

Efficient Algorithms for Approximate Member Extraction
Using Signature-based Inverted Lists

Jiaheng Lu Jialong Han Xiaofeng Meng

School of Information, Renmin University of China Beijing 100872, China
Key Laboratory of Data Engineering and Knowledge Engineering, Ministry of Education, China

 jiahenglu@ruc.edu.cn jialonghan@gmail.com xfmeng@ruc.edu.cn

ABSTRACT

We study the problem of approximate membership extraction
(AME), i.e., how to efficiently extract substrings in a text
document that approximately match some strings in a given
dictionary. This problem is important in a variety of applications
such as named entity recognition and data cleaning. We solve this
problem in two steps. In the first step, for each substring in the text,
we filter away the strings in the dictionary that are very different
from the substring. In the second step, each candidate string is
verified to decide whether the substring should be extracted. We
develop an incremental algorithm using signature-based inverted
lists to minimize the duplicate list-scan operations of overlapping
windows in the text. Our experimental study of the proposed
algorithms on real and synthetic datasets showed that our solutions
significantly outperform existing methods in the literature.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems – Textual Databases

General Terms
Algorithms

Keywords
Approximate Member Extraction, Filtration-verification,
Approximate string matching, Incremental Computation

1. INTRODUCTION
In this paper we study the problem of finding substrings in a

text document M that approximately match (e.g. having similarity
scores above a given thresholdδ) some strings in a given
dictionary R of strings. This problem, called AME (short for
Approximate Member Extraction), arises in many applications, as
illustrated by the following examples.
Named Entity Recognition: With a given document, we want to
locate pre-defined entities such as person names, conference
names, and company names. We want this extraction to be appro-
ximate, i.e., we allow slight mismatches in the substrings. For
instance, as shown in Figure 1, suppose we have a collection of
conference names, such as “ACM SIGMOD” and “CIKM
Conference.”

 Figure 1. Approximate member extraction

We want to extract all conference names from a given document.
We want to find matches such as “CIKM 2009 Conference” and
“CIKM International Conference”, even though they do not match
the string “CIKM Conference” in the dictionary exactly.
Data Cleaning: Documents in many applications could be “dirty”
when it contains inconsistencies. Often we need to clean the
inconsistencies. We need to perform data cleaning and integration
by identifying the dirty words based on an existing dictionary.

One naive way to solve the AME problem is to enumerate
each substring m of M and check if m matches strings in R
approximately. Several algorithms have been proposed for doing
the checking efficiently using two steps. In the first step, we filter
the dictionary strings that are very different from m. In the second
step, we compute the similarity between the remaining candidate
strings and the string m to verify its approximate membership.

There are two methods to do the filtration in the first step. One
is based on an inverted index on the dictionary R. In this method,
strings are regarded as collections of tokens. For each token, the
index stores the ids of the strings that include this token. For a
given string m, we can find candidate similar strings in the
dictionary by accessing the lists of the tokens in m and finding
those string ids that have enough occurrences on the lists. The
second method is based on signatures generation [1, 4]. This
method focuses on exploring signature schemes that convert a
string to a set of hash codes and filtering irrelevant strings using
their signatures.

Recently, researchers have been trying to combine these two
methods. For instance, Wang et al. propose a method called NGPP
[13] to solve the AME problem by assuming the edit-distance
similarity function. They shift and extend the partitions of
dictionary strings to obtain an inverted index on all the partition
variations (an implicit signature). Then by generating the
neighborhood of partitions of document substrings and probing the
index, the algorithm filters most irrelevant strings and performs
verifications for the remaining strings. Chakrabarti et al. [2]
studied how to solve the AME problem with other similarity score

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CIKM’09, November 2-6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-512-3/09/11...$10.00.

rid String

1 CIKM Conference

2 ACM SIGMOD
…。 …

…The CIKM 2009
Conference will be
held in Hong Kong,
China…

…CIKM International
Conference is a …

functions such as Jaccard coefficient using a method called ISH
(Inverted Signature-based Hashtable), which encodes a string and
its signatures into a 0-1 matrix. After generating a 0-1 matrix by
computing the “bitwise-or” of all small matrices encoded with
dictionary strings, ISH converts the problem of searching possible
evidence into finding a certain 0-1 submatrix in the big matrix.

Our work in this paper is motivated by the following
observations: (1) The ISH method generates signatures for strings
and prune strings that share signatures with a total weight under a
certain lower bound (see Para 8, Page 4 of [2]). Unfortunately, the
lower bound may be too high, causing false negatives (see
Example 1 for a counter-example). (2) The filtration processing of
ISH involves an NP-Complete problem requiring finding solid
submatrix (containing only 1) from a given 0-1 matrix under
certain constraints. We give the reduction proof in this paper from
an NP-Complete problem: Balanced Complete Bipartite Subgraph
(see Appendix). Due to the intrinsic complexity, [2] solves this
problem by a simple heuristics, which significantly increases the
number of false positives, and thus incurs numerous I/Os in the
verification phase and deteriorates overall performance. But our
research in this paper shows that we can avoid the NP-complete
complexity to efficiently solve AME problem by adopting a novel
index structure, which effectively controls the number of false
positives and consequently improves the overall performance. (3)
NGPP[13] and ISH[2] both require thatδ is provided when
preprocessing the data and generating an index for the filter. Once
the threshold is fixed, these filters no longer support queries with
thresholds other thanδunless the index is re-generated.

EXAMPLE 1. (Example to illustrate the false negative in [2])
Under Jaccard similarity measurement, with weight assignment
{(a, 6), (b, 3.52), (c, 3.51), (d, 3.49), (e, 3.48), (f, 1)}, string
r=”bcde” matches m=“abef” under the similarity threshold δ
=1/3. But from the following table we see that [2] incorrectly
determines that m and r are impossible to match under the
threshold 1/3, though their real similarity is 1/3.

String
Signatures

(k=3)
τ value Shared

Signatures

Lower Bound
Required by
ISH Filter

r=“bcde” {b,c,d} τ(r)=1.187

m=”abef” {a,b,e} τ(m)=3.67
{(b, 3.52)} ≥3.67

We summarize our contributions as follows:
 We adopt the prefix filtering technique [4], and propose new

theorems which are all strictly proved and well applied as
filtering conditions in our method. These theorems convert
approximate matching to prefix signatures sharing, and give a
tighter bound. More importantly, this filtering technique
brings no false negatives.

 We utilize an inverted-list-based filtering index SIL and
propose corresponding algorithm called EvSCAN. By
performing inverted list scanning instead of introducing
matrix-based combinatorial problem, EvSCAN naturally
avoids solving NP-Complete problem. We also apply
incremental optimizations on EvSCAN and propose EvITER,
which effectively reduces the duplicate list-scanning
operations when the substring window shifts over a large
document M. Compared with prior solutions, our method
produces far less false evidences, thus achieves better

filtration-verification balance and consequently improves the
overall performance significantly.

 We modify our SIL to answer queries with dynamic similarity
thresholds. Specifically, once initialized with a lower bound
δ0, our filter works for any query with a threshold δ≥δ0.
However previous filters only allow static similarity threshold
and need to be re-initialized (i.e., the indices in filter has to be
generated again) once the query threshold is changed.

 We provide detailed and accurate experimental results to
support our argument. We show that SIL is significantly
efficient than ISH, both in filtering power and overall running
time, and explain the intrinsic reason by analyzing their
runtime statistics in details. We also compare EvSCAN and
EvITER under various situations, and show that our
incremental optimization is effective.
The following sections are organized as follows:
Section 2 formally defines AME and gives some preliminaries.

Section 3 complements the theory of prefix filtering and applies
them to build the SIL structure and EvSCAN algorithm. Section 4
introduces the EvITER incremental algorithm. Section 5 shows
how to support dynamic thresholds. Section 6 reports our
experimental results. Section 7 discusses related work. Section 8 is
the conclusion of our study.

2. PRELIMINARIES AND PROBLEM
STATEMENT
2.1 Some Notations and Problem Statement

In this paper, we use the letter “t” to denote a token, and the
other lower-case letters are used for strings. We regard strings as
sets of tokens. For any token t, we denote wt(t) as the weight of t
(e.g. IDF weight), and for any string s, we define wt(s)
as∑∈st

twt)(, i.e. the sum of weights of all tokens in s. Based on

the above notations we define Jaccard similarity of any strings s1
and s2 as:

)(
)(),(

21

21
21 sswt

sswtssJ
∪
∩

= .

EXAMPLE 2. (Reusing the string and weight configuration of
Example 1)Under weighted Jaccard similarity, the two strings
m=“abef”, r=”bcde” have a similarity of wt({b, e})/wt({a, b, c, d,
e, f})=(3.52+3.48)/(6+3.52+3.51+3.49+3.48+1)=1/3.

With all notations introduced, we present the formal
description of AME as follow:

Sometimes we are only interested in substrings whose length
is up to a length threshold L, so we may as well require that |m| ≤
L. Here any extracted m is called approximate member of R, and
corresponding evidence for r in R. Note that our algorithms we
present later can handle any similarity function that satisfies the
following properties:

 Sim(m,r) is symmetric, i.e., Sim(m,r) = Sim(r,m).

Problem Statement
Given a dictionary R of strings and a similarity threshold

δ∈[0,1], then a query M is submitted. Here M represents a
relatively long string (e.g. a text file). The task of AME is to
extract all M’s substrings m, such that there exists some r∈R
satisfying Sim(m,r) ≥δ.

)(

)(),(
mwt

rmwtrmSim ∩
≤ .

 (Symmetrically we have
)(

)(),(
rwt

rmwtrmSim ∩
≤ .)

The first property is natural, and the second is also shared by
many similarity functions [2]. For example, for any m and r, we

have
)(

)(
)(
)(),(

mwt
rmwt

rmwt
rmwtrmJ ∩
≤

∪
∩

= because wt(m ∪ r)

≥wt(m), so the Jaccard similarity is capable of serving as a
similarity function in our discussion.

2.2 The Filtration-Verification Framework
To efficiently solve AME and other related problems,

researchers have been designing methods following two phases of
filtration and verification [1, 2, 4, 7, 13]. In the AME problem,
employing this framework usually requires building an indexing
structure for the dictionary R. Recall that for each approximate
member m extracted, we define the string r in R that is similar
enough with m to be m’s evidence. Thus, the task of extracting all
approximate members from M can be simply reduced to
determining whether there exists any evidence for each substring
of M, and filtration-verification is actually referred to as evidence
filtration and evidence verification.

Generally, our foundation of filtration is based on some
necessary condition (denoted as NC) of our matching criterion
Sim≥δ, that is, if some candidate evidence is real evidence, it
must satisfy NC. With the dictionary R given offline, we build an
index that quickly recommends for a query m ALL potential
evidence that meets NC, so that true evidence is never missed.
Then the evidence is verified against the actual matching criterion
to determine whether the string m is a true approximate member.

Note that NC plays a key role in our whole framework. It
ensures the correctness of the whole algorithm. Moreover, it
determines how balanced our framework is. We can evaluate it
through:
 How powerful is it? That is, does it eliminate as much false

evidence as possible?
 Is it easy-going? That is, can we build a quick index to test it

at low cost?
There is a tradeoff in the cost between two phases of

filtration-verification. For example, with all dictionary strings
being potentially possible evidence, the most easy-going filtration
approach for them is obviously “no filtration”, which leads to a
brute-force method of scanning the whole dictionary. On the other
hand, if we try to make our filtration the most powerful, i.e., it
produces no false positive and achieves the smallest verification
time; it will be expensive to perform such filtering. As a matter of
fact, we need to obtain a beneficial compromise between two
phases. In the following sections, we will intentionally highlight
this issue through our theoretical and experimental analysis.

2.3 The K-Signature Scheme
The k-signature scheme is first demonstrated by Chakrabarti et

al. in [2]. It is an extension of the prefix signature idea [1]. Here
we briefly introduce some key definitions as follows:

DEFINITION 1. For a given string s and similarity threshold
δ, we sort all its tokens by their weight in descending order (if
two tokens appear with the same weight, we sort them
lexicographically), and choose the first few tokens to get a subset
Sig(s), such that τ(s)=wt(Sig(s))-(1-δ)wt(s)≥0. We call Sig(s) a
prefix signature set of string s. For convenience we call it
signature set from now on.

EXAMPLE 3. (Reusing the string and weight configuration of
Example 1) Letδ=0.6, then {a,b} is a signature set of m because
τ(m)= wt({a,b})-(1-0.6)*wt({a,b,e,f})=9.52-5.6=3.92≥0.

Based on its definition, the following is some facts about
prefix signature set:
 For any string s, Sig(s) always exists because we can let

Sig(s)=s, thus making τ(s)=wt(s)-(1-δ)wt(s)=δ*wt(s)≥0,
i.e., we choose itself to be its signature set.

 A string may have more than one signature set with different
sizes. For instance in Example 3, we see that m has another
different signature set {a,b} besides itself.
One way to ensure the uniqueness of signature set is to use a

parameter k to determine which set we choose for a string s, where
k is a positive integer. We call this unique signature set
k-signature set, denoted as Sigk(s). When k is fixed, we select
Sigk(s) among all available signature sets as follows:
 If all signature sets’ sizes are bigger than k, choose the

smallest one.
 Else if there is any signature set whose size is exactly k,

choose it.
 Else, choose the largest one, i.e. the string itself.

In some special case, when we set k=1, we call the derived
signature scheme as min-signature scheme. When k is set to be ∞,
we will get the string itself to be its signature set.

EXAMPLE 4. (Following the configurations of Example 3) We
list the different Sig(m) under different k settings as below:

K 1 2 3 4 5

Sigk(m) {a} {a,b} {a,b,e} {a,b,e,f} {a,b,e,f}

Table 1. Signature sets controlled by K
Note that parameter k has nothing to do with the requirement

of signature set, so we may randomly set k for our filter, and even
choose different k for different strings. As a matter of fact, if we
regard signature set as a compression of information in strings,
then k is the parameter for global compression rate tuning. That is,
k only influences the performance of our filter. We will further
discuss its role in Section 3.3.

With the above description, we find that for any string s, the
signature set is actually controlled byδand k, thus should be
written as Sigk(s,δ). In fact, the parameter k is fixed to SIL and
before Section 5 we also consider thatδis static, so when the
context is clear, we still use Sig(s) to denote the signature set of s.
In Section 5, we use Sig(s,δ) because we start discussing how to
support dynamicδduring query processing.

3. FILTRATION VIA SIGNATURE-BASED
INVERTED LISTS

In this subsection, we show some nice properties about the
signature set which will be used in our algorithms. For instance, if

String m and r meet the matching condition Sim(m,r) ≥δ, m must
contain at least one of r’s signatures. This is apparently a
necessary condition for matching and can be utilized to build a
filter. In the following discussion, we’ll further explore the
property of signature sets and show that there are better filtering
conditions.

3.1 The Property of Signature Sets
LEMMA 1. For any string s and its selected signatures, we use

minsigwt(s) =)}({min)(twtssigt∈ to denote the smallest weight of

all s’s signature tokens. Then for any string s:

A token t∈Sig(s) if t∈s and wt(t) ≥minsigwt(s).

This is apparent because the selected signature tokens must
have larger weight than unselected tokens.

LEMMA 2. (PROPERTY OF PREFIX SIGNATURES). For any
string m and r, if minsigwt(m) ≥ minsigwt(r), then
wt(Sig(m)∩Sig(r)) ≥ wt(Sig(m))- wt(m-r). Here m-r refers to the
minus set of m and r.
Proof: We transform it to an equivalent form as wt(m-r) ≥
wt(Sig(m)-Sig(r)), and prove this by showing that Sig(m)-Sig(r) is
a subset of m-r .For any t∈Sig(m)-Sig(r) , we have t∈Sig(m) , so
t∈m .

Now we prove that t∉r.

Suppose that t∈r. because t∈Sig(m), we know that wt(t)
≥minsigwt(m) ≥ minsigwt(r) . From t∈r , wt(t) ≥minsigwt(r) and
Lemma 1, we conclude that t∈Sig(r). This is inconsistent with the
fact that t∈Sig(m)-Sig(r) . So t∉r .

From t∉r and t∈m , it’s obvious t∈m-r. So Sig(m)-Sig(r) is a
subset of m-r , easily leading to the result that wt(m-r) ≥
wt(Sig(m)-Sig(r)) . ▉

In Lemma 2, we illustrate the signature set overlapping
relationship between matching strings. Intuitively this inequality
condition is tighter than other conditions proposed in [1], and we
believe this property is also useful in other researches involving
prefix signatures. However, the set minus operator seems costly to
handle, so we need to make this condition more easy-going. We
solve this by introducing Theorem 1 as follow:

THEOREM 1 (FILTERING CONDITION). For any m and r that
satisfy Sim(m,r) ≥δ, wt(Sig(m)∩Sig(r)) ≥ min{τ(m),τ(r) }.

Proof: If minsigwt(m)) ≥ minsigwt(r), according to Lemma 2, we
have wt(Sig(m)∩Sig(r)) ≥ wt(Sig(m))- wt(m-m∩r)= wt(Sig(m))-
wt(m)+wt(m∩r) ≥wt(Sig(m))- wt(m)+δ*wt(m∪r) ≥wt(Sig(m))-
wt(m)+δ*wt(m)= wt(Sig(m))-(1-δ)wt(m)=τ(m) ≥ min{τ(m),
τ(r) }.

If minsigwt(m) ≤ minsigwt(r), based on the symmetry of Sim()
we have the same result. So in conclusion we have wt(Sig(m)∩
Sig(r)) ≥ min{τ(m),τ(r) }. ▉

EXAMPLE 5. (Following the configurations of Example 3)
Suppose k=2, we have Sig(m)={a,b},τ (m)= 3.92 and Sig(r)
={b,c},τ (r)=(3.52+3.51)-0.4*14=1.43. So wt(Sig(m)∩Sig(r))=
wt({b})=3.52 ≥ min{τ(m),τ(r) } = min{3.92, 1.43}=1.43.

We obtain the foundation of filtration phase of SIL so far. It’s
easy to discover that when the threshold τ(r) is computed offline,
this filtering condition only involves the signature set of all strings,

indicating the fact that the time and space requirement of our filter
is tightly related to the average signature set size of all strings in
the dictionary R, which is controlled by the parameter k. Moreover,
different k provides different filtering conditions. Among them we
need to decide which one to choose.

3.2 Filtration via SIL
Since for any matched m and r, their signature sets overlaps,

it’s easy to come up with the idea of building an inverted index
structure for the dictionary R, and filtering by merging inverted
lists and accumulating weights. After this index is built up offline,
by visiting list[t], we can quickly retrieve for any token t a list of
rid of all r in R, who contains token t as a signature. Due to the
fact that these lists only involves signatures of all strings in R, we
call this index SIL in short for signature-based inverted lists, and
Algorithm 1 below shows the method to generate an SIL index.
EXAMPLE 6. Suppose we have a dictionary R={r[1]=“SIL’s
filtering power”, r[2]=”the power of filtering by SIL”}, the
weight of each tokens are {<SIL’s, 5>, <filtering, 4>, <power,
3.5>, <SIL, 3>, <by 2>, <the, 1>, <of, 1>}. We set k=1 and δ
=0.55, then we have each strings’ signature set in Table 2 and the
SIL built as Figure 2.

rid String Signature Set

1 “SIL’s filtering power” {“SIL’s”,”filtering”}

2 ”the power of filtering by SIL” {“filtering”,”power”}

Table 2. Signature sets of R’s strings
Signature → String rids rid wt(r) τ(r)

“SIL’s” → (1) 1 12.5 3.375

“filtering” → (1), (2) 2 14.5 0.975

“power” → (2)

Figure 2. SIL and additional information for dictionary R
When a string m’s membership needs to be checked, we

simply compute the signature set of m, denoted as {t1,t2…tn}.
Then we scan all n lists that is indexed by list[t1], list[t2]…list[tn],
while aggregating the weight of ti to all rid whose record contains
ti as one of its signature. To record the aggregated weight, we may
use an array Sum[] for convenience or a hash table to save
memory space. With all lists scanned, the aggregated weight of
any rid is exactly the value of wt(Sig(m)∩Sig(r)). In fact, if any
rid appears satisfying the filtering condition of Theorem 1, i.e.
with an aggregated weight larger than min{τ(m),τ(r)}, we can
store it for later verification to determine whether it is the one that
makes m a true member.

ALGORITHM 1: BuildSIL(R, δ, k)

1 for each r∈R do

2 Sig←GenSig(r, δ, k);

 /*The function GenSig(r, δ, k) generates signature
 for r under k-signature scheme. */

3 for each t∈Sig do

4 list[t]=list[t]∪{rid(r)};//insert rid of r into list

5 return list;

Note thatτ(r) and wt(r) for any dictionary string r is computed in
the signature generating step of Algorithm 1 and they are stored in
the main memory for the later use of our algorithms (See Figure
2).

3.3 Additional Discussion
In the above discussion, one may notice that we didn’t involve

the parameter k. This again proves the fact that with any assigned
k, our algorithm will run correctly. Since the signature set is a
compression of information in a string, we will certainly get more
information if we choose a relatively large k, through which we
can target potential matching evidences to a smaller scope, thus
reducing the cost of verifying these evidences.

However, larger k causes longer inverted list length, i.e. more
cost on targeting possible evidences. For instance, if we set k = ∞,
that is, for all strings s, we set Sig(s) to be s itself, andτ(s)=δ
*wt(s), we interestingly find that our method degrades into a
common inverted-list based solution. Chakrabarti [2] first
analyzed this problem and showed that k=3 is good on average
situation, which is also proved in our experimental study.

4. OPTIMIZATION BY PROGRESSIVE
COMPUTATION

4.1 Reducing Duplicate Computations
Although EvSCAN algorithm efficiently checks the

approximate membership of each single substring m in a
document M, it ignores the overlapping between shifting substring
windows and consequently takes a lot of time on duplicate
computations. Another way to solve AME is to reduce this
problem to set similarity join, which is already well studied by
researchers [1, 4, 6]. In set similarity join, we are given SA and SB
- two columns of sets, a similarity function Sim, and a threshold
δ. The task of set similarity join is to join the two columns, where
the joining condition is Sim(SA, SB)≥δ. In AME, if we set
SA=R, SB={all substrings of M}, run set similarity join between

SA and SB and project the result set along SB, we will get the
result of AME. Though the problem of set similarity join is
explored and optimized in many papers, this method still doesn’t
notice the fact that the records in SB are quite similar with each
other – they are substrings of a long text.

In this section, based on the above observations, we believe
that the unique property of AME should be exploited separately,
and optimized method could be designed accordingly. So we study
the incremental property of Theorem 1, and demonstrate Theorem
2, in purpose of decreasing the duplicate list-scanning when
examining all substrings of M.

4.2 Optimization by Progressive Computation
Assume m ⊕ t denoting the string which we get by

concatenating token t to the tail of string m. Consider the process
of checking m and m⊕ t: we compute the signature set of m and
verify the condition in Theorem 1, then we do the same job for
m⊕ t. Intuitively the signature set of m and m⊕ t are much alike.
We observe that: if some r cannot match m and does not contain t,
it is not likely to match m⊕ t. Before we formalize our intuition
into new theorem and algorithm, we introduce Evidence Superset
by the lemma and definition below:

LEMMA 3. For any m and r that satisfy Sim(m,r) ≥δ ,
wt(m∩Sig(r))≥min{δ*wt(m),τ(r)}}.

This lemma is an inference of Theorem 1. Recall that in
previous sections we mention that Theorem 1 remains correct even
if we set different k for different strings, Lemma 3 is in fact
obtained by setting k=∞ for m in Theorem 1 (so Sig(m) is
replaced by m andτ(m) byδ*wt(m)). With Lemma 3 we define
Evidence Superset for any query substring m as follow:

DEFINITION 2. Suppose δ and k are fixed, for any string m, let
ES(m)= {r∈R| wt(m∩Sig(r))≥min{δ*wt(m),τ (r)}}, we call
ES(m) an Evidence Superset of m. Based on Lemma 3 it’s obvious
that any true evidence for m must be contained in ES(m).

From its definition, we see that ES(m) is useful since any
evidence matching m will be included in ES(m). If we can
efficiently compute ES(m) for any substring m, we can further
filter elements in ES(m) to pick out all true evidences and check
m’s approximate membership. Our intuition is formalized below.

LEMMA 4. For any string m and token t, if a dictionary
r∉ES(m) and t∉Sig(r), then r∉ES(m⊕ t).

Proof: We prove r∉ES(m ⊕ t) by showing that wt((m⊕ t)∩
Sig(r)) <min{δ*wt(m ⊕ t),τ (r)}: wt((m ⊕ t)∩Sig(r))=wt(m∩

Sig(r)) (Because t ∉ Sig(r)) <min{δ*wt(m), τ (r)}(because
r∉ES(m))< min{δ*wt(m⊕ t),τ(r)}.
▉

This lemma states a fact that if a dictionary string is far from
being evidence of current substring m and it is not a signature of
the coming token t, then it cannot be evidence when the substring
window moves to m⊕ t. However this lemma still cannot serve as
a method for efficiently computing ES(m), we further generalize

Lemma 4 to obtain Theorem 2 to demonstrate the incremental
property of ES(m).

ALGORITHM 2: EvSCAN(M, δ, k, L)

1 ResultSet←Φ;// for storing approximate members

2 for each m of M’s substrings (|m| ≤ L) do

3 Sig←GenSig(m, δ, k);

4 Initialize Sum[];//for weight aggregating

5 CandSet←Φ;// for storing candidate evidence

6 for each t∈Sig do

7 for each rid ∈list[t] do

8 Sum[rid]+=wt(rid);//aggregating weight

9 if Sum[rid]>=min{τ(m),τ(rid)} then

10 CandSet←CandSet∪{rid};

11 for each rid∈CandSet do//verification

12 if Sim(m, r(rid)) ≥δthen//true evidence found

13 ResultSet ←ResultSet∪{m};

14 break;
15 return ResultSet;

THEOREM 2. (INCREMENTAL PROPERTY). Suppose δ, k are
fixed, it holds for any string m and token t that ES(m⊕ t)⊆
ES(m)∪list[t].

Notice that the approach we build SIL determines that t∈
Sig(r) means r∈list[t], so Theorem 2 is obviously based on
Lemma 4. This theorem indicates an efficient iterative approach of
maintaining ES() for the varying substring when the right
boundary of the substring windows moves by a token. That is, we
check all elements in ES(m)∪list[t] and pick out proper ones into
ES(m⊕ t). Note that this process requires maintaining another
field recording wt(m∩Sig(r)) in the summing table sum[], so it
can be combined with the process of filtering by SIL.

Now we get a new algorithm of incrementally checking all
substrings, that is, we fix the left boundary of the substring
window and shift the other boundary to the right. While the
substring varies we iteratively maintain corresponding ES() to
filter and verify all evidence in it. Figure 3 shows this iteration
process, with an instance of M=t1 ⊕ t2. For convenience, we
denote this incremental filtering algorithm as EvITER (Evidence
Iterating), while EcSCAN in Section 3.2 is short for Evidence
Scanning.

4.3 Combining Other Filtering Conditions
In Algorithm 1 and 2, we use “VerifyAllCandidate()” to

denote the process of verification, by which one determine if m is
really a true member. Since not all r’s in CandSet are the ones that
make m a true member, we may as well make
“VerifyAllCandidate()” a small filter-verification process, via
introducing some other simple yet effective filtering conditions.
The following is exactly one of such conditions we want:

If Sim(m,r) ≥δ, then wt(m) *δ≤wt(r) ≤ wt(m)/δ.

Intuitively, under the non-weighted situation, this condition
states that if any two strings have too much difference in length,
they are not likely to match each other. To apply this filtering
condition, we need only store in memory the weight value of all
strings in R. By checking this condition for all r in CandSet, we
can quickly narrow our scope to fewer possible r, thus avoiding
more disk accessing and making computation more efficient.

4.4 Algorithm Analysis
 In this section we analyze the time and memory cost of our

algorithms, and demonstrate the advantages of EvITER over
EvSCAN. The notations to be used are listed in Table 3.

|M| The length of text used as the input of AME

|R| Dictionary size

Lr Average length of dictionary strings

Lm Average substring length

Llist Average length of inverted lists

δ Similarity threshold

E Total number of evidence that passes the filter

Cv Time cost of verifying an evidence (including disk
accessing and similarity score computing)

Table 3. Some notations in cost analysis
In addition to the above notations, we make two assumptions

in order to simplify our discussion: (1) the length of all strings is
longer than k. (2) all tokens have the same weight (e.g. 1).
Therefore, we obtain an upper bound for the signature set size of
any string.

LEMMA 5. Suppose k and δ are fixed, then for any string m with
length L, |Sig(m)| ≤ max{k,(1-δ)L}.

Proof: Because for any string m, |Sig(m)|=wt(Sig(m))≥(1-δ)
*wt(m)= (1-δ)L, the smallest signature set size is (1-δ)L.

If (1-δ)L≤ k, from the definition of k-signature set we choose
the first k tokens as signatures, so |Sig(m)|=k, else we choose the
smallest signature set of size (1-δ)L. Therefore we have |Sig(m)|
≤ max{k,(1-δ)L}. ▉

ALGORITHM 3: EvITER(M={t[1],t[2],…,t[n]}, δ, k, L)

1 ResultSet←Φ;// for storing approximate members

2 for i =1 to n do
3 Initialize Sum[];

 /*Sum[rid].s1 records wt(Sig(m)∩Sig(r(rid))) and
Sum[rid].s2 for wt(m∩Sig(r(rid))) */

4 LastES←Φ;//for iterating ES

5 for j=i to min{n,i+L-1} do //current m= t[i]…t[j]

6 ES←Φ;

7 CandSet←Φ;// for storing candidate evidence

8 update Sig(m) and maintain sum[];
 /*because m and Sig(m) changes */

9 for each rid ∈list[t]∪LastES do

10 if Sum[rid].s2≥min{δ*wt(m),τ(r(rid))} then

11 ES←ES∪{rid};

12 if Sum[rid].s1≥min{τ(m),τ(rid)} then
 CandSet←CandSet∪{rid};

13 VerifyAllCandidate(); //verification

14 LastES←ES; //iteration for the next window

15 return ResultSet;

ES(t1⊕ t2)

Figure 3. Flow of dictionary strings in EvITER

Evidence
of t1

Evidence
of t1⊕ t2

∪list[t2], checkES(t1) ∪list[t1], checkФ

Filtering
by SIL

Filtering
by SIL

With above assumptions and lemmas, the memory cost of our
SIL can be expressed as

MEMCOST=|R|max{k, (1-δ)Lr}.

 This equation is correct since every string in R produces
max{k, (1-δ)Lr} nodes at most in the inverted lists. To estimate
the time cost of our algorithms, we introduce another lemma as
below:

LEMMA 6. For each substring m, the number of inverted lists that
EvSCAN and EvITER scan are respectively |Sig(m)| and 2.
Proof (Outline): It’s obvious for EvSCAN and we only give proof
for EvITER. Consider the moment we finish checking m and
prepare for m⊕ t, we have to scan list[t] once to iterate ES(m)
into ES(m ⊕ t). Moreover, it’s possible that t replace some
signature token t’ to be a new signature, so we must scan list[t’] to
maintain the summing table sum[] for next iteration. ▉

Therefore, the filtration cost of EvSCAN and EvITER are
respectively |M|LmLlistmax{k, (1-δ)Lm} and 2|M|LmLlist. The
verification cost of EvSCAN can be estimated as ECv, while that
of EvITER is E (1+Cv) because of the O(1) evidence iteration cost
for every evidence. In summary we have

TIMECOST(EvSCAN)= |M|LmLlist max{k, (1-δ)Lm}+ ECv,

TIMECOST(EvITER)= 2|M|LmLlist + E(1+Cv).
Here we see that EvITER avoids scanning some lists by

introducing the cost of evidence iteration, so it may have some
advantage when k is large or E is small, which will be
demonstrated by our experimental results later.

5. SUPPORTING DYNAMIC SIMILARITY
THRESHOLDS

5.1 The Static Threshold Problem
In the above discussion we talk about how to perform AME

with a static similarity threshold, where the filter can be denoted
as F(R,δ0), given a dictionary R and a fixed threshold δ0,
meaning that the threshold δ0 is undesirably static. If users want
to submit a query with other thresholds, the filter has to be
re-initialized. This apparently leads to much inconvenience in
practice. In this section we will focus on this issue and show that
with a little modification, our SIL can handle this problem well.
Note that in this section, the notation Sig(s) is replaced by Sig(s,δ)
to add a dynamic threshold δ.

5.2 Solution and Analysis
In our SIL algorithm, we observe that the problem of static

threshold is caused by the definition of prefix signatures. Recall
that the prefix signatures Sig(s) for string s is a prefix subset of s
that satisfies wt(Sig(s))≥(1-δ)wt(s). Therefore, with differentδ
we need different number of signatures to build various filters.

Another observation is that, under min-signature schema, for
any string s, if a token t is selected as a signature under some
threshold, it will also be in the signature set of s when the
threshold gets lower. That is, if we initialize the filter at a
relatively low threshold δ0, when a query comes with a higher
threshold δ≥δ0, those rids whose string contains t as a signature
should be included in some nodes on list[t] of the current filter.
For simplicity we call these nodes active nodes. All we need is to
discriminate active nodes, and use them to perform filtration.

We propose Theorem 3 to provide a way to discriminate active
nodes as follow:
THEOREM 3 (SUFFICIENT AND NECESSARY CONDITION OF
MIN-SIGNATURE). Under min-signature schema, for any string
s={t1,t2…tn}, where wt(t1) ≥wt(t2) ≥…≥wt(tn), let Ui=1-(wt(t1)+
wt(t2)+…+ wt(ti))/wt(s) for any i≥1 and U0=0. We have the
following conclusion:

ti∈Sig(s,δ) if and only ifδ∈[0,Ui-1).

Because Ui-1 can be computed in the filter-constructing phase,
in every node of all inverted lists, we add a field to record Ui-1 in
order to test the conditionδ∈[0,Ui-1) to decide whether this is an
active node. Moreover, we can sort all nodes in a list in
descending order of corresponding Ui-1. In this way, for any
threshold δ, all active node in a list must form a prefix of the list.
Therefore, we may stop our scan once an inactive node is found,
by which we avoid scanning the whole list and enhance the
performance.

Note that this modification should only be applied under the
min-signature scheme. In fact, in Section 6 we will show that
under most cases, min-signature schema is enough to serve as a
good choice.

EXAMPLE 8. (adopting the configuration in Example 6)
Suppose we initialize the modified filter with min-signature
schema (k=1) and δ0=0.55 as Figure 4. We have a query with
δ=0.7, then all nodes in Figure 4 that is circled out become
active nodes and should be scanned.

Signature → String rids and U

“SIL’s” → (1, 1.0)

“filtering” → (2, 1.0), (1, 0.6)

“power” → (2, 0.725)

Figure 4. Active nodes when δ=0.7
Comparing with the origin SIL, we see that applying this

modification only requires a little more space and additional
sorting in the filter-building phase. For queries with various
similarity thresholds, the modified SIL successfully solves the
static threshold problem, without visiting any additional list nodes
or trading query performance.

6. EXPERIMENTAL STUDY

6.1 Experimental Settings
The following filters and algorithms are evaluated in this

section:
ISH (abbreviated from Inverted Signature-based Hashtable)

is a filter proposed in [2], whose idea is to optimize the query
range of length filtering. In our experiment, we set the inverted
hashtable length b to be 11 (8 is enough according to [2]).

EvSCAN on SIL is our proposed algorithm, which filters by
scanning the Signature-based Inverted Lists. EvITER is an
optimized version of EvSCAN, which aims at reducing
unnecessary list scanning.

a. Filtering Power (DBLP)

1

100

10000

1000000

0.85 0.9 0.95

Similarity Threshold (δ)

C
an

di
da

te
 N

um
be

r
SIL
ISH

b. Running Time (DBLP)

1
10

100
1000

10000

0.85 0.9 0.95

Similarity Threshold (δ)

tim
e

(m
s)

SIL
ISH

Figure 5. Comparison between ISH and SIL (k=3, |R|=1000, L=10)

a. Record Distribution (DBLP)

0
10000
20000
30000
40000
50000

0 6 12 18 24 30 36 42 48 54 60 66

Record Weight

R
ec

or
d

N
um

be
r

b. Record Distribution (URL)

0
50000

100000
150000
200000
250000

0 9 18 27 36 45 54 63 72 81 90 99

Record Weight
R

ec
or

d
N

um
be

r

c. ISH Querying Range Sampling (DBLP)

-30
-20
-10

0
10
20
30

0 20 40 60 80

Weight Range Mid-point: (a+b)/2

W
ei

gh
t R

an
ge

 L
en

gt
h

(b
-a

)

Desirable
Area

Figure 6. Some Statistics for ISH (k=3, L=10,δ=0.85)

We ran our experiments on the following two datasets:
DBLP: It includes paper titles downloaded from the DBLP

site. We extracted 274,788 paper titles with a total size 17.8MB as
the dictionary. The query text to this dictionary is 40 web pages
from CiteSeer, each containing the title, abstract, citation, etc. of a
random paper. Tokens are separated by spaces and punctuations.

URL: The dictionary includes the first 1,838,973 URLs from
an URL dataset. The query text is 40 text files, each containing 50
random URLs from the rest of the dataset. Tokens are separated
by slashes.

On both datasets, standard IDF weight [14] is applied, and all
tests were conducted under the weighted Jaccard similarity
measurement. We mainly judge the performance of all filters via
analyzing the filtering power and overall running time of them.
We evaluate the power of filters by the candidate evidence they
produce since the size of candidate evidences has a great influence
on overall performance.

6.2 Comparing with ISH
We compared our approach EvSCAN on SIL with ISH in this

section. We first performed experiments on DBLP data (dictionary
size: 274,788 records), and our results show that ISH produced a
large amount of candidate evidences and disk-accessing, thus
spending much time on verification and could not terminate in one
hour. Therefore, we had to reduce the size of dictionary using the
first 1000 records in DBLP.

We explain this result through reviewing the filtering approach
of ISH: for every query substring m, ISH optimizes the existing
length filtering condition mentioned in Section 4.3, and uses a new
range (denoted as [a,b], a =δ*wt(m), b ≤ wt(m)/δ) as the SQL
querying condition at evidence record retrieving phase.

In Figure 6, we show the record distribution of two datasets
across the weight axis (see sub-figure (a) and (b)), where all
records distribute densely, with at most 50k and on average 10k in
a unit length of weight range (DBLP dataset). This implies that it’s
unwise to retrieve all evidence whose weight is in certain range,
unless we can make our query range desirably small or far from
those regions with crowded records.

In Figure 6(c), we sampled the weight range [a,b] (each
represented by a characteristic point (mid-point, length) or

((a+b)/2, b-a)) from 2,608 SQL queries ISH launches when
processing a random webpage. We also flagged some areas as
“desirable area”, where “desirable queries” appear (queries
possessing small [a,b] ranges or avoiding the most frequent weight
of all records, i.e. x-coordinate of the peak in Figure 6(a) and (b)).

We see in this figure that the mid-points of all sampled ranges
vary averagely from 0 to 70, which include the most frequent
weight in both datasets (15 for Figure 6(a) and 20 for (b)).
Moreover, though ISH sometimes successfully confirms of no
matching (denoted by ranges with negative length in Figure 6(c)),
the range length in many queries is not desirably short. Therefore,
there exist too many queries, whose characteristic point is located
far from our “desirable area”. These insufficiently optimized
queries lead to tons of I/Os and verification computations, thus
deteriorating the overall performance of ISH.

6.3 Effects of parameters on SIL
Based on our analysis in the above sections, the performance

of SIL is mainly influenced by the following aspects: the
“compressing rate” parameter k, dictionary size, query text length,
similarity threshold, and substring length threshold. We run
EvITER on different parameter settings and record the results,
from which we have the following observations:
 The parameter k is tightly related to every aspect of the filter.

Larger k means stronger filtering power (Figure 7(a)), less
verification time, and larger filter size. However, on average
situation when δ=0.85 and L=10, the result shows that the
most competitive k value is among 1, 2, and 3 (see Figure
7(b)), which makes the two phases of filtration and
verification more balanced. This supports our discussion about
compromising between the two phases.

 Though the performance of SIL depends much on the inherent
property of the dataset (e.g. query texts about chemical science
certainly run quickly on our URL dictionary because the
number of word matching is expected to be small), it still
exhibits a linear increase in running time under different
dictionary size and query text length, which is expected in our
cost analysis in Section 4.4.

a. Filtering Power under Different k (DBLP)

0

1000

2000

3000

4000

1 2 3 4 5
Parameter k

C
an

di
da

te
 n

um
be

r

b. Running Time under different k (DBLP)

0
2000
4000
6000
8000

1 2 3 4 5

Parameter k

Ti
m

e
(m

s)

Verification
Filtration

Filter Building Time (URL)

0

20000

40000

60000

80000

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Dictionary Size(m)

Ti
m

e
(m

s)

Figure 7. Performance under different k (L=10, δ=0.85) Figure 8. Filter building (k=3,δ=0.85)

a. Running Time (URL)

0

1000

2000

3000

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Dictionary Size(m)

Ti
m

e
(m

s)

b. Running Time (DBLP)

0
1000
2000
3000
4000

0 500 1000 1500 2000 2500

Text Length (tokens)
Ti

m
e

(m
s)

c. Running Time (URL)

0
5000

10000
15000
20000

0 500 1000 1500 2000 2500

Text Length

Ti
m

e
(m

s)

Figure 9. Performance under different data size (k=3, L=10, δ=0.85)

a. Running Time (DBLP)

0
1000
2000
3000
4000
5000

0.7 0.75 0.8 0.85 0.9 0.95

Similarity Threshold (δ)

Ti
m

e
(m

s)

EvITER

EvSCAN

b. Running Time (DBLP)

0
500

1000
1500
2000
2500

5 10 15 20 25

Substring Length Threshold (L)
Ti

m
e

(m
s)

EvITER

EvSCAN

Figure 10. Performance under different thresholds (k=3)

6.4 Comparison between EvSCAN & EvITER
Besides the experimental analysis on ISH and SIL, we also

performed a comparison between the two algorithms we propose:
EvSCAN and EvITER. Instead of dictionary size and query length,
in this subsection we mainly focus on the two varying threshold
parameters: similarity threshold and substring length threshold.

Through the comparison we found that:
 The similarity threshold significantly affects the time

consumed by our two algorithms. Whenδdecreases from 0.95
to 0.7, both algorithms requires 4 times more running time.
This is easily explained by our filtering condition: whenδ
decreases, the signature sets of most strings get larger to make
the chance of signature overlapping increase, while τ(.) for
most strings leaves almost unchanged. Thus, it’s easier for
evidence to pass the filter.

 When L=10, k=3 and δ=0.85, EvITER shows a performance
increase of about 25% over EvSCAN, this is because EvITER
reduces the operation of scanning an inverted list, by iterating
from one evidence set to another. When the similarity
threshold is high and the candidate evidence set is small, the
advantage of EvITER will be more obvious.

 To our surprise, when L is above 15, EvITER is gradually
outperformed by EvSCAN. This result is not expected by us.
We carefully studied this issue and find the reason: because
the candidate set ES(m) we maintain (recall in Section 4.2)
tends to get bigger when m is longer, therefore EvITER will
spends more time iterating it as larger L allows longer m to be
checked.

7. RELATED WORK
In the literature "approximate string matching" refers to the

problem of finding a pattern string approximately in a text. There
have been many studies on this problem. See [9] for an excellent
survey. The problem of AME is different: searching in a long text
to approximately match a string from a dictionary. In addition,
AME is also different to the problem of text document indexing
(finding dictionary documents approximately containing a query
string) and string similarity joins (identifying approximate
matching string pairs, each from one of two columns of strings).

To measure the similarity of a pair of strings, generally all
similarity functions can be categorized as token-based and
character-based, depending on what they regard strings as: sets of
tokens, or sequences of characters.

The token-based AME problem, as discussed in this paper, can
be straightforwardly reduced to set similarity join [1, 4, 6, 10].
Paper [4] discussed the framework and implements of a primitive
operator SSJoin for performing similarity joins, on which a variety
of similarity functions can be applied. Paper [1] solved the
similarity join problem by converting set-based similarity distance
into hamming distance between binary vectors, and studying the
number of shared segments of two divided vectors. In [2],
Chakrabarti et al. proposed a 0-1 matrix-based AME filter. In this
paper we showed that their approach touches upon a NPC decision
problem, whose intractability we briefly prove in the Appendix.

As a complement to the token-based approach, the
character-based approximate string-matching problem has been
well studied by researchers [9]. Early methods handling the edit
distance constraints mostly work on the relationship of edit
distance and gram sharing [12]. Due to the dilemma in choosing
gram length, [8] proposes VGRAM, namely variable-length gram

to address the problem. For non-gram-based approaches, Wang et
al. uses inverted lists to index the neighborhood of dictionary
strings, and enhances previous neighborhood generation methods
by reducing the upper bound of the neighborhood size [13].

Another line of related work is on inverted list merging,
because the filtration phase needs inverted list processing. In [7],
this problem is formalized into T-occurrence problem, and three
efficient algorithms are proposed. T-occurrence problem requires
that the threshold T should be independent from any list nodes,
which is not satisfied by our method (our threshold min{τ(m),τ(r)}
varies with the rid information in list nodes), the list processing
technique in [7] is orthogonal to our solution here, and can be used
(by some modification) on SIL index in a complementary manner.

8. CONCLUSION
In this paper, we studied the AME problem (Approximate

Member Extraction). Under the framework of
filtration-verification, we analyzed the issue of trading between
the two phases, and proposed a new filtering condition and
corresponding filter called SIL. Then we designed two algorithms
for SIL: EvSCAN and its incrementally optimized version
EvITER, which saves the cost of scanning some inverted lists by
progressively maintaining a candidate evidence set of the current
substrings. We also addressed the static threshold problem of
previous filters, and gave a solution for it on our SIL. Finally we
reported the performance of our filtering algorithms through
theoretical and experimental analysis.

9. APPENDIX
Theorem 1 in [2] provides a method of filtering by converting

it to a decision problem about 0-1 matrices. Here, we give the
proof about its intractability. For convenience we call it
Constrained Solid Submatrix problem and describe it as below:

(Constrained Solid Submatrix problem) Given a 0-1 matrix A,
whose size is p*q and two weight functions w1(i) (1 ≤ i ≤ p) and
w2(j) (1 ≤ j ≤ q), we need to determine if there exsits a subset
I={ i1, i2, …, ir } from the rows and a subset J={ j1, j2, …, jc } from
the columns such that for any i’∈I and j’∈J, A[i’][j’]=1, and
w1(i1)+ w1(i2)+…+ w1(ir) ≥δ, w2(j1)+ w2(j2)+…+ w2(jc) ≥τ(δ
and τ are two given thresholds)

THEOREM 4 (intractability of Constrained Solid Submatrix
problem) Constrained Solid Submatrix problem is NP-Complete.
Proof Outline: We prove by reducing to Balanced Complete
Bipartite Subgraph problem, which requires finding a K*K
complete bipartite subgraph in a given bipartite B=<V1∪V2, E>.
It is already proven to be NP-Complete (see page 196 in [5]).

For any instance of the Balanced Complete Bipartite
Subgraph problem, let w1(i)=1,w2(j)=1,δ=τ= K, and construct
a |V1|*|V2| 0-1 matrix, whose elements are assigned as follow:

 1 If the i-th vertex in V1 and j-th
A[i][j]= in V2 are adjacent.
 0 Otherwise.
 Then we can show that A has a constrained solid submatrix if

and only if the corresponding Balanced Complete Bipartite
Subgraph problem has a solution. This concludes the reduction.

ACKOWLEDGEMENT
The authors are grateful to Prof. Chen Li for his suggestions to

motivate this work and thanks anonymous reviewers for their
constructive comments. This research was partially supported by
the grants from 863 National High-Tech Research and
Development Plan of China (No: 2009AA01Z133,
2007AA01Z155, 2009AA011904), National Science Foundation
of China (NSFC) under the number (No.60833005) and Key
Project in Ministry of Education (No: 109004).

REFERENCES
[1] A. Arasu, V. Ganti, R. Kaushik. Efficient exact set-similarity

joins. In VLDB, pages 918-929, 2006.
[2] K. Chakrabarti, S. Chaudhuri, V. Ganti, D. Xin. An efficient

filter for approximate membership checking. In SIGMOD
Conference, 2008.

[3] A. Chandel, P. C. Nagesh, and S. Sarawagi. Efficient batch
top-k search for dictionary-based entity recognition. In ICDE,
page 28, 2006.

[4] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator
for similarity joins in data cleaning. In ICDE, page 5, 2006.

[5] M.R.Garey and D.S.Johnson. Computers and Intractability:
Guidance to the Theory of NP-Completeness.

[6] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S.
Muthukrishnan, and D. Srivastava. Approximate string joins
in a database (almost) for free. In VLDB, pages 491-500,
2001.

[7] C. Li, J. Lu, and Y. Lu. Efficient merging and filtering
algorithms for approximate string searches. In ICDE, pages
257–266, 2008.

[8] C. Li, B,Wang, X. Yang, VGRAM: Improving performance
of approximate queries on string collections using variable
length grams. In VLDB 2007.

[9] G. Navarro. A guided tour to approximate string matching.
ACM Comput. Surv., 33(1):31–88, 2001.

[10] S. Sarawagi, A.Kirpal, Efficient set joins on similarity
predicates. In SIGMOD Conference, 2004.

[11] A. Singhal. Modern information retrieval: A brief overview.
Bulletin of the IEEE Computer Society Technical Committee
on Data Engineering, 24(4):35-43, 2001.

[12] E. Sutinen and J. Tarhio. On using q-grams locations in
approximate string matching. In ESA, pages 327-340, 1995.

[13] W. Wang, C. Xiao, X. Lin, C. Zhang. Efficient approximate
entity extraction with edit distance constraints. In SIGMOD
Conference, 2009.

[14] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes:
Compressing and Indexing Documents and Images. Morgan
Kaufmann, 1999.

[15] A. C. Yao and F. F. Yao. Dictionary loop-up with small
errors. In CPM, pages 387-394, 1995.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

