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ABSTRACT 

We study the problem of approximate membership extraction 
(AME), i.e., how to efficiently extract substrings in a text 
document that approximately match some strings in a given 
dictionary. This problem is important in a variety of applications 
such as named entity recognition and data cleaning. We solve this 
problem in two steps. In the first step, for each substring in the text, 
we filter away the strings in the dictionary that are very different 
from the substring. In the second step, each candidate string is 
verified to decide whether the substring should be extracted. We 
develop an incremental algorithm using signature-based inverted 
lists to minimize the duplicate list-scan operations of overlapping 
windows in the text. Our experimental study of the proposed 
algorithms on real and synthetic datasets showed that our solutions 
significantly outperform existing methods in the literature.  

Categories and Subject Descriptors 
H.2.4 [Database Management]: Systems – Textual Databases 

General Terms 
Algorithms 

Keywords 
Approximate Member Extraction, Filtration-verification, 
Approximate string matching, Incremental Computation 

1. INTRODUCTION 
In this paper we study the problem of finding substrings in a 

text document M that approximately match (e.g. having similarity 
scores above a given thresholdδ ) some strings in a given 
dictionary R of strings. This problem, called AME (short for 
Approximate Member Extraction), arises in many applications, as 
illustrated by the following examples. 
Named Entity Recognition: With a given document, we want to 
locate pre-defined entities such as person names, conference 
names, and company names. We want this extraction to be appro- 
ximate, i.e., we allow slight mismatches in the substrings. For 
instance, as shown in Figure 1, suppose we have a collection of 
conference names, such as “ACM SIGMOD” and “CIKM 
Conference.”  

 
  Figure 1. Approximate member extraction 

We want to extract all conference names from a given document. 
We want to find matches such as “CIKM 2009 Conference” and 
“CIKM International Conference”, even though they do not match 
the string “CIKM Conference” in the dictionary exactly. 
Data Cleaning: Documents in many applications could be “dirty” 
when it contains inconsistencies. Often we need to clean the 
inconsistencies. We need to perform data cleaning and integration 
by identifying the dirty words based on an existing dictionary. 

One naive way to solve the AME problem is to enumerate 
each substring m of M and check if m matches strings in R 
approximately. Several algorithms have been proposed for doing 
the checking efficiently using two steps. In the first step, we filter 
the dictionary strings that are very different from m. In the second 
step, we compute the similarity between the remaining candidate 
strings and the string m to verify its approximate membership.  

There are two methods to do the filtration in the first step. One 
is based on an inverted index on the dictionary R. In this method, 
strings are regarded as collections of tokens. For each token, the 
index stores the ids of the strings that include this token. For a 
given string m, we can find candidate similar strings in the 
dictionary by accessing the lists of the tokens in m and finding 
those string ids that have enough occurrences on the lists. The 
second method is based on signatures generation [1, 4]. This 
method focuses on exploring signature schemes that convert a 
string to a set of hash codes and filtering irrelevant strings using 
their signatures. 

Recently, researchers have been trying to combine these two 
methods. For instance, Wang et al. propose a method called NGPP 
[13] to solve the AME problem by assuming the edit-distance 
similarity function. They shift and extend the partitions of 
dictionary strings to obtain an inverted index on all the partition 
variations (an implicit signature). Then by generating the 
neighborhood of partitions of document substrings and probing the 
index, the algorithm filters most irrelevant strings and performs 
verifications for the remaining strings. Chakrabarti et al. [2] 
studied how to solve the AME problem with other similarity score 
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functions such as Jaccard coefficient using a method called ISH 
(Inverted Signature-based Hashtable), which encodes a string and 
its signatures into a 0-1 matrix. After generating a 0-1 matrix by 
computing the “bitwise-or” of all small matrices encoded with 
dictionary strings, ISH converts the problem of searching possible 
evidence into finding a certain 0-1 submatrix in the big matrix. 

Our work in this paper is motivated by the following 
observations: (1) The ISH method generates signatures for strings 
and prune strings that share signatures with a total weight under a 
certain lower bound (see Para 8, Page 4 of [2]). Unfortunately, the 
lower bound may be too high, causing false negatives (see 
Example 1 for a counter-example). (2) The filtration processing of 
ISH involves an NP-Complete problem requiring finding solid 
submatrix (containing only 1) from a given 0-1 matrix under 
certain constraints. We give the reduction proof in this paper from 
an NP-Complete problem: Balanced Complete Bipartite Subgraph 
(see Appendix). Due to the intrinsic complexity, [2] solves this 
problem by a simple heuristics, which significantly increases the 
number of false positives, and thus incurs numerous I/Os in the 
verification phase and deteriorates overall performance. But our 
research in this paper shows that we can avoid the NP-complete 
complexity to efficiently solve AME problem by adopting a novel 
index structure, which effectively controls the number of false 
positives and consequently improves the overall performance. (3) 
NGPP[13] and ISH[2] both require thatδ is provided when 
preprocessing the data and generating an index for the filter. Once 
the threshold is fixed, these filters no longer support queries with 
thresholds other thanδunless the index is re-generated. 

EXAMPLE 1. (Example to illustrate the false negative in [2]) 
Under Jaccard similarity measurement, with weight assignment 
{(a, 6), (b, 3.52), (c, 3.51), (d, 3.49), (e, 3.48), (f, 1)}, string 
r=”bcde” matches m=“abef” under the similarity threshold δ
=1/3. But from the following table we see that [2] incorrectly 
determines that m and r are impossible to match under the 
threshold 1/3, though their real similarity is 1/3. 

String 
Signatures 

(k=3) 
τ value Shared 

Signatures 

Lower Bound 
Required by 
ISH Filter 

r=“bcde” {b,c,d} τ(r)=1.187 

m=”abef” {a,b,e} τ(m)=3.67 
{(b, 3.52)} ≥3.67 

We summarize our contributions as follows: 
 We adopt the prefix filtering technique [4], and propose new 

theorems which are all strictly proved and well applied as 
filtering conditions in our method. These theorems convert 
approximate matching to prefix signatures sharing, and give a 
tighter bound. More importantly, this filtering technique 
brings no false negatives.  

 We utilize an inverted-list-based filtering index SIL and 
propose corresponding algorithm called EvSCAN. By 
performing inverted list scanning instead of introducing 
matrix-based combinatorial problem, EvSCAN naturally 
avoids solving NP-Complete problem. We also apply 
incremental optimizations on EvSCAN and propose EvITER, 
which effectively reduces the duplicate list-scanning 
operations when the substring window shifts over a large 
document M. Compared with prior solutions, our method 
produces far less false evidences, thus achieves better 

filtration-verification balance and consequently improves the 
overall performance significantly. 

 We modify our SIL to answer queries with dynamic similarity 
thresholds. Specifically, once initialized with a lower bound 
δ0, our filter works for any query with a threshold δ≥δ0. 
However previous filters only allow static similarity threshold 
and need to be re-initialized (i.e., the indices in filter has to be 
generated again) once the query threshold is changed. 

 We provide detailed and accurate experimental results to 
support our argument. We show that SIL is significantly 
efficient than ISH, both in filtering power and overall running 
time, and explain the intrinsic reason by analyzing their 
runtime statistics in details. We also compare EvSCAN and 
EvITER under various situations, and show that our 
incremental optimization is effective. 
The following sections are organized as follows: 
Section 2 formally defines AME and gives some preliminaries. 

Section 3 complements the theory of prefix filtering and applies 
them to build the SIL structure and EvSCAN algorithm. Section 4 
introduces the EvITER incremental algorithm. Section 5 shows 
how to support dynamic thresholds. Section 6 reports our 
experimental results. Section 7 discusses related work. Section 8 is 
the conclusion of our study. 

2. PRELIMINARIES AND PROBLEM 
STATEMENT 
2.1 Some Notations and Problem Statement 

In this paper, we use the letter “t” to denote a token, and the 
other lower-case letters are used for strings. We regard strings as 
sets of tokens. For any token t, we denote wt(t) as the weight of t 
(e.g. IDF weight), and for any string s, we define wt(s) 
as∑∈st

twt )( , i.e. the sum of weights of all tokens in s. Based on 

the above notations we define Jaccard similarity of any strings s1 
and s2 as: 
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EXAMPLE 2. (Reusing the string and weight configuration of 
Example 1)Under weighted Jaccard similarity, the two strings 
m=“abef”, r=”bcde” have a similarity of wt({b, e})/wt({a, b, c, d, 
e, f})=(3.52+3.48)/(6+3.52+3.51+3.49+3.48+1)=1/3. 

With all notations introduced, we present the formal 
description of AME as follow: 

Sometimes we are only interested in substrings whose length 
is up to a length threshold L, so we may as well require that |m| ≤ 
L. Here any extracted m is called approximate member of R, and 
corresponding evidence for r in R. Note that our algorithms we 
present later can handle any similarity function that satisfies the 
following properties: 

 Sim(m,r) is symmetric, i.e., Sim(m,r) = Sim(r,m). 

Problem Statement 
Given a dictionary R of strings and a similarity threshold

δ∈[0,1], then a query M is submitted. Here M represents a 
relatively long string (e.g. a text file). The task of AME is to 
extract all M’s substrings m, such that there exists some r∈R 
satisfying Sim(m,r) ≥δ. 
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The first property is natural, and the second is also shared by 
many similarity functions [2]. For example, for any m and r, we 

have
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=  because wt(m ∪ r) 

≥wt(m), so the Jaccard similarity is capable of serving as a 
similarity function in our discussion. 

2.2 The Filtration-Verification Framework 
To efficiently solve AME and other related problems, 

researchers have been designing methods following two phases of 
filtration and verification [1, 2, 4, 7, 13]. In the AME problem, 
employing this framework usually requires building an indexing 
structure for the dictionary R. Recall that for each approximate 
member m extracted, we define the string r in R that is similar 
enough with m to be m’s evidence. Thus, the task of extracting all 
approximate members from M can be simply reduced to 
determining whether there exists any evidence for each substring 
of M, and filtration-verification is actually referred to as evidence 
filtration and evidence verification. 

Generally, our foundation of filtration is based on some 
necessary condition (denoted as NC) of our matching criterion 
Sim≥δ, that is, if some candidate evidence is real evidence, it 
must satisfy NC. With the dictionary R given offline, we build an 
index that quickly recommends for a query m ALL potential 
evidence that meets NC, so that true evidence is never missed. 
Then the evidence is verified against the actual matching criterion 
to determine whether the string m is a true approximate member. 

Note that NC plays a key role in our whole framework. It 
ensures the correctness of the whole algorithm. Moreover, it 
determines how balanced our framework is. We can evaluate it 
through:  
 How powerful is it? That is, does it eliminate as much false 

evidence as possible? 
 Is it easy-going? That is, can we build a quick index to test it 

at low cost? 
There is a tradeoff in the cost between two phases of 

filtration-verification. For example, with all dictionary strings 
being potentially possible evidence, the most easy-going filtration 
approach for them is obviously “no filtration”, which leads to a 
brute-force method of scanning the whole dictionary. On the other 
hand, if we try to make our filtration the most powerful, i.e., it 
produces no false positive and achieves the smallest verification 
time; it will be expensive to perform such filtering. As a matter of 
fact, we need to obtain a beneficial compromise between two 
phases. In the following sections, we will intentionally highlight 
this issue through our theoretical and experimental analysis.  

2.3 The K-Signature Scheme 
The k-signature scheme is first demonstrated by Chakrabarti et 

al. in [2]. It is an extension of the prefix signature idea [1]. Here 
we briefly introduce some key definitions as follows: 

DEFINITION 1. For a given string s and similarity threshold
δ, we sort all its tokens by their weight in descending order (if 
two tokens appear with the same weight, we sort them 
lexicographically), and choose the first few tokens to get a subset 
Sig(s), such that τ(s)=wt(Sig(s))-(1-δ)wt(s)≥0. We call Sig(s) a 
prefix signature set of string s. For convenience we call it 
signature set from now on. 

EXAMPLE 3. (Reusing the string and weight configuration of 
Example 1) Letδ=0.6, then {a,b} is a signature set of m because
τ(m)= wt({a,b})-(1-0.6)*wt({a,b,e,f})=9.52-5.6=3.92≥0. 

Based on its definition, the following is some facts about 
prefix signature set: 
 For any string s, Sig(s) always exists because we can let 

Sig(s)=s, thus making τ(s)=wt(s)-(1-δ)wt(s)=δ*wt(s)≥0, 
i.e., we choose itself to be its signature set. 

 A string may have more than one signature set with different 
sizes. For instance in Example 3, we see that m has another 
different signature set {a,b} besides itself. 
One way to ensure the uniqueness of signature set is to use a 

parameter k to determine which set we choose for a string s, where 
k is a positive integer. We call this unique signature set 
k-signature set, denoted as Sigk(s). When k is fixed, we select 
Sigk(s) among all available signature sets as follows: 
 If all signature sets’ sizes are bigger than k, choose the 

smallest one. 
 Else if there is any signature set whose size is exactly k, 

choose it. 
 Else, choose the largest one, i.e. the string itself. 

In some special case, when we set k=1, we call the derived 
signature scheme as min-signature scheme. When k is set to be ∞, 
we will get the string itself to be its signature set. 

EXAMPLE 4. (Following the configurations of Example 3) We 
list the different Sig(m) under different k settings as below: 

K 1 2 3 4 5 

Sigk(m) {a} {a,b} {a,b,e} {a,b,e,f} {a,b,e,f} 

Table 1. Signature sets controlled by K 
Note that parameter k has nothing to do with the requirement 

of signature set, so we may randomly set k for our filter, and even 
choose different k for different strings. As a matter of fact, if we 
regard signature set as a compression of information in strings, 
then k is the parameter for global compression rate tuning. That is, 
k only influences the performance of our filter. We will further 
discuss its role in Section 3.3. 

With the above description, we find that for any string s, the 
signature set is actually controlled byδand k, thus should be 
written as Sigk(s,δ). In fact, the parameter k is fixed to SIL and 
before Section 5 we also consider thatδis static, so when the 
context is clear, we still use Sig(s) to denote the signature set of s. 
In Section 5, we use Sig(s,δ) because we start discussing how to 
support dynamicδduring query processing. 

3. FILTRATION VIA SIGNATURE-BASED 
INVERTED LISTS 

In this subsection, we show some nice properties about the 
signature set which will be used in our algorithms. For instance, if 



 

String m and r meet the matching condition Sim(m,r) ≥δ, m must 
contain at least one of r’s signatures. This is apparently a 
necessary condition for matching and can be utilized to build a 
filter. In the following discussion, we’ll further explore the 
property of signature sets and show that there are better filtering 
conditions. 

3.1 The Property of Signature Sets 
LEMMA 1. For any string s and its selected signatures, we use 

minsigwt(s) = )}({min )( twtssigt∈  to denote the smallest weight of 

all s’s signature tokens. Then for any string s: 

A token t∈Sig(s) if t∈s and wt(t) ≥minsigwt(s). 

This is apparent because the selected signature tokens must 
have larger weight than unselected tokens. 

LEMMA 2. (PROPERTY OF PREFIX SIGNATURES). For any 
string m and r, if minsigwt(m) ≥ minsigwt(r), then 
wt(Sig(m)∩Sig(r)) ≥ wt(Sig(m))- wt(m-r). Here m-r refers to the 
minus set of m and r. 
Proof: We transform it to an equivalent form as wt(m-r) ≥ 
wt(Sig(m)-Sig(r)), and prove this by showing that Sig(m)-Sig(r) is 
a subset of m-r .For any t∈Sig(m)-Sig(r) , we have t∈Sig(m) , so 
t∈m .  

Now we prove that t∉r. 

Suppose that t∈r. because t∈Sig(m), we know that wt(t) 
≥minsigwt(m) ≥ minsigwt(r) . From t∈r , wt(t) ≥minsigwt(r) and 
Lemma 1, we conclude that t∈Sig(r). This is inconsistent with the 
fact that t∈Sig(m)-Sig(r) . So t∉r . 

From t∉r and t∈m , it’s obvious t∈m-r. So Sig(m)-Sig(r) is a 
subset of m-r , easily leading to the result that wt(m-r) ≥ 
wt(Sig(m)-Sig(r)) .                     ▉ 

In Lemma 2, we illustrate the signature set overlapping 
relationship between matching strings. Intuitively this inequality 
condition is tighter than other conditions proposed in [1], and we 
believe this property is also useful in other researches involving 
prefix signatures. However, the set minus operator seems costly to 
handle, so we need to make this condition more easy-going. We 
solve this by introducing Theorem 1 as follow: 

THEOREM 1 (FILTERING CONDITION). For any m and r that 
satisfy Sim(m,r) ≥δ, wt(Sig(m)∩Sig(r)) ≥ min{τ(m),τ(r) }. 

Proof: If minsigwt(m)) ≥ minsigwt(r), according to Lemma 2, we 
have wt(Sig(m)∩Sig(r)) ≥ wt(Sig(m))- wt(m-m∩r)= wt(Sig(m))- 
wt(m)+wt(m∩r) ≥wt(Sig(m))- wt(m)+δ*wt(m∪r) ≥wt(Sig(m))- 
wt(m)+δ*wt(m)= wt(Sig(m))-(1-δ)wt(m)=τ(m) ≥ min{τ(m),
τ(r) }. 

If minsigwt(m) ≤ minsigwt(r), based on the symmetry of Sim() 
we have the same result. So in conclusion we have wt(Sig(m)∩ 
Sig(r)) ≥ min{τ(m),τ(r) }.                 ▉ 

EXAMPLE 5. (Following the configurations of Example 3) 
Suppose k=2, we have Sig(m)={a,b},τ (m)= 3.92 and Sig(r) 
={b,c},τ (r)=(3.52+3.51)-0.4*14=1.43. So wt(Sig(m)∩Sig(r))= 
wt({b})=3.52 ≥ min{τ(m),τ(r) } = min{3.92, 1.43}=1.43. 

We obtain the foundation of filtration phase of SIL so far. It’s 
easy to discover that when the threshold τ(r) is computed offline, 
this filtering condition only involves the signature set of all strings, 

indicating the fact that the time and space requirement of our filter 
is tightly related to the average signature set size of all strings in 
the dictionary R, which is controlled by the parameter k. Moreover, 
different k provides different filtering conditions. Among them we 
need to decide which one to choose. 

3.2 Filtration via SIL 
Since for any matched m and r, their signature sets overlaps, 

it’s easy to come up with the idea of building an inverted index 
structure for the dictionary R, and filtering by merging inverted 
lists and accumulating weights. After this index is built up offline, 
by visiting list[t], we can quickly retrieve for any token t a list of 
rid of all r in R, who contains token t as a signature. Due to the 
fact that these lists only involves signatures of all strings in R, we 
call this index SIL in short for signature-based inverted lists, and 
Algorithm 1 below shows the method to generate an SIL index. 
EXAMPLE 6. Suppose we have a dictionary R={r[1]=“SIL’s 
filtering power”, r[2]=”the power of filtering by SIL”}, the 
weight of each tokens are {<SIL’s, 5>, <filtering, 4>, <power,   
3.5>, <SIL, 3>, <by 2>, <the, 1>, <of, 1>}. We set k=1 and δ
=0.55, then we have each strings’ signature set in Table 2 and the 
SIL built as Figure 2. 

rid String Signature Set 

1 “SIL’s filtering power” {“SIL’s”,”filtering”} 

2 ”the power of filtering by SIL” {“filtering”,”power”} 

Table 2. Signature sets of R’s strings 
Signature → String rids  rid wt(r) τ(r) 

“SIL’s” → (1)  1 12.5 3.375 

“filtering” → (1), (2)  2 14.5 0.975 

“power” → (2)     

Figure 2. SIL and additional information for dictionary R 
When a string m’s membership needs to be checked, we 

simply compute the signature set of m, denoted as {t1,t2…tn}. 
Then we scan all n lists that is indexed by list[t1], list[t2]…list[tn], 
while aggregating the weight of ti to all rid whose record contains 
ti as one of its signature. To record the aggregated weight, we may 
use an array Sum[] for convenience or a hash table to save 
memory space. With all lists scanned, the aggregated weight of 
any rid is exactly the value of wt(Sig(m)∩Sig(r)). In fact, if any 
rid appears satisfying the filtering condition of Theorem 1, i.e. 
with an aggregated weight larger than min{τ(m),τ(r)}, we can 
store it for later verification to determine whether it is the one that 
makes m a true member. 

 
  

ALGORITHM 1: BuildSIL( R, δ, k) 

1 for each r∈R do 

2  Sig←GenSig(r, δ, k); 

 /*The function GenSig(r, δ, k) generates signature 
 for r under k-signature scheme.  */ 

3  for each t∈Sig do 

4         list[t]=list[t]∪{rid(r)};//insert rid of r into list 

5 return list; 



 

 

Note thatτ(r) and wt(r) for any dictionary string r is computed in 
the signature generating step of Algorithm 1 and they are stored in 
the main memory for the later use of our algorithms (See Figure 
2). 

3.3 Additional Discussion 
In the above discussion, one may notice that we didn’t involve 

the parameter k. This again proves the fact that with any assigned 
k, our algorithm will run correctly. Since the signature set is a 
compression of information in a string, we will certainly get more 
information if we choose a relatively large k, through which we 
can target potential matching evidences to a smaller scope, thus 
reducing the cost of verifying these evidences.  

However, larger k causes longer inverted list length, i.e. more 
cost on targeting possible evidences. For instance, if we set k = ∞, 
that is, for all strings s, we set Sig(s) to be s itself, andτ(s)=δ
*wt(s), we interestingly find that our method degrades into a 
common inverted-list based solution. Chakrabarti [2] first 
analyzed this problem and showed that k=3 is good on average 
situation, which is also proved in our experimental study. 

4. OPTIMIZATION BY PROGRESSIVE 
COMPUTATION 

4.1 Reducing Duplicate Computations 
Although EvSCAN algorithm efficiently checks the 

approximate membership of each single substring m in a 
document M, it ignores the overlapping between shifting substring 
windows and consequently takes a lot of time on duplicate 
computations. Another way to solve AME is to reduce this 
problem to set similarity join, which is already well studied by 
researchers [1, 4, 6]. In set similarity join, we are given SA and SB 
- two columns of sets, a similarity function Sim, and a threshold 
δ. The task of set similarity join is to join the two columns, where 
the joining condition is Sim(SA, SB)≥δ. In AME, if we set 
SA=R, SB={all substrings of M}, run set similarity join between 

SA and SB and project the result set along SB, we will get the 
result of AME. Though the problem of set similarity join is 
explored and optimized in many papers, this method still doesn’t 
notice the fact that the records in SB are quite similar with each 
other – they are substrings of a long text. 

In this section, based on the above observations, we believe 
that the unique property of AME should be exploited separately, 
and optimized method could be designed accordingly. So we study 
the incremental property of Theorem 1, and demonstrate Theorem 
2, in purpose of decreasing the duplicate list-scanning when 
examining all substrings of M. 

4.2 Optimization by Progressive Computation 
Assume m ⊕ t denoting the string which we get by 

concatenating token t to the tail of string m. Consider the process 
of checking m and m⊕ t: we compute the signature set of m and 
verify the condition in Theorem 1, then we do the same job for 
m⊕ t. Intuitively the signature set of m and m⊕ t are much alike. 
We observe that: if some r cannot match m and does not contain t, 
it is not likely to match m⊕ t. Before we formalize our intuition 
into new theorem and algorithm, we introduce Evidence Superset 
by the lemma and definition below: 

LEMMA 3. For any m and r that satisfy Sim(m,r) ≥δ , 
wt(m∩Sig(r))≥min{δ*wt(m),τ(r)}}. 

This lemma is an inference of Theorem 1. Recall that in 
previous sections we mention that Theorem 1 remains correct even 
if we set different k for different strings, Lemma 3 is in fact 
obtained by setting k=∞ for m in Theorem 1 (so Sig(m) is 
replaced by m andτ(m) byδ*wt(m)). With Lemma 3 we define 
Evidence Superset for any query substring m as follow: 

DEFINITION 2. Suppose δ and k are fixed, for any string m, let 
ES(m)= {r∈R| wt(m∩Sig(r))≥min{δ*wt(m),τ (r)}}, we call 
ES(m) an Evidence Superset of m. Based on Lemma 3 it’s obvious 
that any true evidence for m must be contained in ES(m). 

From its definition, we see that ES(m) is useful since any 
evidence matching m will be included in ES(m). If we can 
efficiently compute ES(m) for any substring m, we can further 
filter elements in ES(m) to pick out all true evidences and check 
m’s approximate membership. Our intuition is formalized below. 

LEMMA 4. For any string m and token t, if a dictionary 
r∉ES(m) and t∉Sig(r), then  r∉ES(m⊕ t). 

Proof: We prove r∉ES(m ⊕ t) by showing that wt((m⊕ t)∩
Sig(r)) <min{δ*wt(m ⊕ t),τ (r)}: wt((m ⊕ t)∩Sig(r))=wt(m∩

Sig(r)) (Because t ∉ Sig(r)) <min{δ*wt(m), τ (r)}(because 
r∉ES(m))< min{δ*wt(m⊕ t),τ(r)}.                 
▉ 

This lemma states a fact that if a dictionary string is far from 
being evidence of current substring m and it is not a signature of 
the coming token t, then it cannot be evidence when the substring 
window moves to m⊕ t. However this lemma still cannot serve as 
a method for efficiently computing ES(m), we further generalize  

 
Lemma 4 to obtain Theorem 2 to demonstrate the incremental 
property of ES(m). 
 

ALGORITHM 2: EvSCAN( M, δ, k, L) 

1 ResultSet←Φ;// for storing approximate members 

2 for each m of M’s substrings (|m| ≤ L) do 

3  Sig←GenSig(m, δ, k); 

4  Initialize Sum[];//for weight aggregating 

5  CandSet←Φ;// for storing candidate evidence 

6  for each t∈Sig do 

7      for each rid ∈list[t] do 

8     Sum[rid]+=wt(rid);//aggregating weight 

9     if Sum[rid]>=min{τ(m),τ(rid)} then 

10        CandSet←CandSet∪{rid}; 

11  for each rid∈CandSet do//verification 

12      if Sim(m, r(rid)) ≥δthen//true evidence found 

13     ResultSet ←ResultSet∪{m}; 

14     break; 
15 return ResultSet; 



 

 
THEOREM 2. (INCREMENTAL PROPERTY). Suppose δ, k are 
fixed, it holds for any string m and token t that  ES(m⊕ t)⊆  
ES(m)∪list[t]. 

 

Notice that the approach we build SIL determines that t∈
Sig(r) means r∈list[t], so Theorem 2 is obviously based on 
Lemma 4. This theorem indicates an efficient iterative approach of 
maintaining ES() for the varying substring when the right 
boundary of the substring windows moves by a token. That is, we 
check all elements in ES(m)∪list[t] and pick out proper ones into 
ES(m⊕ t). Note that this process requires maintaining another 
field recording wt(m∩Sig(r)) in the summing table sum[], so it 
can be combined with the process of filtering by SIL. 

Now we get a new algorithm of incrementally checking all 
substrings, that is, we fix the left boundary of the substring 
window and shift the other boundary to the right. While the 
substring varies we iteratively maintain corresponding ES() to 
filter and verify all evidence in it. Figure 3 shows this iteration 
process, with an instance of M=t1 ⊕ t2. For convenience, we 
denote this incremental filtering algorithm as EvITER (Evidence 
Iterating), while EcSCAN in Section 3.2 is short for Evidence 
Scanning. 

 

 

4.3 Combining Other Filtering Conditions 
In Algorithm 1 and 2, we use “VerifyAllCandidate()” to 

denote the process of verification, by which one determine if m is 
really a true member. Since not all r’s in CandSet are the ones that 
make m a true member, we may as well make 
“VerifyAllCandidate()” a small filter-verification process, via 
introducing some other simple yet effective filtering conditions. 
The following is exactly one of such conditions we want: 

If Sim(m,r) ≥δ, then wt(m) *δ≤wt(r) ≤ wt(m)/δ. 

Intuitively, under the non-weighted situation, this condition 
states that if any two strings have too much difference in length, 
they are not likely to match each other. To apply this filtering 
condition, we need only store in memory the weight value of all 
strings in R. By checking this condition for all r in CandSet, we 
can quickly narrow our scope to fewer possible r, thus avoiding 
more disk accessing and making computation more efficient.  

4.4 Algorithm Analysis 
 In this section we analyze the time and memory cost of our 

algorithms, and demonstrate the advantages of EvITER over 
EvSCAN. The notations to be used are listed in Table 3. 

|M| The length of text used as the input of AME 

|R| Dictionary size 

Lr Average length of dictionary strings 

Lm Average substring length 

Llist Average length of inverted lists 

δ Similarity threshold 

E Total number of evidence that passes the filter 

Cv Time cost of verifying an evidence (including disk 
accessing and similarity score computing) 

Table 3. Some notations in cost analysis 
In addition to the above notations, we make two assumptions 

in order to simplify our discussion: (1) the length of all strings is 
longer than k. (2) all tokens have the same weight (e.g. 1). 
Therefore, we obtain an upper bound for the signature set size of 
any string. 

LEMMA 5. Suppose k and δ are fixed, then for any string m with 
length L, |Sig(m)| ≤ max{k,(1-δ)L}. 

Proof: Because for any string m, |Sig(m)|=wt(Sig(m))≥(1-δ) 
*wt(m)= (1-δ)L, the smallest signature set size is (1-δ)L. 

If (1-δ)L≤ k, from the definition of k-signature set we choose 
the first k tokens as signatures, so |Sig(m)|=k, else we choose the 
smallest signature set of size (1-δ)L. Therefore we have |Sig(m)| 
≤ max{k,(1-δ)L}.                         ▉ 

ALGORITHM 3: EvITER( M={t[1],t[2],…,t[n]}, δ, k, L) 

1 ResultSet←Φ;// for storing approximate members 

2 for i =1 to n do 
3   Initialize Sum[]; 

  /*Sum[rid].s1 records wt(Sig(m)∩Sig(r(rid))) and  
Sum[rid].s2 for wt(m∩Sig(r(rid))) */ 

4   LastES←Φ;//for iterating ES 

5   for j=i to min{n,i+L-1} do   //current m= t[i]…t[j] 

6     ES←Φ;  

7     CandSet←Φ;// for storing candidate evidence 

8     update Sig(m) and maintain sum[]; 
    /*because m and Sig(m) changes      */ 

9     for each rid ∈list[t]∪LastES do 

10       if Sum[rid].s2≥min{δ*wt(m),τ(r(rid))} then 

11         ES←ES∪{rid}; 

12         if Sum[rid].s1≥min{τ(m),τ(rid)} then   
       CandSet←CandSet∪{rid}; 

13     VerifyAllCandidate();    //verification 

14     LastES←ES;   //iteration for the next window 

15 return ResultSet; 

ES(t1⊕ t2)

Figure 3. Flow of dictionary strings in EvITER 
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With above assumptions and lemmas, the memory cost of our 
SIL can be expressed as 

MEMCOST=|R|max{k, (1-δ)Lr}. 

 This equation is correct since every string in R produces 
max{k, (1-δ)Lr} nodes at most in the inverted lists. To estimate 
the time cost of our algorithms, we introduce another lemma as 
below: 

LEMMA 6. For each substring m, the number of inverted lists that 
EvSCAN and EvITER scan are respectively |Sig(m)| and 2. 
Proof (Outline): It’s obvious for EvSCAN and we only give proof 
for EvITER. Consider the moment we finish checking m and 
prepare for m⊕ t, we have to scan list[t] once to iterate ES(m) 
into ES(m ⊕ t). Moreover, it’s possible that t replace some 
signature token t’ to be a new signature, so we must scan list[t’] to 
maintain the summing table sum[] for next iteration.         ▉ 

Therefore, the filtration cost of EvSCAN and EvITER are 
respectively |M|LmLlistmax{k, (1-δ )Lm} and 2|M|LmLlist. The 
verification cost of EvSCAN can be estimated as ECv, while that 
of EvITER is E (1+Cv) because of the O(1) evidence iteration cost 
for every evidence. In summary we have 

TIMECOST(EvSCAN)= |M|LmLlist max{k, (1-δ)Lm}+ ECv, 

TIMECOST(EvITER)= 2|M|LmLlist + E(1+Cv). 
Here we see that EvITER avoids scanning some lists by 

introducing the cost of evidence iteration, so it may have some 
advantage when k is large or E is small, which will be 
demonstrated by our experimental results later. 

5. SUPPORTING DYNAMIC SIMILARITY 
THRESHOLDS 

5.1 The Static Threshold Problem 
In the above discussion we talk about how to perform AME 

with a static similarity threshold, where the filter can be denoted 
as F(R,δ0), given a dictionary R and a fixed threshold δ0, 
meaning that the threshold δ0 is undesirably static. If users want 
to submit a query with other thresholds, the filter has to be 
re-initialized. This apparently leads to much inconvenience in 
practice. In this section we will focus on this issue and show that 
with a little modification, our SIL can handle this problem well. 
Note that in this section, the notation Sig(s) is replaced by Sig(s,δ) 
to add a dynamic threshold δ. 

5.2 Solution and Analysis 
In our SIL algorithm, we observe that the problem of static 

threshold is caused by the definition of prefix signatures. Recall 
that the prefix signatures Sig(s) for string s is a prefix subset of s 
that satisfies wt(Sig(s))≥(1-δ)wt(s). Therefore, with differentδ
we need different number of signatures to build various filters. 

Another observation is that, under min-signature schema, for 
any string s, if a token t is selected as a signature under some 
threshold, it will also be in the signature set of s when the 
threshold gets lower. That is, if we initialize the filter at a 
relatively low threshold δ0, when a query comes with a higher 
threshold δ≥δ0, those rids whose string contains t as a signature 
should be included in some nodes on list[t] of the current filter. 
For simplicity we call these nodes active nodes. All we need is to 
discriminate active nodes, and use them to perform filtration. 

We propose Theorem 3 to provide a way to discriminate active 
nodes as follow: 
THEOREM 3 (SUFFICIENT AND NECESSARY CONDITION OF 
MIN-SIGNATURE). Under min-signature schema, for any string 
s={t1,t2…tn}, where wt(t1) ≥wt(t2) ≥…≥wt(tn), let Ui=1-(wt(t1)+ 
wt(t2)+…+ wt(ti))/wt(s) for any i≥1 and U0=0. We have the 
following conclusion: 

ti∈Sig(s,δ) if and only ifδ∈[0,Ui-1). 

Because Ui-1 can be computed in the filter-constructing phase, 
in every node of all inverted lists, we add a field to record Ui-1 in 
order to test the conditionδ∈[0,Ui-1) to decide whether this is an 
active node. Moreover, we can sort all nodes in a list in 
descending order of corresponding Ui-1. In this way, for any 
threshold δ, all active node in a list must form a prefix of the list. 
Therefore, we may stop our scan once an inactive node is found, 
by which we avoid scanning the whole list and enhance the 
performance. 

Note that this modification should only be applied under the 
min-signature scheme. In fact, in Section 6 we will show that 
under most cases, min-signature schema is enough to serve as a 
good choice. 

EXAMPLE 8. (adopting the configuration in Example 6) 
Suppose we initialize the modified filter with min-signature 
schema (k=1) and δ0=0.55 as Figure 4. We have a query with 
δ=0.7, then all nodes in Figure 4 that is circled out become 
active nodes and should be scanned. 

Signature → String rids and U 

“SIL’s” → (1, 1.0)  

“filtering” → (2, 1.0), (1, 0.6) 

“power” → (2, 0.725)  

Figure 4. Active nodes when δ=0.7 
Comparing with the origin SIL, we see that applying this 

modification only requires a little more space and additional 
sorting in the filter-building phase. For queries with various 
similarity thresholds, the modified SIL successfully solves the 
static threshold problem, without visiting any additional list nodes 
or trading query performance. 

 

6. EXPERIMENTAL STUDY 

6.1 Experimental Settings 
The following filters and algorithms are evaluated in this 

section: 
ISH (abbreviated from Inverted Signature-based Hashtable) 

is a filter proposed in [2], whose idea is to optimize the query 
range of length filtering. In our experiment, we set the inverted 
hashtable length b to be 11 (8 is enough according to [2]). 

EvSCAN on SIL is our proposed algorithm, which filters by 
scanning the Signature-based Inverted Lists. EvITER is an 
optimized version of EvSCAN, which aims at reducing 
unnecessary list scanning. 
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Figure 5. Comparison between ISH and SIL (k=3, |R|=1000, L=10) 
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c. ISH Querying Range Sampling (DBLP)
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Figure 6. Some Statistics for ISH   (k=3, L=10,δ=0.85)

We ran our experiments on the following two datasets: 
DBLP: It includes paper titles downloaded from the DBLP 

site. We extracted 274,788 paper titles with a total size 17.8MB as 
the dictionary. The query text to this dictionary is 40 web pages 
from CiteSeer, each containing the title, abstract, citation, etc. of a 
random paper. Tokens are separated by spaces and punctuations. 

URL: The dictionary includes the first 1,838,973 URLs from 
an URL dataset. The query text is 40 text files, each containing 50 
random URLs from the rest of the dataset. Tokens are separated 
by slashes. 

On both datasets, standard IDF weight [14] is applied, and all 
tests were conducted under the weighted Jaccard similarity 
measurement. We mainly judge the performance of all filters via 
analyzing the filtering power and overall running time of them. 
We evaluate the power of filters by the candidate evidence they 
produce since the size of candidate evidences has a great influence 
on overall performance. 

6.2 Comparing with ISH 
We compared our approach EvSCAN on SIL with ISH in this 

section. We first performed experiments on DBLP data (dictionary 
size: 274,788 records), and our results show that ISH produced a 
large amount of candidate evidences and disk-accessing, thus 
spending much time on verification and could not terminate in one 
hour. Therefore, we had to reduce the size of dictionary using the 
first 1000 records in DBLP. 

We explain this result through reviewing the filtering approach 
of ISH: for every query substring m, ISH optimizes the existing 
length filtering condition mentioned in Section 4.3, and uses a new 
range (denoted as [a,b], a =δ*wt(m), b ≤ wt(m)/δ) as the SQL 
querying condition at evidence record retrieving phase. 

In Figure 6, we show the record distribution of two datasets 
across the weight axis (see sub-figure (a) and (b)), where all 
records distribute densely, with at most 50k and on average 10k in 
a unit length of weight range (DBLP dataset). This implies that it’s 
unwise to retrieve all evidence whose weight is in certain range, 
unless we can make our query range desirably small or far from 
those regions with crowded records. 

In Figure 6(c), we sampled the weight range [a,b] (each 
represented by a characteristic point (mid-point, length) or 

( (a+b)/2, b-a) ) from 2,608 SQL queries ISH launches when 
processing a random webpage. We also flagged some areas as 
“desirable area”, where “desirable queries” appear (queries 
possessing small [a,b] ranges or avoiding the most frequent weight 
of all records, i.e. x-coordinate of the peak in Figure 6(a) and (b) ). 

We see in this figure that the mid-points of all sampled ranges 
vary averagely from 0 to 70, which include the most frequent 
weight in both datasets (15 for Figure 6(a) and 20 for (b)). 
Moreover, though ISH sometimes successfully confirms of no 
matching (denoted by ranges with negative length in Figure 6(c) ), 
the range length in many queries is not desirably short. Therefore, 
there exist too many queries, whose characteristic point is located 
far from our “desirable area”. These insufficiently optimized 
queries lead to tons of I/Os and verification computations, thus 
deteriorating the overall performance of ISH. 

6.3 Effects of parameters on SIL 
Based on our analysis in the above sections, the performance 

of SIL is mainly influenced by the following aspects: the 
“compressing rate” parameter k, dictionary size, query text length, 
similarity threshold, and substring length threshold. We run 
EvITER on different parameter settings and record the results, 
from which we have the following observations: 
 The parameter k is tightly related to every aspect of the filter. 

Larger k means stronger filtering power (Figure 7(a)), less 
verification time, and larger filter size. However, on average 
situation when δ=0.85 and L=10, the result shows that the 
most competitive k value is among 1, 2, and 3 (see Figure 
7(b)), which makes the two phases of filtration and 
verification more balanced. This supports our discussion about 
compromising between the two phases. 

 Though the performance of SIL depends much on the inherent 
property of the dataset (e.g. query texts about chemical science 
certainly run quickly on our URL dictionary because the 
number of word matching is expected to be small), it still 
exhibits a linear increase in running time under different 
dictionary size and query text length, which is expected in our 
cost analysis in Section 4.4. 
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6.4 Comparison between EvSCAN & EvITER 
Besides the experimental analysis on ISH and SIL, we also 

performed a comparison between the two algorithms we propose: 
EvSCAN and EvITER. Instead of dictionary size and query length, 
in this subsection we mainly focus on the two varying threshold 
parameters: similarity threshold and substring length threshold. 

Through the comparison we found that: 
 The similarity threshold significantly affects the time 

consumed by our two algorithms. Whenδdecreases from 0.95 
to 0.7, both algorithms requires 4 times more running time. 
This is easily explained by our filtering condition: whenδ
decreases, the signature sets of most strings get larger to make 
the chance of signature overlapping increase, while τ(.) for 
most strings leaves almost unchanged. Thus, it’s easier for 
evidence to pass the filter. 

 When L=10, k=3 and δ=0.85, EvITER shows a performance 
increase of about 25% over EvSCAN, this is because EvITER 
reduces the operation of scanning an inverted list, by iterating 
from one evidence set to another. When the similarity 
threshold is high and the candidate evidence set is small, the 
advantage of EvITER will be more obvious. 

 To our surprise, when L is above 15, EvITER is gradually 
outperformed by EvSCAN. This result is not expected by us. 
We carefully studied this issue and find the reason: because 
the candidate set ES(m) we maintain (recall in Section 4.2) 
tends to get bigger when m is longer, therefore EvITER will 
spends more time iterating it as larger L allows longer m to be 
checked. 

7. RELATED WORK 
In the literature "approximate string matching" refers to the 

problem of finding a pattern string approximately in a text. There 
have been many studies on this problem. See [9] for an excellent 
survey. The problem of AME is different: searching in a long text 
to approximately match a string from a dictionary. In addition, 
AME is also different to the problem of text document indexing 
(finding dictionary documents approximately containing a query 
string) and string similarity joins (identifying approximate 
matching string pairs, each from one of two columns of strings). 

To measure the similarity of a pair of strings, generally all 
similarity functions can be categorized as token-based and 
character-based, depending on what they regard strings as: sets of 
tokens, or sequences of characters. 

The token-based AME problem, as discussed in this paper, can 
be straightforwardly reduced to set similarity join [1, 4, 6, 10]. 
Paper [4] discussed the framework and implements of a primitive 
operator SSJoin for performing similarity joins, on which a variety 
of similarity functions can be applied. Paper [1] solved the 
similarity join problem by converting set-based similarity distance 
into hamming distance between binary vectors, and studying the 
number of shared segments of two divided vectors. In [2], 
Chakrabarti et al. proposed a 0-1 matrix-based AME filter. In this 
paper we showed that their approach touches upon a NPC decision 
problem, whose intractability we briefly prove in the Appendix. 

As a complement to the token-based approach, the 
character-based approximate string-matching problem has been 
well studied by researchers [9]. Early methods handling the edit 
distance constraints mostly work on the relationship of edit 
distance and gram sharing [12]. Due to the dilemma in choosing 
gram length, [8] proposes VGRAM, namely variable-length gram 



 

to address the problem. For non-gram-based approaches, Wang et 
al. uses inverted lists to index the neighborhood of dictionary 
strings, and enhances previous neighborhood generation methods 
by reducing the upper bound of the neighborhood size [13].  

Another line of related work is on inverted list merging, 
because the filtration phase needs inverted list processing. In [7], 
this problem is formalized into T-occurrence problem, and three 
efficient algorithms are proposed. T-occurrence problem requires 
that the threshold T should be independent from any list nodes, 
which is not satisfied by our method (our threshold min{τ(m),τ(r)} 
varies with the rid information in list nodes), the list processing 
technique in [7] is orthogonal to our solution here, and can be used 
(by some modification) on SIL index in a complementary manner. 

8. CONCLUSION 
In this paper, we studied the AME problem (Approximate 

Member Extraction). Under the framework of 
filtration-verification, we analyzed the issue of trading between 
the two phases, and proposed a new filtering condition and 
corresponding filter called SIL. Then we designed two algorithms 
for SIL: EvSCAN and its incrementally optimized version 
EvITER, which saves the cost of scanning some inverted lists by 
progressively maintaining a candidate evidence set of the current 
substrings. We also addressed the static threshold problem of 
previous filters, and gave a solution for it on our SIL. Finally we 
reported the performance of our filtering algorithms through 
theoretical and experimental analysis. 

9. APPENDIX 
Theorem 1 in [2] provides a method of filtering by converting 

it to a decision problem about 0-1 matrices. Here, we give the 
proof about its intractability. For convenience we call it 
Constrained Solid Submatrix problem and describe it as below: 

(Constrained Solid Submatrix problem) Given a 0-1 matrix A, 
whose size is p*q and two weight functions w1(i) (1 ≤ i ≤ p) and 
w2(j) (1 ≤ j ≤ q), we need to determine if there exsits a subset 
I={ i1, i2, …, ir } from the rows and a subset J={ j1, j2, …, jc } from 
the columns such that for any i’∈I and j’∈J, A[i’][j’]=1, and 
w1(i1)+ w1(i2)+…+ w1(ir) ≥δ, w2(j1)+ w2(j2)+…+ w2(jc) ≥τ(δ 
and τ are two given thresholds) 

THEOREM 4 (intractability of Constrained Solid Submatrix 
problem) Constrained Solid Submatrix problem is NP-Complete. 
Proof Outline: We prove by reducing to Balanced Complete 
Bipartite Subgraph problem, which requires finding a K*K 
complete bipartite subgraph in a given bipartite B=<V1∪V2, E>. 
It is already proven to be NP-Complete (see page 196 in [5]). 

For any instance of the Balanced Complete Bipartite 
Subgraph problem, let w1(i)=1,w2(j)=1,δ=τ= K, and construct 
a |V1|*|V2| 0-1 matrix, whose elements are assigned as follow: 
 

    1   If the i-th vertex in V1 and j-th 
A[i][j]=  in V2 are adjacent. 
    0   Otherwise. 
 Then we can show that A has a constrained solid submatrix if 

and only if the corresponding Balanced Complete Bipartite 
Subgraph problem has a solution. This concludes the reduction. 
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