
Clustering Moving Objects in Spatial Networks

Jidong Chen1,2, Caifeng Lai1,2, Xiaofeng Meng1,2,
Jianliang Xu3, and Haibo Hu3

1 School of Information, Renmin University of China
2 Key Laboratory of Data Engineering and Knowledge Engineering, MOE

{chenjd, laicf, xfmeng}@ruc.edu.cn
3 Department of Computer Science, Hong Kong Baptist University

{xujl, haibo}@comp.hkbu.edu.hk

Abstract. Advances in wireless networks and positioning technologies
(e.g., GPS) have enabled new data management applications that mon-
itor moving objects. In such new applications, realtime data analysis
such as clustering analysis is becoming one of the most important re-
quirements. In this paper, we present the problem of clustering moving
objects in spatial networks and propose a unified framework to address
this problem. Due to the innate feature of continuously changing posi-
tions of moving objects, the clustering results dynamically change. By
exploiting the unique features of road networks, our framework first in-
troduces a notion of cluster block (CB) as the underlying clustering unit.
We then divide the clustering process into the continuous maintenance of
CBs and periodical construction of clusters with different criteria based
on CBs. The algorithms for efficiently maintaining and organizing the
CBs to construct clusters are proposed. Extensive experimental results
show that our clustering framework achieves high efficiency for clustering
moving objects in real road networks.

Keywords Spatial-Temporal Databases, Moving Objects, Clustering,
Spatial Networks

1 Introduction

Clustering is one of the most important analysis techniques. It groups similar
data to provide a summary of data distribution patterns in a dataset. Early
research mainly focused on clustering a static dataset [8, 11, 18, 3, 13, 6, 10, 4].
In recent years, clustering moving objects has been attracting increasing atten-
tion [9, 17, 7], which has various applications in the domains of weather forecast,
traffic jam prediction, animal migration analysis, to name but a few. However,
most existing work on clustering moving objects assumed a free movement space
and defined the similarity between objects by their Euclidean distance.

In the real world, objects move within spatially constrained networks, e.g.,
vehicles move on road networks and trains on railway networks. Thus, it is more
practical to define the similarity between objects by their network distance –
the shortest path distance over the network. However, clustering moving objects
in such networks is more complex than in free movement space. The increasing
complexity first comes from the network distance metric. The distance between
two arbitrary objects cannot be obtained in constant time, but requires an ex-
pensive shortest path computation. Moreover, the clustering results are related

2 Jidong Chen et al.

to the segments of the network and their changes will be affected by the network
constraint. For example, a cluster is likely to move along the road segments and
change (i.e., split and merge) at the road junctions due to the objects’ diver-
sified spatio-temporal properties (e.g., moving in different directions). It is not
efficient to predict their changes only by measuring their compactness. Thus,
the existing clustering methods for free movement space cannot be applied to
spatial networks efficiently.

On the other hand, the existing clustering algorithms based on the network
distance [16] mainly focus on the static objects that lie on spatial networks.
To extend to moving objects, we can apply them over the current positions of
the objects in the network periodically. However, this approach is prohibitively
costly since each time the expensive clustering evaluation starts from scratch.
In addition, the clustering algorithms for different clustering criteria (e.g., K-
partitioning, distance, and density-based) are totally different in their implemen-
tation. This is inefficient for many applications that require to execute multiple
clustering algorithms at the same time. For example, in a traffic management
application, it is important to monitor those densely populated areas (by density-
based clusters) so that traffic control can be applied; but at the same time, there
may be a requirement for assigning K police officers to each of the congested
areas. In this case, it is favorable to partition the objects into K clusters and
keep track of the K-partitioned clusters. Separate evaluation of different types
of clusters may incur computational redundancy.

In this paper, we propose a unified framework for “Clustering Moving Ob-
jects in spatial Networks” (CMON for short). The goals are to optimize the cost
of clustering moving objects and support multiple types of clusters in a single
application. The CMON framework divides the clustering process into the con-
tinuous maintenance of cluster blocks (CBs) and the periodical construction of
clusters with different criteria based on CBs. A CB groups a set of objects on a
road segment in close proximity to each other at present and in the near future.
In general, a CB satisfies two basic requirements: 1) it is inexpensive to maintain
in a spatial network setting; 2) it is able to serve as a building block of different
types of application-level clusters. Our contributions are summarized as follows:

– We propose a unified framework for clustering moving objects in spatial
networks to efficiently support different clustering criteria at the same time.

– We develop incremental CB maintenance (including split and merge) algo-
rithms by analyzing the object movement features on a spatial network.

– We present efficient algorithms to periodically construct three kinds of clus-
ters based on CBs. The network features are exploited to reduce the search
space and avoid unnecessary computation of network distance.

– We show, through extensive experiments, that our clustering algorithms
achieve high efficiency.

The rest of the paper is organized as follows. Section 2 surveys the related
work. Section 3 describes the proposed framework. Section 4 details the initia-
tion and maintenance of CBs. The algorithms for constructing the clusters with
different clustering criteria based on CBs are proposed in Section 5. Section 6
shows experimental evaluations. We conclude this paper in Section 7.

Clustering Moving Objects in Spatial Networks 3

2 Related Work

A lot of clustering techniques have been proposed for static datasets in a Eu-
clidean space. They can be classified into the partitioning [8, 11], hierarchical [18,
3, 13], density-based [10], grid-based [15, 1], and model-based [2] clustering meth-
ods. There are also a few studies [4, 6, 16] on clustering nodes or objects in a
spatial network. Yiu and Mamoulis [16] defined the problem of clustering ob-
jects based on the network distance, which is mostly related to our work. They
proposed algorithms for three different clustering paradigms, i.e., k-medoids for
K-partitioning, ε-link for density-based, and single-link for hierarchial cluster-
ing. These algorithms avoid computing distances between every pair of network
nodes by exploiting the properties of the network. However, all these solutions
assumed a static dataset. As discussed in the Introduction, a straightforward
extension of these algorithms to moving objects by periodical re-evaluation is
inefficient. Besides, Jin et al. [5] studied the problem of mining distance-based
outliers in spatial networks, but it is only a byproduct of clustering.

Clustering analysis on moving objects has recently drawn increasing atten-
tions. Li et al. [9] first addressed this problem by proposing a concept of micro
moving cluster (MMC), which denotes a group of similar objects both at cur-
rent time and at near future time. Each MMC maintains a bounding box for
the moving objects contained, whose size grows over time. Even the CB in our
framework is some kind of micro-cluster, it has much differences from MMC.
First MMC is based on the Euclidean distance metric while CB is formed by
the network distance. Second, MMC does not consider the network constraint
where micro-clusters usually move along the road segment with the objects and
change at the road junctions immediately. The prediction of the MMC’s split
and merge in a spatial network is therefore not accurate. The bounding boxes of
MMCs are likely to be exceeded frequently and numbers of maintenance events
dominate the overall running time of the algorithms. Finally, as the detailed
object information in a MMC is not maintained, it can only support very lim-
ited clustering paradigms. While CB uses the distance of neighboring objects to
measure the compactness instead of the boundary objects of micro-cluster, it is
therefore capable to construct global clusters with different criteria. Afterwards,
Zhang and Lin [17] proposed a histogram construction technique based on a
clustering paradigm. In [7], Kalnis proposed three algorithms to discover mov-
ing clusters from historical trajectories of objects. Nehme and Rundensteiner [12]
applied the idea of clustering moving objects to optimize the continuous spatio-
temporal query execution. The moving cluster is represented by a circle in their
algorithms. However, most above works only considered moving objects in un-
constrained environments and defined the similarity between objects by their
Euclidean distance. To the best of our knowledge, this is the first work which
specifies on the problem of clustering network-constrained moving objects whose
similarity is defined by network distance.

3 The System Model and CMON Framework

In this section, we describe the system model and present a unified CMON
framework for clustering moving objects in a spatial network. It aims to optimize
the cost of clustering evaluation and support clusters with different criteria.

4 Jidong Chen et al.

We model a spatial network as a graph where objects are moving on the
edges [16] (we use the segments interchangeably in this paper). The distance be-
tween any two objects, called network distance, is measured by the length of the
shortest path connecting them in the network. We employ a similar motion model
as in [9], where moving objects are assumed to move in a piecewise linear manner
(i.e., each object moves at a stable velocity at each edge). We assume that an
object location update has the following form (oid, na, nb, pos, speed, next node),
where oid is the id of the moving object, (na, nb) represents the edge on which
the object moves (from na towards nb), pos is the relative location to na, and
speed is the moving speed. We also assume that the next edge to move along,
(nb, next node), is known in advance. The requirement is to continuously moni-
tor the moving clusters with various criteria at some predefined period.

As shown in Figure 1, the proposed CMON framework is composed of two
components: the incremental maintenance of cluster blocks (CBs) and the pe-
riodical construction of different types of application-level clusters. A CB is a
group of moving objects close to each other at present and near future time.
For easy maintenance, we constrain the objects in a CB moving in the same
direction and on the same edge segment. Additionally, a CB imposes a strict
clustering criterion so as to support different types of application-level clusters.
Specifically, the network distance between each pair of neighboring objects in a
CB does not exceed a preset threshold ε. Formally, a CB is defined as follows:

Definition 1 Cluster Block. A cluster block is represented by CB = (O, na, nb,
head, tail, ObjNum), where O is a list of objects {o1, o2, · · · , oi, · · · , on}, oi =
(oidi, na, nb, posi, speedi, next nodei). Without loss of generality, assuming pos1

≤ pos2 ≤ · · · ≤ posn, it must satisfy |posi+1−posi| ≤ ε (1 ≤ i ≤ n−1). Since all
objects are on the same edge (na, nb), the position of the cluster is determined
by an interval (head, tail) in terms of the network distance from na. Thus, the
length of the CB is |tail − head|. ObjNum is the number of objects in the CB.

Note that the edge, position, length, and object number of a CB appear as
its summary information. We incrementally maintain each CB by taking into
account the objects’ anticipated movements. We capture the predicted update
events (including split and merge events) of each CB during the continuous
movement and process these events accordingly (see Section 4 for details). At
any time, clusters of different criteria can be constructed from the CBs, instead
of the entire set of moving objects, which makes the construction processing cost
efficient. Moreover, to reduce unnecessary computation of the network distance
between the CBs, we adapt the network expansion method to combine CBs to
construct the application-level clusters (see Section 5 for details).

4 Maintenance of CBs

Initially, based on the CB definition,a set of CBs are created by traversing all edge
segments in the network and their associated objects. The CBs are incrementally
maintained after their creation. As time elapses, the distance between adjacent
objects in a CB may exceed ε and, hence, we need to split the CB. A CB may
also merge with adjacent CBs when they are within the distance of ε. Thus, for
each CB, we predict the time when they may split or merge. The predicted split

Clustering Moving Objects in Spatial Networks 5

Periodical construction of CMON

Continuous maintenance of CB

Construct
ion of CB

Minimum
Distance
CMON

Density
based

CMON

Clustering results of MO on road network

Combination of CBs

K-partitio
ning

CMON

CMON Framework

Predict split
and merge

event

Process
the events

Fig. 1. CMON Framework

t

l
o1o2

o3

o4

te

le

o2
o1

o5

t1 t2 t3

o3
o4
o5

t4 t5

8

ts

Fig. 2. Prediction of Splitting CB

and merge events are then inserted into an event queue. Afterwards, when the
first event in the queue takes place, we process it and update (compute) the split
and merge events for affected CBs (new CBs if any). This process is continuously
repeated. The key problems are: 1) how to predict split/merge time of a CB,
and 2) how to process a split/merge event of a CB.

The split of a CB may occur in two cases. The first is when CB arriving at
the end of the segment (i.e., an intersection node of the spatial network). When
the moving objects in a CB reach an intersection node, the CB has to be split
since they may head in different directions. Obviously, a split time is the time
when the first object in the CB arrives at the node. In the second case, the
split of a CB is when the distance between some neighboring objects moving on
the segment exceeds ε. However, it is not easy to predict the split time since
the neighborhood of objects changes over time. And therefore the main task
is to dynamically maintain the order of objects on the segment. We compute
the earliest time instance when two adjacent objects in the CB meet as tm. We
then compare the maximum distance between each pair of adjacent objects with
ε until tm. If this distance exceeds ε at some time, the process stops and the
earliest time exceeding ε is recorded as the split time of the CB. Otherwise, we
update the order of objects starting from tm and repeat the same process until
some distance exceeds ε or one of the objects arrives at the end of the segment.
When the velocity of an object changes over the segment, we need to re-predict
the split and merge time of the CB.

Figure 2 shows an example. Given ε = 7, we compute the split time as follows.
At the initial time t0, the CB is formed with a list of objects < o1, o2, o3, o4, o5 >.
We first compute the time te when the first object (i.e., o2) arrives at the end of
the segment (i.e., le). For adjacent objects, we find that the earliest meeting time
is t1 at which o2 and o3 first meet. We then compare the maximum distance for
each pair of adjacent objects during [t0, t1] and no pair whose distance exceeds
7. At t1, the object list is updated into < o1, o3, o2, o4, o5 >. In the same way,
the next meeting time is at t2 for o2 and o4. There is also no neighboring objects
whose distance exceeds 7 during [t1, t2]. As the algorithm continues, at t4, the
object list becomes < o3, o1, o4, o5, o2 > and t5 is the next time for o1 and o4

to meet. When comparing neighboring objects during [t4, t5], we find the o4 and
o5 whose distance is longer than 7 at time ts. Since ts < te, we obtain ts as the
split time of the CB.

We now discuss how to handle a split event. If the split event happens on
the segment, we can simply split the CB into two ones and predict the split
and merge events for each of them. If the split event occurs at the end of the
segment, the processing would be more complex. One straightforward method is

Administrator
附注
比较分裂CB分别与相邻CB的距离，如果小于阈值，则合并相应的cb，产生合并事件，事件的时间定为分裂时间

6 Jidong Chen et al.

to handle the departure of the objects individually each time an object reaches
the end of the segment. Obviously, the cost of this method is high. To reduce the
processing cost, we propose a group split scheme. When the first object leaves
the segment, we split the original CB into several new CBs according to objects’
directions (which can be implied from next node). On one hand, we compute
a to-be-expired time (i.e., the time until the departure from the segment) for
each object in the original CB and retain the CB until the last object leaves the
segment. On the other hand, we attach a to-be-valid time (with the same value
as to-be-expired time) for each object in the new CBs. Only valid objects will be
counted in constructing application-level clusters. Figure 3 illustrates this split
example. When CB1 reaches J1, objects p1 and p3 will move to the segment
< J1, J2 > while p2 and p4 will follow < J1, J6 >. Thus, CB1 is split into two
such that p2 and p4 join CB3, and p1 and p3 form a new cluster CB4. We still
keep CB1 until p4 leaves < J4, J1 >. As can be seen, the group split scheme
reduces the number of split events and hence the cost of CB maintenance.

J1

J2

p1

p2
p4

p3

p5

CB3

CB1

CB2

J6

J5

J3

J4

p6

p7

p8 p9

J1

J2
p1

p2p4
p3
p5CB4

CB3

CB2

J6

J5

J3

J4

p6

p7

p8

p9

(a) When first object leaves (b) When last object leaves

Fig. 3. Group Split at an Edge Intersection

The merge of CBs may occur when adjacent CBs in a segment are moving
together (i.e. their network distance ≤ ε). To predict the initial merge time
of CBs, we dynamically maintain the boundary objects of each CB and their
validity time (the period when they are treated as boundary of the CB), and
compare the minimum distances between the boundary objects of two CBs with
the threshold ε at their validity time. The boundary objects of CBs can be
obtained by maintaining the order of objects during computing the split time.
For the example in Figure 2, the boundary objects of the CB are represented by
(o1, o5) for validity time [t0, t3], (o3, o5) for [t3, t4], and (o3, o2) for [t4, te]. The
processing of the merge event is similar to the split event on the segment. We
get the merge event and time from the event queue to merge the CBs into one
CB and compute the split time and merge time of the merged CB. Finally, the
corresponding affected CBs in the event queue are updated.

Besides the split and merge of a CB, new objects may come into the network
or existing objects may leave. For a new object, we locate all CBs of the same
segment that the object enters and see if the new object can join any CB ac-
cording to the CB definition. If the object can join some CB, the CB’s split and
merge events are updated. If no such CBs are found, a new CB for the object
is created and the merge event is computed. For a leaving object, we update its
original CB’s split and merge events if necessary.

Clustering Moving Objects in Spatial Networks 7

5 CMON Construction with Different Criteria

This section discusses how to construct application-level clusters of different
criteria from CBs. We focus our discussions on three common clustering criteria,
i.e., distance-based, density-based, and K-partitioning.

5.1 Distance-based CMON

A common clustering criterion is based on the minimum distance metric. The
Minimum Distance CMON is defined as follows:

Definition 2 Minimum Distance CMON (MD-CMON). For each object in an
MD-CMON, the minimum network distance with other objects in the cluster is
not longer than a user specified threshold δ (δ ≥ ε).

The requirement of ε ≤ δ is necessary because it guarantees that a CB does
not cross two clusters in the MD-CMON. The MD-CMON can be constructed
by combining the CBs. Generally, for two CBs, we need to compute their net-
work distance (i.e., the minimum network distance of their boundary objects) to
determine whether to combine them. This simple method has a time complexity
of O(N2), where N is the number of CBs. In order to reduce the computation
cost, we adapt the incremental network expansion method to combine the CBs.
The detailed algorithm can be found in Algorithm 1.

The algorithm starts with a CB and adds its adjacent nodes that are within
δ to a queue Q using Dijkstra’s algorithm. Take Figure 4 as an example. Suppose
δ = 10 and the algorithm starts with CB1. Thus, initially CB1 is marked “vis-
ited” and J1 is added to Q. The algorithm proceeds to dequeue the first node in
Q (i.e., J1). All adjacent edges of J1 (except the checked edge < J6, J1 >) are ex-
amined. For each edge < J1, Ji >, assuming dist(J1, Ji) to be the edge length, if
Ji satisfies dist(CB1, J1)+dist(J1, Ji) ≤ δ, Ji is added to Q and dist(CB1, Ji) =
dist(CB1, J1) + dist(J1, Ji). Moreover, all unvisited CBs on each adjacent edge
are checked. For a CBi on < J1, Ji >, if dist(CB1, J1) + dist(J1, CBi) ≤ δ, CBi

is merged into CB1’s MD-CMON cluster. If dist(CBi, Ji) ≤ δ and Ji has not
been added to Q, it it is added to Q. The algorithm continues with the same
process until Q becomes empty and the CBs around CB1 are combined into a
cluster C1. Afterwards, the algorithm picks up another unvisited CB and repeats
the same process until all CBs are visited.

5.2 Density-based CMON

The second clustering criterion is density-based, which is good at filtering out
noise data.

Definition 3 Density-based CMON (DB-CMON). For each cluster in the DB-
CMON, the average density should be higher than a given threshold ρ. Moreover,
there should not be any empty segment (without any objects lying on) whose
length is longer than E.

Administrator
附注
在cluster中的任意两个对象的网络距离还是任意两个相邻对象的网络距离

8 Jidong Chen et al.

J1

J2

J3J8

p1

p2

p10

p6

5

3
21

2

4

12

11

p3

p9

CB4

CB1

CB3

CB2

p7
2CB5

CB6

J4

J5

J7

J6

p13
p14

12

C1

Fig. 4. The Combination of CBs

J1

J2

p1

p2

p4
5

1

3

1

p3

p5

CB4

CB1

CB3

CB2

J4

J5 J3

CB5

4 3

Fig. 5. The Cross-CB

Algorithm 1: MD CMON()

foreach CBi do1

if CBi.visited == false then2

Q = new priority queue;3

find edge nx, ny where CBi lies;4

CB = CBi; C = CB;5

nextCB = Next CB on nx, ny from CBi to ny;6

while (nextCB 6= null) and Dist(CB.head,nextCB.tail) ≤ δ do7

Merge Expand(CB,nextCB,C,nx,ny);
if (nextCB == null) and Dist(CB.head,ny)≤ δ then8

B.node = ny; B.dist = Dist(CB.head,ny);9

Enqueue(Q,B);10

while notempty(Q) do11

B = Dequeue(Q);12

foreach node nz adjacent to B.node do13

nextCB = Next CB from B.node to nz;14

if (nextCB 6= null) and Dist(B.node,nextCB.tail)+B.dist ≤ δ15

then
newdnz = Dist(nextCB.head,nz);16

Merge Expand(CB,nextCB,C,B.node,nz);17

while (nextCB 6= null) and18

Dist(CB.head,nextCB.tail) ≤ δ do
newdnz = Dist(nextCB.head,nz);19

Merge Expand(CB,nextCB,C,B.node,nz);20

if (no CBs on edge (B.node,nz)) then21

newdnz = B.dist+Dist(B.node,nz);22

if (nextCB == null) and (newdnz ≤ δ) then23

Bnew.node = nz; Bnew.dist = newdnz ;24

Enqueue(Q,Bnew);25

Clustering Moving Objects in Spatial Networks 9

Procedure Merge Expand(CB1,CB2,C,node1,node2)

if CB2.visited == false then1

C=MergeClst(C,CB2);2

CB1 = CB2; CB1.visited = true;3

CB2 = Next CB from node1 to node2;4

else5

C1=FindCluster(CB2);6

C=MergeClst(C,C1);7

Suppose there are m(m > 1) objects in a CB, we have the density of the CB
as m

ε(m−1) > 1
ε . The second condition is necessary to avoid very skewed clusters.

It is equivalent to the condition that for any object in the cluster, the nearest
object is within a distance of E. Thus, to construct the DB-CMON clusters from
CBs, we require ε ≤ max{E, 1

ρ}.
The cluster formation algorithm is the same as the one described in Algo-

rithm 1 except that the minimum-distance constraint (transformed from the
density constraint) is dynamic. Suppose the density of the current cluster with
k objects is ρ′ and a CB has m objects with a length of L. If a CB can be
merged into the cluster, their minimum distance D must satisfy k+m

k/ρ′+L+D ≥ ρ,

i.e., D ≤ k+m+ρ(k/ρ′+L)
ρ .

5.3 K-Partitioning CMON

K-Partitioning CMON is similar to the K-Partitioning clustering method [8, 11].
It can be defined as follows:

Definition 4 K-Partitioning CMON (KP-CMON). Given a set of objects, group
them into K clusters such that the sum of distances between all adjacent objects
in each cluster is minimized.

According to the definition of CBs, the sum of distances between all adjacent
objects in each CB is minimized. Therefore, it is intuitive to construct the KP-
CMON clusters from the CBs. An exhaustive method is to iteratively combine
the closest pairs of CBs until K clusters are obtained. This method requires
to compute the distances between all pairs of CBs, which is costly. Hereby, we
propose a low-complexity heuristic similar to the K-means algorithm [8, 11]. We
initially select K CBs as the seeds for K clusters. For the remaining CBs, we as-
sign them to their nearest clusters to make the sum of distances between adjacent
objects to be minimum. Note that this heuristic may not lead to the optimal solu-
tion. Suppose that in Figure 5, the distances between CBs are: dist(CB2, CB3) <
dist(CB2, CB5) < dist(CB3, CB1) < dist(CB2, CB1) < dist(CB3, CB5), and
that the initial seed CBs are CB1 and CB5 for K = 2. When CB3 is checked,
it will be assigned to the cluster of {CB1}. Then CB2 will be assigned to the
cluster of {CB5}, which is different from the optimal solution where CB2 and
CB3 should be grouped together since dist(CB2, CB3) < dist(CB2, CB5). To
compensate for such mistakes, we introduce the concept of Cross-CB. For adja-
cent CBs lie around the same node, if their minimum distance is less than ε, we

Administrator
附注
还是不太清楚

10 Jidong Chen et al.

group them into a Cross-CB. Then, the clustering algorithm is applied over the
CBs and Cross-CBs.

6 Performance Analysis

In this section, we evaluate the performance of our proposed techniques by com-
paring with the periodical clustering. We implement the CMON algorithms in
C++ and carry out experiments on a Pentium 4, 2.4 GHz PC with 512MB
RAM running Windows XP. Our performance study uses synthetic datasets.
For monitoring the effective clusters in the road network, we design a moving
object generator. The generator takes a map of a road network as input, and
our experiment is based on the map of Beijing city. We set K hot spots in the
map. Initially, the generator places eighty percent objects around the hot spots
and twenty percent objects at random positions, and updates their locations at
each time unit. Each object around the hot spot moves along its shortest path
from its initial hot spot to another one. We compare the MD-CMON algorithm
against the ε-link algorithm proposed in [16]. We monitor the clustering results
by running the ε-link algorithm periodically and by maintaining the CBs created
at the initial time and combining them to construct the MD-CMON.

First, we compare our method with the static ε-link by measuring both aver-
age clustering response time and total workload time when varying the number
of moving objects from 100K to 1M. We set the clustering frequency at 1 per
time unit and execute the CBs maintenance and combination in comparison with
the static ε-link on all objects. For total workload time (shown in Figure 6), we
measure the total CPU time including maintaining CB and combining CBs to
clusters up to 20 time units. Figure 7 also shows the average clustering response
time for periodic clustering requests. In essence, CBs are like B+-tree or R-tree
index for periodical queries and they share the same property, i.e., amortizing
the query (clustering) cost to maintain the data structure (CBs) for speeding up
the query (clustering) processing. Therefore, our method is substantially better
than the static one in terms of average response time, yet is still better in terms
of total workload time.

 0

 50000

 100000

 150000

 200000

 250000

 10 20 30 40 50 60 70 80 90 100

T
ot

al
 ti

m
e

(m
s)

Number of moving objects (k)

cmon
static eps-link

Fig. 6. Total time varies in data size

 0

 50000

 100000

 150000

 200000

 250000

 10 20 30 40 50 60 70 80 90 100

R
es

po
ns

e
tim

e
(m

s)

Number of moving objects (k)

cmon
static eps-link

Fig. 7. Response time varies in data size

Then, we change the clustering frequency with 1/5, 1/4, ..., 1 to examine
how the total time is affected. The experiment is executed on 100K moving ob-
jects during 20 time units. Figure 8 shows the results of the two methods under

Clustering Moving Objects in Spatial Networks 11

different clustering frequencies. We can see that the higher the clustering fre-
quency, the more efficient our CMON method. In addition, we fix the clustering
frequency at 1 and measure the clustering response time at different clustering
monitoring instances. As time elapses, the objects change their locations con-
tinuously, which may affect the clustering efficiency. As shown in Figure 9, our
CMON method consistently keeps a lower cost than the static ε-link method
over different time instances.

 0

 50000

 100000

 150000

 200000

 250000

11/21/31/41/5

T
ot

al
 ti

m
e

(m
s)

Clustering frequency

cmon
static eps-link

Fig. 8. Clustering frequency effect

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 2 4 6 8 10 12 14 16 18 20

R
ep

on
se

 ti
m

e
(m

s)

Monitoring time

cmon
static eps-link

Fig. 9. Monitoring time effect

Finally, we study the effect of parameters (ε and δ) of our methods on the
clustering efficiency. As the number of CBs depends on the system parameter
ε, we change the value of ε from 0.5 to 3 to measure the maintenance cost of
CBs. Then when fixing the ε value at 2.5, we varying δ to study its effect on the
CB combination to clusters. Figure 10 and Figure 11 show the effect of the two
parameters. We observe that when ε and δ are set to 2.5 and 4.5, the method
achieves the highest efficiency in our experimental setting.

 90000

 95000

 100000

 105000

 110000

 0.5 1 1.5 2 2.5 3

M
ai

nt
ai

ni
ng

 ti
m

e
(m

s)

Epsilon

cmon

Fig. 10. CMON performance with ε

 0

 1000

 2000

 3000

 4000

 5000

 2.5 3 3.5 4 4.5

R
es

po
ns

e
tim

e
(m

s)

Delta

cmon

Fig. 11. CMON performance with δ

7 Conclusion

In this paper, we studied the problem of clustering moving objects in a spatial
road network and proposed a framework to address this problem. By introduc-
ing a notion of cluster block, this framework, on one hand, amortizes the cost of

12 Jidong Chen et al.

clustering into CB maintenance and combination based on the object movement
feature in the road network; and on the other hand, it efficiently supports differ-
ent clustering criteria. We exploited the features of the road network to predict
the split and merge of CBs accurately and efficiently. Three different clustering
criteria have been defined and the cluster construction algorithms based on CBs
were proposed. The experimental results showed the efficiency of our method.

Acknowledgments

This research was partially supported by the grants from the Natural Science
Foundation of China under grant number 60573091, 60273018; Program for New
Century Excellent Talents in University (NCET); Program for Creative PhD
Thesis in University. Jianliang Xu’s work was supported by grants from the Re-
search Grants Council, Hong Kong SAR, China (Project Nos. HKBU 2115/05E
and HKBU 2112/06E).

References

1. R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan: Automatic subspace clus-
tering of high dimensional data for data mining applications. SIGMOD 1998: 94-105.

2. D. Fisher: Knowledge acquisition via incremental conceptual clustering. Machine
Learning, 1987, 2:139-172.

3. S. Guha, R. Rastogi, and K. Shim: CURE: An effcient clustering algorithm for large
databases. SIGMOD 1998: 73-84.

4. A. K. Jain and R. C. Dubes: Algorithms for Clustering Data. Prentice Hall, 1988.
5. W. Jin, Y. Jiang, W. Qian, A. K. H. Tung: Mining Outliers in Spatial Networks.

DASFAA 2006: 156-170.
6. G. Karypis, E. H. Han, and V. Kumar: Chameleon: Hierarchical clustering using

dynamic modeling. IEEE Computer, 1999, 32(8):68-75.
7. P. Kalnis, N. Mamoulis, S. Bakiras: On Discovering Moving Clusters in Spatio-

temporal Data. SSTD 2005: 364-381.
8. L. Kaufman and P. J. Rousseeuw: Finding Groups in Data: An Introduction to

Cluster Analysis. John Wiley and Sons, Inc, 1990.
9. Y.F. Li, J.W. Han, J. Yang: Clustering Moving Objects. KDD 2004: 617-622.
10. E. Martin, H. P. Kriegel, J. Sander, and X. Xu: A density-based algorithm for

discovering clusters in large spatial databases with noise. SIGKDD 1996: 226-231.
11. R. T. Ng and J. Han: Effcient and effective clustering methods for spatial data

mining. VLDB 1994: 144-155.
12. R. V. Nehme, E. A. Rundensteiner: SCUBA: Scalable Cluster-Based Algorithm for

Evaluating Continuous Spatio-temporal Queries on Moving Objects. EDBT 2006:
1001-1019.

13. A. Nanopoulos, Y. Theodoridis, and Y. Manolopoulos: C2P: Clustering based on
closest pairs. VLDB 2001: 331-340.

14. D. Papadias, J. Zhang, N. Mamoulis, Y. Tao: Query Processing in Spatial Network
Databases. VLDB 2003: 790-801.

15. W. Wang, Yang, R. Muntz, STING: A Statistical Information grid Approach to
Spatial Data Mining. VLDB 1997: 186-195.

16. M. L. Yiu, N. Mamoulis: Clustering Objects on a Spatial Network. SIGMOD 2004:
443-454.

17. Q. Zhang, X. Lin: Clustering Moving Objects for Spatio-temporal Selectivity Es-
timation. ADC 2004: 123-130.

18. T. Zhang, R. Ramakrishnan, and M. Livny: BIRCH:An effcient data clustering
method for very large databases. SIGMOD 1996: 103-114.

