metrics to evaluate the six buffer
replacement policies: (1) number of physical read operations,
(2) number of physical write operations, and (3) running time.
The running time is computed by adding up the cost of read
and write operations, though there may exist some differences
compared with the results tested on a real platform, they reflect
the overall performance of different replacement policies by
and large with neglectable tolerance. We do not use hit ratio as
a metric since it cannot really reflect the overall performance.
The results of the second metrics in our experiment include
the write operations caused by the erase operations of flash
disks.

Note that if running on a real flash disk, CFDC may achieve
better performance, this is because CFDC can make many
random write to sequential write. On the contrary, CFLRU
suffers from high CPU cost, which is also not reflected in our
results.

B. Experimental Results and Analysis

1) Impact of large discrepancy on read and write operation:
Fig. 4 shows the results of random read, random write and
normalized running time on trace T1 to T4 for Samsung
MCAQE32G5APP flash disk. Fig. 4 (a), (d), (g) and (j) are the
results of the number of random read operations on trace T1 to
T4, from which we know that LRU has least read operations,
the reason lies in that LRU does not differentiate read and
write operations, thus it will not delay the paging out of dirty
pages in the buffer. On the contrary, CFLRU firstly pages out
clean pages, thus it needs to read in more pages than LRU,
CFDC, ACR-C, ACR-O and ACR-H. We can see from Fig. 4
(b), (e), (h) and (k) that LRU consumes more write cost than
all other methods, and among the five flash-based methods,
i.e., CFLRU, CFDC, ACR-C, ACR-O and ACR-H, CFDC and
ACR-O suffer from more write operations, this is because,
CFDC will page out all pages in a cluster before paging
out pages in other clusters, and ACR-O often makes wrong
predictions for the four traces when the cost ratio is 1:118.
Although CFLRU suffers from less write operations than LRU,
CFDC and ACR-O, we can see that ACR-C and ACR-H
consume less write operations than CFLRU, this is because
for the cost ratio of 1:118, (1) ACR-C and ACR-H often make
correct predictions, (2) ACR-C and ACR-H maintain more

dirty pages in the buffer than CFLRU. Fig. 4 (c), (f), (i) and
(l) present the results of normalized running time, from which
we know that ACR-C and ACR-H achieve higher performance
than LRU, CFLRU, CFDC and ACR-O. The reason lies in that
the cost of write operation is much more expansive than that
of read operation for Samsung MCAQE32G5APP flash disk.

Thus for flash disks with large discrepancy on read and
write operations, by firstly paging out clean pages, CFLRU,
CFDC, ACR-C, ACR-O and ACR-H are better than LRU since
they improve the overall performance by reducing the costly
write operations significantly. Moreover, ACR-C and ACR-H
are better than CFLRU and CFDC, because they make correct
prediction and frequently-requested dirty pages stay in buffer
longer than the once-requested dirty pages, thus can further
reduce the cost of write operations.

2) Impact of small discrepancy on read and write opera-
tion: Fig. 5 just shows the results for trace T1 and T2 running
on Samsung MCAQE32G8APP-0XA flash disk for limited
space. Fig. 5 (a) and (d) are the results of the number of
random read operations on trace T1 and T2, from which we
know that LRU, ACR-C, ACR-O and ACR-H have least read
operations, the reason lies in that LRU does not differentiate
read and write operations, thus it will not delay the paging out
of dirty pages in the buffer. Although our ACR policy keeps
more dirty pages in buffer than clean pages since the cost of
read operation is still cheaper than that of write operation,
ACR achieves competing performance to LRU for read oper-
ation by improving the hit ratio of frequently requested clean
pages. CFLRU and CFDC firstly page out clean pages, thus
they need to read in many more pages than LRU and ACR. As
a result, they suffer from large read cost. We can see from Fig.
4 (b) and (e) that the number of write operations of ACR-C,
ACR-O and ACR-H becomes larger than that in Fig. 4, this
is because the ratio of read and write becomes smaller than
before, and our policy will pay more attention to clean pages.
Though CFLRU and CFDC have less write operations than
LRU, they waste many more read operations, which makes
them achieving worse performance than LRU, ACR-C, ACR-
O and ACR-H for flash disks of small discrepancy on read
and write operation, as shown in Fig. 5 (c) and (f).

Therefore, for flash disks with small discrepancy on read
and write operations, ACR-C, ACR-O and ACR-H are better
than LRU, CFLRU and CFDC, because ACR-C, ACR-O and
ACR-H only consume the same or less read operations than
LRU, which is much less than that consumed by CFLRU and
CFDC; though still need to consume more write operations
than CFLRU and CFDC, the saved cost of read operation is
much more than that wasted by write operations.

3) Impact of different heuristics: By comparing Fig. 4
and Fig. 5, we can see that for trace T1 to T4, ACR-O is
not efficient as ACR-C and ACR-H for flash disks of large
discrepancy of read and write operation, but is better than
ACR-C and ACR-H for flash disks of small discrepancy. For
flash disks of large discrepancy, LRU is very inefficient, both
CFLUR and CFDC can work better than LRU, but for flash
disks of small discrepancy, LRU is more efficient than CFLRU
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Fig. 4: The comparison of random read, random write and normalized running time on trace T1 to T4 for Samsung
MCAQE32G5APP flash disk, (a) to (c) is the result for trace T1, (d) to (f) for trace T2, (g) to (i) for trace T3, and (j)
to (l) for trace T4.

and CFDC, the reason lies in that CFLRU and CFDC firstly
page out clean pages arbitrarily. If the dirty pages in the buffer
are not re-referenced in the near future, then many clean pages
will be paged out after they are paged in the buffer for a little
time, which will cause many read operations.

In a summary, ACR-C, ACR-O and ACR-H work very
efficient when being applied to flash disks with different ratio
of read and write costs. Moreover, ACR-C, ACR-O and ACR-
H can also work very efficient on workloads of different access
patterns.

V. CONCLUSIONS

Considering the fact that the discrepancy of the ratio of write
cost to read cost for different flash disks various largely and
has great affect on designing flash-based buffer replacement
policy, in this paper, we address this problem and propose an
adaptive cost-based replacement policy, namely ACR. Differ-
ent from the previous buffer replacement policies that focus
on either the various access patterns with uniform access cost,
or the asymmetry of access cost for flash, ACR considers
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Fig. 5: The comparison of random read, random write and normalized running time on trace T1 and T2 for Samsung
MCAQE32G8APP-0XA flash disk, (a) to (c) is the result for trace T1, (d) to (f) for trace T2.

all the above aspects and organizes buffer pages into clean
list and dirty list, and the newly entered pages will not be
inserted at the MRU position of either list, but at some position
in middle, thus the once-requested pages can be flushed out
from the buffer quickly and the frequently-requested pages
can stay in the buffer for a longer time. Moreover, ACR uses
three cost-based heuristics to select the victim page, thus can
fairly make trade off between clean pages and dirty pages.
The experimental results on different traces and flash disks
show that ACR not only adaptively tunes itself to workloads
of different access patterns, but also works well for different
kinds of flash disks compared with existing methods.

We plan to make further improvement on ACR by con-
sidering changing the write operations from random write to
sequential write and implement ACR in a real platform to
evaluate it with various real world workloads for flash-based
applications.
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