
Continuous Density Queries for Moving Objects

Xing Hao
School of Information

Renmin University of China
haoxing@ruc.edu.cn

Xiaofeng Meng
School of Information

Renmin University of China
xfmeng@ruc.edu.cn

Jianliang Xu
Dept of Computer Science

Hong Kong Baptist University
xujl@comp.hkbu.edu.hk

ABSTRACT
Monitoring dense areas, where the density of moving ob-
jects is higher than the given threshold, has many applica-
tions like traffic control, bandwidth management, and col-
lision probability evaluation. Although many studies have
been done on density queries for moving objects in highly
dynamic scenarios, they all focused on how to answer snap-
shot density queries. In this paper, we focus on continuously
monitoring dense regions for moving objects. Based on the
notion of safe interval, we propose effective algorithms to
evaluate and keep track of dense regions. Experimental re-
sults show that our method can achieve high efficiency when
monitoring dense regions for moving objects.

Keywords
Moving objects, continuous density queries, safe interval,
Quad-tree

1. INTRODUCTION
Continuing advances in embedded systems, mobile com-

munications, and positioning technologies have given rise to
new applications like vehicle fleet tracking, watercraft and
aircraft navigation, and emergency E911 services for cellu-
lar phone users. Such applications have triggered new re-
search towards supporting location-based services in mobile
environments. Current work in this area focuses mainly on
modeling and indexing of moving objects, and optimizing
spatio-temporal range and aggregation queries, k -nearest-
neighbor queries, and selectivity estimation.

In this paper, we focus on density queries, which are im-
portant but have received attention only recently [2, 4, 7].
A region is dense if it has a high concentration of moving
objects. Identifying dense regions is valuable for many appli-
cations like traffic control, resource scheduling, and collision
probability evaluation [2]. For example, traffic congestion in
large cities may be alleviated if traffic databases have been
enhanced with the ability to predict dense regions that might

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiDE 08, June 13, 2008, Vancouver, Canada.
Copyright 2008 ACM 978-1-60558-221-4 ...$5.00.

be developed in the near future, and commuters could thus
choose their routes to avoid jams.

Hadjieleftheriou et al. [2] introduced the problem of den-
sity queries, and presented several algorithms to evaluate
such queries. Jensen et al. [4] have defined effective den-
sity queries. In both studies, a dense region is defined using
the notion of region density : the density of a region in a
2-dimensional space is defined as the ratio of the number of
moving objects in this region to its area. A density query
returns the regions with a density higher than some user-
specified threshold. Recently, Ni et al. [7] pointed out some
drawbacks when answering density queries, such as ambigu-
ity of answers, regions with no arbitrary shape or size, and
no local density guarantees. The reason is that the previous
work [2, 4] did not use an appropriate definition of dense
regions. Ni et al. proposed a new definition of density,
called Pointwise-Dense Regions (PDRs). Under this defi-
nition, they can answer density queries unambiguously and
report all dense regions, regardless of shape and size. More-
over, PDR queries represent a more general class of density
queries than dense-cell queries in [2] and the effective den-
sity queries in [4], since under proper conditions the answer
to a PDR query includes the answer to those queries.

However, most of the prior work studied snapshot density
queries only. In [4], for each cell, they maintain a histogram
and record the number of objects in the cell. Once the ob-
jects update their locations, the histograms need to be up-
dated. In this paper, we study continuous density queries
for moving objects. In the beginning, we partition the space
into a grid and compute initial dense regions. We then con-
struct a Quad-tree upon grid cells. In the Quad-tree, we
record the state of each cell, i.e., dense or sparse, based
on which dense regions can be computed. Furthermore, we
compute for each dense region the interval during which the
region will keep the current state, which we call safe interval
of the region. Comparing with maintaining histograms, the
cost of maintaining safe intervals is expected to be lower.
In [4], every cell has a histogram that records the object
numbers at time instances t0, t1, t2, · · · , tm, where t0 is the
query issuing time and (tm−t0) is the duration of the query.
In contrast, our method only maintains (tm − t0) as a safe
interval if the object numbers at those time instances are
all above the dense threshold. Moreover, when an object
updates, all histograms that the object corresponds to need
to be re-calculated even if the update does not influence the
state of the cell. In our approach, however, we only need to
re-calculate the safe intervals of the regions that are influ-
enced by the updated object.

Our contributions in this paper can be summarized as
follows:

• We propose an efficient method to monitor continuous
density queries based on a notion of safe interval.

• We present a Quad-tree based scheme to maintain safe
intervals for dense regions, which improves the effi-
ciency of answering continuous density queries.

• Experimental results show that our method can achieve
high efficiency when monitoring dense regions for mov-
ing objects.

The rest of the paper is organized as follows. Section 2
surveys the related work. Section 3 gives the definition and
the algorithms of the continuous density queries. Experi-
mental evaluation is presented in Section 4. Finally, Section
5 concludes the paper.

2. RELATED WORK

2.1 Snapshot Density Queries
Querying dense regions for moving objects was first inves-

tigated in [2]. The objective is to find the regions in space
and time with a density higher than the given threshold.
They found difficult to answer general density queries and
hence simplified the definition of dense regions. Specifically,
they partition the data space into disjoint cells, and den-
sity queries return cell-based regions, instead of arbitrary
regions that satisfy the query conditions. This scheme may
lead to loss of answers. To solve this problem, Jensen et al.
[4] defined an effective density query (EDQ) to guarantee
that there is no answer loss. Nevertheless, there might be
multiple overlapping dense regions. Jensen et al. suggested
reporting only a set of non-overlapping dense regions to an
EDQ. However, this proposal still suffers from the drawbacks
such as lack of unique answers and lack of local density. Ni
et al. [7] argued that these drawbacks arise because of in-
appropriate definition of dense regions. They proposed the
use of Pointwise-Dense Regions (PDRs), a new definition
of dense regions, which helps avoid all the aforementioned
problems. Nevertheless, the prior work all focused on snap-
shot density queries only, where the results are found based
on a snapshot of the location dataset [1]. In contrast, in this
paper we investigate continuous density queries for moving
objects.

2.2 Continuous Spatio-Temporal Queries
Continuous queries are usually repeatedly evaluated with

the available location information and their answers are changed
with location updates of the moving objects [1]. In [11] the
server returns a valid region of the answer, and in [12] the
server returns a valid time. In general, these two approaches
return the validity of the results. Assuming computational
and storage capabilities at the client side, Xu et al. [10] pro-
posed to cache the previous result in the client side with a
validity mechanism. Previously cached results can be used
to prune the search for new results of k -nearest-neighbor
queries and range queries [5]. Precomputing the result was
investigated in [9]. If the trajectory of the query movement
is known previously, then by using computational geometry
for stationary objects or velocity information for moving ob-
jects, the objects that will be nearest neighbors can be iden-
tified. If the trajectory information is changed, the query

needs to be reevaluated. Monitoring continuous queries have
been investigated in [6, 3]. Mokbel et al. [6] proposed eval-
uating the query incrementally. Instead of reevaluating the
query and producing the whole query answer when the lo-
cations change, the query processor outputs positive and
negative updates of previously reported answers. A positive
update refers to an object being added to the query answer,
whereas a negative update indicates an object being removed
from the answer. Hu et al.[3] proposed a generic monitoring
framework for range and kNN queries. The above stud-
ies are interested in proximate objects around query points,
whereas density queries evaluate localized distributions of
the objects. To the best of our knowledge, this is the first
work to investigate continuous density queries. We provide a
definition of continuous density queries for moving objects,
which returns useful answers and is amenable to efficient
computation. Furthermore, we propose the notion of safe
interval for dense/spare regions to support efficient process-
ing of continuous density queries.

3. CONTINUOUS DENSITY QUERIES
We assume that a collection of objects are moving on the

space under consideration, where each object is capable of
transmitting its location and velocity to the central server.
The central server can predict the object positions based
on the location and velocity information, and continuously
answer density queries. When an object changes its velocity,
it updates the new velocity to the central server.

Definition 1 (Continuous Density Query): A continuous
density query returns all the regions that satisfy the follow-
ing three conditions:

1. The density of the region is no less than ρ;

2. The minimum area of our interest is s and any subarea
of the region with an area larger than s must be dense;

3. No two regions in the result set overlap with each
other.

Conditions 1) and 2) indicate that each dense region must
have more than ρ · s objects. Condition 3) is provided to
simplify the search of dense regions, as did in the previous
work.

We use the TPR-tree to index the moving objects [8]. In
the TPR-tree, the position of a moving object is represented
by a vector including the reference position and the velocity
— (p(tref), v). We can predict the future location at time t
using the following formula:

p(t) = p(tref) + v · (t− tref).

In order to find local dense regions, we recursively par-
tition the space by a Quad-tree. The Quad-tree is used to
store the state (i.e., dense or sparse) of a subspace, as well
as the validity in time which we call safe interval of the sub-
space. Thus, a node in the Quad-tree is represented as ((row,
col), level, state, safe interval), where (row, col) is an index
to identify the node, and level denotes the level of the tree
that the node belongs to. If the node is a leaf, the state can
be 0 or 1, which indicates the region represented by the node
is sparse or dense. For a non-leaf node, the state can be 0,
1, or 2, where 0 indicates all its children nodes are sparse, 1
indicates all its children nodes are dense, and otherwise the

c8 c9

c7
c6

n2

…...

r c1

n1

c2 c3

c4
c5

Figure 1: An example of Quad-tree.

state is 2. The safe interval is the valid time of the state,
which is formally defined as follows:

Definition 2 (Safe Interval): The safe interval is the
time period for which the region keeps its current state. For
example, if the region is dense, it will remain dense for at
least a time period of safe interval. After that, the state of
the region may or may not change.

Next we will proceed to discuss how to build a Quad-tree
and compute the safe intervals, followed by how to answer
continuous density queries using the Quad-tree.

3.1 Building the Quad-Tree
As aforementioned, to facilitate searching dense regions,

we partition the space into a grid by employing a Quad-
tree. More specifically, the space is recursively divided into
four quadrants until the area of the subspace is less than the
threshold s given in the density query definition. We set s
as the stop condition since it is the minimum area we should
consider for a dense region according to the definition. Given
a space with an area of S, the depth of the Quad-tree is:

L = dlog4

S

s
e+ 1. (1)

In the Quad-tree, each node corresponds to a cell in the
grid. Recall that a node is represented by ((row, col), level,
state, safe interval). The cell can be easily determined by
some of these parameters. More specifically, the left-bottom
point of the cell is given by:

√
S

2level
× [row− 1, col− 1]

The right-upper point of the cell is given by:
√

S

2level
× [row, col]

Figure 1 shows an example of the Quad-tree. Given S=32,
s=2, and ρ=1.5, based on Equation (1), the level number of
the Quad-tree is 3. The root of the Quad-tree corresponds
to the largest cell c1. Its level number is 0, the row value is 1,
and the col value is also 1. Each internal node is one quad-
rant of the root, including c2, c3, c4, and c5. The leaf nodes
correspond to the minimum cells (called leaf cells hereafter),
such as c6, c7, c8, and c9.

Based on the Quad-tree, initially we count the number of
moving objects for each leaf cell and determine if the cell

is dense or spare. By definition, a high-level cell is dense if
and only if all the leaf cells below it are dense. For example,
in Figure 1, if c6 through c9 are dense while some other leaf
cell is sparse, then c2 is returned as a dense region but c1 is
not.

3.2 Safe Interval Computation
A safe interval of a dense (sparse) cell means the minimum

time period for which the cell is still dense (sparse). Due to
the movement of objects, a dense cell may turn into a sparse
one, and vice versa. Thus, to support continuous density
queries, we maintain the safe intervals for leaf cells of both
types, but the safe intervals for high-level cells only if they
are dense (i.e., only for dense regions). In the following,
we discuss how to compute the safe intervals for dense and
sparse leaf cells. The safe interval of a dense high-level cell
can be recursively set as the smallest one of its child nodes.

3.2.1 Safe Interval of Dense Leaf Cell
For a dense leaf cell, to simplify the computation, we only

focus on the objects leaving from it, without considering the
entering objects. This is because an entering object will not
change the state of a dense cell. It can only change the state
of a sparse cell, that is, makes the sparse cell to be dense.
Thus, we compute the shortest time interval for which the
cell remains dense.

Figure 2 gives an example, where cell C is dense. There
are totally five objects in C, i.e., o1, o2, o3, o4, and o5. Let
the object number threshold for a dense cell to be three.
We compute the time before each object will leave this cell
to obtain the safe interval of the dense cell. Suppose the
leaving times of these objects are t5, t3, t1, t4, and t2, sorted
in an ascending order. Then t1 is the safe interval of the
dense cell since this cell may become sparse after o1 leaves.

O1

O2

O3

O5

O4

Figure 2: An example of dense region.

Algorithm 1 formally describes how to compute the safe
interval for a dense leaf cell cell, where (xmin, ymin) and
(xmax, ymax) are the bounding coordinates of cell, (x, y) is
the coordinate of obj at time t, and (vx, vy) is the object’s
speed in the x and y dimensions. We use a heap H to store
the last several objects leaving from the cell. Let Scell be
the area of the cell. The size of H is set to ρ · Scell, which
is the density threshold of the cell in terms of the number
of objects. For every object in the cell, we compute its
leaving time and push the time into H. After processing all
the objects, when the object who has the minimum leaving
time in H leaves from the cell, the object number in the cell
will be fewer than the density threshold if not considering
the objects potentially entering from the outside. Hence,
the minimum value in H is the earliest possible time that
the cell changes its state. This value is returned as the safe
interval of cell.

Algorithm 1 SIofDense(cell)

1: H is a min-heap, whose size is ρ · Scell

2: for every obj in cell do
3: if (obj.vx>0) then lx=cell.xmax-obj.x
4: else if (obj.vx<0) then lx=cell.xmin-obj.x
5: else
6: lx=cell.xmax-cell.xmin
7: end if
8: if (obj.vy>0) then ly=cell.ymax-obj.y
9: else if (obj.vy<0) then ly=cell.ymin-obj.y

10: else
11: ly=cell.ymax-cell.ymin
12: end if
13: Push min(lx/vx, ly/vy) into H
14: end for
15: Return the minimum value in H

Note that the safe interval of a dense leaf cell we com-
pute is the shortest time interval for which the dense state
remains. Hence, when the safe interval expires, the state of
the cell may not be changed if there have been some other
objects entering into this cell. Thus, the state of this cell
and the corresponding safe interval need to be re-calculated
upon expiration.

3.2.2 Safe Interval of Sparse Leaf Cell
Similar to the dense leaf cell, we only focus on the entering

objects for sparse cell, without considering the leaving ob-
jects. Suppose that N is the density threshold for the sparse
cell, and that presently there are M objects in the cell. Then
after (N - M) objects move into this cell, its state might be
changed. To reduce the cost of scanning outside objects,
we expand the cell level by level until the expanding region
contains (N - M) objects. When all the objects in this ex-
panding region enter into the cell, the cell’s state may be
changed. On the other hand, a fasting moving object out-
side this expanding region may have also entered into the
cell. Such earliest time is given by

to =
L

Vmax
, (2)

where Vmax is the known maximum moving speed and L
is the length of the expanding distance. Thus, within the
interval to, we only need to scan the objects in the expanding

region and estimate whether these objects can change the
state of this sparse cell by computing their entering times.

Algorithm 2 describes how to compute the safe interval for
a spare leaf cell cell. Again we use a heap H to store the first
several objects that will enter into cell. The size of H is (N -
M). The cell is expanded to a larger region denoted as Cell
which includes at least ρ · Scell objects. We then compute
the entering times of these additional objects in Cell. If
object i’s entering time, denoted by ti, is longer than to,
given in Equation (2), ti is set to to. After processing all
the additional objects in Cell, the maximum value in H is
returned as the safe interval of cell.

Algorithm 2 SIofSparse(cell)

1: H is a max-heap, whose size is (ρ · Scell)-(number of
objects in cell)

2: Expand cell to Cell, which includes at least (ρ · Scell)
objects. L is the expanded distance and Vmax is the
maximum velocity of all the objects

3: for every additional object obj in Cell do
4: if (obj.vx>0 and obj.x<=cell.xmin) then
5: lx=cell.xmin-obj.x
6: else if (obj.vx<0 and obj.x>=cell.xmax) then
7: lx=cell.xmax-obj.x
8: else
9: lx=L

10: end if
11: if (obj.vy>0 and obj.y<=cell.ymin) then
12: ly=cell.ymin-obj.y
13: else if (obj.vy<0 and obj.y>=cell.ymax) then
14: ly=cell.ymax-obj.y
15: else
16: ly=L
17: end if
18: t = lx/vx
19: if (obj is not in cell at time t) then t=ly/vy
20: end if
21: if (t > L/Vmax) then t = L/Vmax

22: end if
23: Push t into H
24: end for
25: Return the maximum value in H

Figure 3 shows an example, where C is a sparse region.
In the expanding region, the objects o1, o2, o3, o4, and o5 are
moving towards C. Suppose that their entering times are
t2, t1, t5, t3, t4, sorted in descending order, and that they are
all smaller than to. If the region would change to a dense
one after three objects move into it, we will then use t5 as
its safe interval.

Similar to the case for a dense leaf cell, the state and the
safe interval of a sparse cell have to be re-computed when
the safe interval expires.

3.3 Update of Objects
There are two cases in which we need to update the safe

interval of a dense/sparse leaf cell: (i) when the safe interval
expires, we need to recompute the state and safe interval
of the cell, as discussed in last two subsections; (ii) when
the velocity of the object updates, we need to recompute
the states and safe intervals of those cells affected by this
update. Below we discuss how to deal with the second case.

When the updating object is in a sparse cell, we do not

L

O1

O5

O2

O3
O4

O6

O7

O8

C3

Figure 3: An example of sparse region.

need to recompute the safe interval of this cell since we con-
sider only the entering objects from the outside. However,
the object may affect the safe intervals of other sparse cells
which the object’s moving trajectories cross. We remark
that we only need to recompute the sparse cells which the
object’s new trajectory crosses. For those sparse cells inter-
sected with the old trajectory, we do not need to recompute
their safe intervals until they expire, because before the cur-
rent safe intervals their states would remain unchanged.

When the updating object is in a dense cell, the safe in-
terval of this cell may be changed because we compute the
safe interval for a dense cell based on the objects inside the
cell. The sparse cells which intersect with the object’s new
trajectory also need to be recomputed .

Old direction

S1 S2

S3D1

O1

New direction

Lu

D2
D3

Figure 4: An example of object updating.

Figure 4 shows an example for how to find the sparse
cells whose safe intervals need to be recomputed, where S1,
S2, S3, S4, S5 are sparse cells, D1, D2, D3, D4 are dense
cells, and o1 is an updating object with its velocity changed.
We need not to consider the sparse cells in its old moving
direction, i.e., S3. In the new moving direction, we identify
the sparse cells that o1 may affect its safe interval. In order
to reduce the computing cost, the formula

Lu = v1 · SImax (3)

can be used to determine the length of the trajectory, where
v1 is the new speed of o1 and SImax is the maximum safe
interval among all cells. We only update the safe intervals
of the sparse cells that intersect with the segment Lu (e.g.,
S4 in Figure 4).

3.4 Query Processing

Having computed the states and safe intervals for all leaf
cells, we are ready to find dense regions. We search the
Quad-tree in a bottom-up manner. For an intermediate
node, if all its child nodes are dense (i.e., with the state
value of 1), this node is also dense, otherwise it is not by
definition. The bottom-up search of a dense region stops
until an ancestor is not dense. Then its child nodes that
are dense are returned as answers. The safe interval of the
dense region is set as the smallest interval of the leaf cells
contained in the dense region. When the safe interval ex-
pires, this means the safe interval of a leaf cell expires. The
state and safe interval of that leaf cell will be updated, based
on which the dense region is also reevaluated. The formal
procedure is described in Algorithm 3.

Algorithm 3 Query()

1: for every leaf node n do
2: if (n.safe interval>=query time) then
3: if (n.state == 0) then break
4: else
5: n′=n
6: while (n′.parent.state == 1 and

n′.parent.safe interval>=query time) do
7: n′=n′.parent
8: end while
9: output n′

10: ignore the children of n′ and get the next leaf
node

11: end if
12: else
13: count number of moving objects in n
14: if (number>=ρ · Scell) then SIofDense(n)
15: else
16: SIofSparse(n)
17: end if
18: if (n.state changes) then adjust value of

n.parent and take n as the next node
19: end if
20: end if
21: end for

4. PERFORMANCE EVALUATION

4.1 Experimental Settings
This section experimentally evaluates the efficiency of our

proposed Quad-tree based algorithm. The Snapshot algo-
rithm, with repeated execution, is included for comparison.
All the experiments were run on a 3.20G Pentium (R) desk-
top with 512MB of memory.

We assume a 100×100 space for the moving objects to
move around, following a random movement model. The
experiments study the impact of a variety of system factors,
including the density threshold ρ, the minimum region area
s, and the number of moving objects #mo. The parameters
used in our experiments are reported in Table 1, where the
values in bold denote the default settings. In each experi-
ment, only one parameter varies while the others are fixed
at their default values, and 100 continuous density queries
with random durations are tested. The results reported be-
low represent the average cost per query.

Table 1: Parameters used in experiments
Parameter Values

dense threshold ρ 0.5,1,1.5,2,3
minimum region area s 15*15, 10*10, 5*5, 2*2

number of moving objects #mo 1k, 5k, 10k, 20k

4.2 Results
The first set of experiments studies the impact of ρ on the

efficiency of the two algorithms under comparison. Figure 5
shows the CPU time as a function of ρ. Figure 5(a) plots
the initialization time for the Quad-tree algorithm, i.e., the
Quad-tree building time. Figure 5(b) compares the query
answering time for the two algorithms. Both algorithms are
not much influenced by ρ, this is because both of them have
to search the whole object space, regardless of the value of
ρ. Nevertheless, clearly the Quad-tree algorithm is more
efficient than the Snapshot algorithm in terms of the query
answering time.

 0

 50

 100

 150

 200

321.510.5

C
P

U
 ti

m
e(

se
c)

dense threshold

Initial time

(a) initialization time

 0

 10

 20

 30

 40

 50

 60

 70

321.510.5

C
P

U
 ti

m
e(

se
c)

dense threshold

Quart-tree
Snapshot

(b) answer time

Figure 5: CPU time vs. density threshold ρ.

In Figure 6, we show the effect of the minimum region
area s. From Figure 6(b), both algorithms get a longer query
answering time with decreasing s. This is because the whole
area is divided into more regions for a smaller value of s.
Thus, we have to compute the results for more cells. That is
the same reason why the initialization time grows (see Figure
6(a)). More nodes and safe intervals have to be computed in
this case. In terms of the query answering time, we can see
the Quad-tree algorithm is more efficient than the Snapshot
algorithm, and their performance gap enlarges for a smaller
value of s.

 0

 100

 200

 300

 400

 500

 600

 700

2*25*510*1015*15

C
P

U
 ti

m
e(

se
c)

mimum region bounding

Initial time

(a) initialization time

 0

 20

 40

 60

 80

 100

 120

 140

 160

2*25*510*1015*15

C
P

U
 ti

m
e(

se
c)

mimum region bounding

Quart-tree
Snapshot

(b) answer time

Figure 6: CPU time vs. minimum region area s.

Next, we examine the impact of the number of moving
objects #mo. As shown in Figure 7, when the number of
moving objects grows, the performance degrades for both
algorithms as expected. Nevertheless, the Quad-tree algo-
rithm is still much more efficient than the Snapshot algo-
rithm.

To summarize, the Quad-tree algorithm does not need to

 0

 200

 400

 600

 800

 1000

20k15k10k5k1k

C
P

U
 ti

m
e(

se
c)

number of moving objects

Initial time

(a) initial time

 0

 20

 40

 60

 80

 100

20k15k10k5k1k

C
P

U
 ti

m
e(

se
c)

number of moving objects

Quart-tree
Snapshot

(b) answer time

Figure 7: CPU time vs. number of moving objects
#mo.

recompute the result each time a location update occurs.
As such, it outperforms the Snapshot algorithm in all cases
tested, although it needs some time to initialize the Quad-
tree. The good thing is that the initialization time is not
too long, which should be acceptable to the queries.

 0

 20

 40

 60

 80

 100

 120

5s4s3s2s1s

C
P

U
 ti

m
e(

se
c)

time interval

Quart-tree
Snapshot

Figure 8: CPU time vs. query interval

Finally, Figure 8 shows the influence of the query inter-
val (i.e., the time interval between two continuous queries)
on the CPU time. From the result, we can see that the
performance gap of the two algorithms decreases when the
query interval becomes larger. For the Snapshot algorithm,
because of the TPR-tree structure, more objects have to
be visited when computing a cell’s state. And for the Quad-
tree algorithm, the CPU time increases because of more safe
intervals expired and recomputed.

5. CONCLUSIONS
In this paper, we investigated the problem of monitor-

ing continuous density queries for moving objects. We have
proposed the notion of safe interval, and introduced a Quad-
tree based scheme to evaluate and keep track of dense re-
gions. Experimental results demonstrate that our method
can achieve high efficiency when monitoring dense regions
for moving objects.

6. ACKNOWLEDGMENTS
This research was partially supported by Natural Science

Foundation of China under grant no. 60573091, China 863
High-Tech Program under project no. 2007AA01Z155, and
Program for New Century Excellent Talents in University
(NCET). Jianliang Xu’s work was supported in part by the
Research Grants Council, Hong Kong SAR, China (Project
Nos. HKBU211206 and HKBU211307).

7. REFERENCES
[1] H. G. Elmongui, M. Ouzzani, and W. G. Aref.

Challenges in spatiotemporal stream query
optimization. In MobiDE, pages 27–34, June 2006.

[2] M. Hadjieleftheriou, G. Kollios, D. Gunopulos, and
V. J. Tsotras. On-line discovery of dense areas in
spatio-temporal databases. In SSTD, pages 306–324,
July 2003.

[3] H. Hu, J. Xu, and D. L. Lee. A generic framework for
monitoring continuous spatial queries over moving
objects. In SIGMOD, June 2005.

[4] C. S. Jensen, D. Lin, B. C. Ooi, and R. Zhang.
Effective density queries on continuously moving
objects. In ICDE, page 71, April 2006.

[5] I. Lazaridis, K. Porkaew, and S. Mehrotra. Dynamic
queries over mobile objects. In EDBT, pages 269–286,
March 2002.

[6] M. F. Mokbel, X. Xiong, and W. G. Aref. Sina:
Scalable incremental processing of continuous queries
in spatio-temporal databases. In SIGMOD, pages
623–634, June 2004.

[7] J. Ni and C. V. Ravishankar. Pointwise-dense region
queries in spatio-temporal databases. In ICDE, pages
1066–1075, April 2007.

[8] S. Saltenis, C. S. Jensen, S. T. Leutenegger, and
M. A.Lopez. Indexing the positions of continuously
moving objects. In SIGMOD, pages 331–342, May
2000.

[9] Y. Tao, D. Papadias, and Q. Shen. Continuous nearest
neighbor search. In VLDB, pages 287–298, August
2002.

[10] J. Xu, X. Tang, and D. L. Lee. Performance analysis
of location-dependent cache invalidation schemes for
mobile environments. IEEE Transactions on
Knowledge and Data Engineering (TKDE),
15(2):474–488, March/April 2003.

[11] J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D. L.
Lee. Location-based spatial queries. In SIGMOD,
pages 443–454, June 2003.

[12] B. Zheng and D. L. Lee. Semantic caching in
location-dependent query processing. In SSTD, pages
97–116, July 2001.

