
EasyQuerier: A Keyword Based Interface for Web
Database Integration System

Xian Li1, Weiyi Meng2, Xiaofeng Meng1

1 School of Information, Renmin University of China,{xianli,xfmeng}@ruc.edu.cn
2 Computer Science Dept., SUNY at Binghamtom, meng@cs.binghamton.edu

Abstract. Recently a lot of work on integrating the search interfaces of multiple
Web databases of the same domain into an integrated interface has been reported.
Such integrated interfaces enable users to search multiple Web databases using
one query. However, there are two potential problems when using these inte-
grated interfaces in practice. First, if the number of domains is large, it may be
difficult for users to find the correct domain. Second, the integrated interfaces
can become too complicated for ordinary users to use. In this paper, we propose
a system called EasyQuerier to tackle these problems. EasyQuerier allows the
users to submit keyword-based queries to access the Web databases by first map-
ping a keyword-based user query to a suitable domain and then translating the
user query to a well-formatted query on the integrated interface of the found do-
main. Our experiments show that both our domain mapping and query translation
techniques work very well.

1 Introduction

A large proportion of the information on the Web is stored in the Web accessible
databases [1] which are often calledWeb Databases(WDBs). WDB integration is an
emerging technique for providing users an unified way to access multiple WDBs. One
key research issue here is to automatically integrate the local query interfaces of the
WDBs in the same domain into an integrated query interface [2] [3] [4]. Although this
issue has received a lot of attention in recent years, using such integrated interfaces in
practice has several problems:

1. One integrated interface is able to access only one specific domain. The users need
to first determine the desired domain and then find the corresponding integrated
interface to submit queries. As the number of domains grows, domain searching
becomes an obstacle for the wide use of the integrated interfaces.

2. The integrated query interfaces can be too complex to use for ordinary users be-
cause they typically contain a large number of attributes and many of them have
lots of pre-defined values.

3. Each attribute in the integrated interface can accept only one value at a time. So
a user has to submit multiple queries when he/she wants to set optional search
conditions. For example, if a user wants to search a job with job title “DBA” or
“Software engineer”, the user has to submit two queries to the integrated interface.

In this paper we propose a novel solution to overcome the above problems while still
supporting unified access to multiple WDBs. Our solution provides a simple keyword-
based interface “EasyQuerier” plus two mappings, one maps a user query to the correct
domain and the other maps the query to one or more queries on the integrated query in-
terface of the domain. EasyQuerier allows a user to submit queries against any domain.
Besides, multiple values corresponding to the same attribute on an integrated interface
can be entered in the same query. For the job-hunting example given previously, the
user can simply enter “DBA or Software engineer”.

The rest of this paper is organized as follows. Section 2 provides an overview of
EasyQuerier. Section 3 describes our domain mapping solution. Section 4 proposes the
query translation algorithm from the keyword-based interface to integrated interfaces.
Section 5 reports the experimental results and the analysis. Section 6 reviews related
work followed with the conclusion in Section 7.

2 Overview of EasyQuerier

With EasyQuerier, users only need to provide keyword-like queries. Based on the sub-
mitted query, the related domain is determined first; then the query is translated into
one or more queries that fit the integrated interface of the selected domain; finally each
translated query is mapped to the query interfaces of the local Web databases of the
domain. In this paper, we focus only on the first two steps of the above process.

In this paper, we assume that an integrated query interface for each domain has al-
ready been constructed using some existing techniques (e.g., the WISE-Integrator [3] [5]).
EasyQuerier is built on top of these integrated query interfaces. Users can generally
submit keyword queries as what they usually do when querying search engines.
Example 1. For the following user query:

Q1: New York or Washington, education, $2000-$3000
three keyword units,{New York, Washington}, {education}, and{$2000-$3000} (a
range) are obtained and their data types are text, text, and money, respectively.

3 Domain mapping
We aim to map a user query to the correct domain automatically without domain infor-
mation to be separately entered. We first present a model to represent each domain.

3.1 Domain representation model
Our survey covering nine different domains shows that near 90% of the attributes have
converging value sets We use the converged value sets to represent each domain. We
propose a domain representation model as follows. Specifically, each domain D is mod-
elled by a quadruplet:D =< d ID, CT, AT, V T >, where
1. d ID is the unique domain identifier.
2. CT = {cti|i = 1, 2, · · ·} is a set ofConceptualTerms, which describe the whole

domain concept, such as “car”, “vehicles”, “book”, “music CD”.
3. AT =

⋃
A∈D DAL(d ID,Ai) is a set ofAttribute LabelTerms consisting of at-

tribute labels of the products in this domain.DAL(d ID, Ai), DomainAttribute
Label set, is a set of all the terms related to the attribute label ofAi in domain dID.
DAL(d ID, Ai) consists of terms from three classes: (1)InteLabel: The global la-
bel for Ai in the integrated query interface. (2)LocalLabel: All the labels repre-
sentingAi in the local query interfaces. (3)OtherLabel: It contains some synonyms

and immediate hypernyms/hyponyms of those terms in InteLabel and LocalLabel
obtained using WordNet.

4. V T =
⋃

A∈D DAV (d ID, Ai), is a set of theValueTerms associated with the
products’ attributes in the domain dID. DAV (d ID, Ai), DomainAttributeValue
set, is a set of all the pre-defined values associated withAi in domain dID.
ForCharacter Attribute , values are classified just like for DAL, i.e., we have Inte-
Value, LocalValue, OtherValue. ForNon-text Attribute , DAV can be characterized
by the pre-defined ranges available on the integrated interfaces.

3.2 Term weight assignment

Often different terms have different ability to differentiate the domains. For example,
intuitively attribute label “price” is less powerful than “title” in differentiating the book
domain from other domains because the former appears in more domains than the latter.
Therefore, we should assign a weight to each term in each domain representation to
reflect its ability in differentiating the domain from other domains.

There are different ways to assign weights to a term. In this paper, we adopt a
method from [6] that was used in the context of differentiating different component
search engines (document databases) in a metasearch. In [6], a statistic called CVV
(cue validity variance) is used to measure the skew of the distribution of terms across all
document databases, each of which contains a number of documents. For our problem,
each domain can be considered as a document database and each local query interface
in the domain as a document. Then the CVV of a term can be used as its weight in its
ability to differentiate different domains. Denoteifij as theinterface frequencyof term
tj in the i-th domainDi, i.e., it is the number of timestj appears in either AT or VT in
Di. DenoteCV Vj as the CVV fortj . Then the weight oftj in Di can be computed by:
Weight(Di, tj) = CV Vj ∗ ifij .

3.3 Domain Mapping

After the representation of each domain is generated, we can map each query to a certain
domain by computing the similarity between the query and each domain.

We now discuss how to compute the similarity between Q and each domain D.
As mentioned in Section 2, we parse a query Q into a set of keyword unitsQ =
{u1, u2, · · · , un}. Therefore, we first compute the similarity between eachui and the
domain D. Eachui may contain one or more query terms denoted as{v1

i , v2
i , · · ·}. For

eachvx
i , we first calculate its similarity with the best matching term in the represen-

tation of domain D. Only terms of the attributes that have compatible data types with
the data type ofui are considered. LetT x

i denote this term set. First, consider the case
whenvx

i is a text type query term. The similarity betweenvx
i and a termtj in T x

i is
computed bySim(vx

i , tj) = cw

max(|vx
i |,|tj |) , wherecw is the number of common words

betweenvx
i and tj . Now we consider the case whenvx

i is of a non-text type. In this
case,Sim(vx

i , tj) is computed based on the percentage ofvx
i that is covered bytj , i.e.,

Sim(vx
i , tj) = |cr|

|vx
i | , wherecr is the shared range betweenvx

i andtj . For both cases,

we call the term most similar tovx
i asvx

i ’s matching termand denote it astxi .
We now define the similarity betweenui and D, denotedSim(ui, D), to be

maxx{Sim(vx
i , txi)}. Let tyi be the term such thatmaxx{Sim(vx

i , txi)} = Sim(vy
i , tyi).

If more than one suchtyi exist, take the one with the largestWeight(D, tyi). Finally, the
similarity between Q and D (called themapping degree) is defined as a weighted sum
of all the similarities between all the keyword units in Q and D, i.e.,

Sim(Q,D) =
n∑

i=1

Sim(ui, D) ∗Weight(D, tyi)

4 Query Translation

Each query has been parsed into several keyword units before domain mapping. The
main challenge in query translation is to map each keyword unit to its most appropriate
attribute on the integrated interface of the selected domain. In this section, we first
introduce a computation model for query translation, later we discuss how to generate
query translation solution based on this model.

4.1 Computation model of the query translation

Definition 4.1 (Keyword-AttributeMatching (KAM)). Given a keyword unitu and an
attribute A from the integrated interface, their mapping is denoted asKAM(u,A).
Definition 4.2 (Degree ofMatching (DM)). DM is the degree of matching for a KAM,
with value range [0, 1]. Givenk keyword units andm attributes,k ∗m KAMs can be
generated and their DM values form ak∗m matrix, which will be called the DM matrix.
Definition 4.3 (Query TranslationSolution (QTS)). A QTS represents a strategy of
filling in the query interface. A QTS is comprised ofk KAMs, wherek is the number
of keyword units.
Definition 4.4 (Conviction). This measurement determines whether a QTS is reason-
able. The larger the DM of a KAM, the more reasonable the KAM is. Thus, the QTS
containing such a KAM will more likely yield sounder query translation. Thus the value
of Conviction is computed as a weighted sum of all the related DMs.

4.2 Computation of DM

In our system,DM(ui, A) is determined by the similarity between the keyword unitui

and the value set of attribute A. The value set of A on the integrated interface of domain
d ID is DAV(d ID, A) (see Section 3.1).

A keyword unit in EasyQuerier may contain more than one keyword related to the
same attribute. Letui = {v1

i or v2
i or · · · or vp

i } be such a keyword unit. When com-
puting the DM of aKAM(ui, Aj), we first calculateSim(vx

i , Aj) which represents
the similarity between a valuevx

i and an attributeAj , then the maximum of all the
similarities is the value ofDM(ui, Aj). For eachtj in the DAV of Aj Sim(vx

i , tj) is
computed as what mentioned in section 3.3.Sim(vx

i , Aj) is the maximum value of all
theSim(vx

i , tj).
Finally, theDM(ui, Aj) is aggregated from all theSim values related to the key-

words inui usingDM(ui, Aj) = maxp
x=1{Sim(vx

i , Aj)}.
4.3 Computation of Conviction and QTS Generation

In Definition 4.4, the Conviction value of a QTS is a weighted sum of the DMs of
the related KAMs. We compute a weightw(Aj) for each attributeAj based on its
interface frequency. Let ifi be the number of local query interfaces that contain attribute

Ai. Intuitively, if an attribute appears in more local interfaces of a domain, it is more
important in the domain. Based on this, we computew(Aj) = ifj/(

∑
i ifi). Finally,

for QTS =KAM(u1, A
′
1)∧KAM(u2, A

′
2)∧· · ·∧KAM(uk, A

′
k), we use the following

formula to compute its conviction:

Conviction(QTS) =
k∑

i=1

w(A
′
i) ∗DM(ui, A

′
i)

5 Experiments

A prototype of EasyQuerier has been implemented. The data collection for the exper-
iment includes: web databases and user queries. (1) Web databases: WDBs covering
9 different domains are collected with 50 databases for each domain. (2) User query
collection: 10 students across five different majors are invited as the evaluators of our
demo system. For each domain, every student provides two different keyword queries.

The evaluation for both domain mapping and query translation is similar: we iden-
tify a correct mapping/translationby checking whether the selected domain/translated
query with the largest similarity matches the user’s intention. If the user is not satisfied
with the top result, we let them click the button “more” for more choices In general,
the top 3 choices are provided. If the correct result appears in these choices, we con-
sider the result anacceptable mapping/translation; otherwise the mapping/translation
is considered to bewrong.
Results on domain mapping.The experiment on domain mapping is conducted on the
9 domains. For each query, the produced domains are ranked in descending order of
their similarities with the query.

 0

 0.2

 0.4

 0.6

 0.8

 1

Value OnlyWith AttrLabelWith domainOverall

A
cc

ur
ac

y

Correct
Acceptable

Wrong

Fig.1.Domain mapping accuracy

 0

 20

 40

 60

 80

 100

AirfareMovieMusicCar rentalHotelBookRealAutoJob

A
cc

ur
ac

y

Correct
Acceptable

Wrong

Fig.2.Query translation accuracy

Figure 1 shows the overall percentages of the mapping results that are correct, ac-
ceptable and wrong, respectively, for all queries as well as for each group of queries.
As it can be seen, the overall accuracy is very good. Failurs are mostly caused by inad-
equate information in user queries.
Results on query translation.After translating the source query, one or more translated
queries are generated. Figure 2 shows the percentages of the translations that are correct,
acceptable and wrong for each domain. We find that for the nine domains considered,
most queries can be translated correctly. However, for the book, music and movie do-
mains, the average accuracy is lower at about 82.5%. The main cause of failures for
these domains is that many important attributes such as “title”, “author”, “singer”, and
“director” are textboxes for which building a value set is difficult.

6 Related Work

Automatic interface integration has been a hot issue in recent years. WISE-integrator
[3] and Meta-Querier [2] aim at integrating the complex query interfaces provided by
WDBs. As discussed in Section 1 these integrated query interfaces are likely to be too
complex for ordinary users and our work aims to provide an easy-to-use interface.

Our work is related to researches that translate natural language queries to structured
queries (such as SQL) to support natural language access to structured data (e.g., [7][8]).
The main differences between these works and our work reported here are as follows.
First, they do not deal with the domain mapping problem while we do. Second, they deal
with mostly relational databases while we deal with Web query interfaces. Third, they
have access to both the schema information and the actual data but we only have access
to the schema and very limited pre-defined values available on the query interface but
do not have access to the full data. Finally, we deal with keyword queries rather than
real natural language queries.

7 Conclusion

In this paper, we proposed a novel keyword based interface system EasyQuerier for or-
dinary users to query structured data in various Web databases. We developed solutions
to two technical challenges, one is how to map keyword query to appropriate domains
and the other is how to translate the keyword query to a query for the integrated search
interface of the domain. Our experimental study involving real users showed that our
solutions can produce very promising results.

Acknowledgment.This work is supported in part by the NSF of China under grant #s
60573091, 60273018; NSF of Beijing under grant #4073035; Program for New Cen-
tury Excellent Talents in University (NCET); US NSF grants IIS-0414981 and CNS-
0454298.

References

1. BrightPlanet: The deep web: Surfacing hidden value. (http://brightplanet.com)
2. Chang, K.C.C., He, B., Zhang, Z.: Toward large scale integration: Building a metaquerier

over databases on the web. In: CIDR. (2005) 44–55
3. He, H., Meng, W., Yu, C.T., Wu, Z.: Wise-integrator: An automatic integrator of web search

interfaces for e-commerce. In: VLDB. (2003) 357–368
4. Dragut, E.C., Wu, W., Sistla, A.P., Yu, C.T., Meng, W.: Merging source query interfaces on

web databases. In: ICDE. (2006) 46
5. He, H., Meng, W., Yu, C.T., Wu, Z.: Wise-integrator: A system for extracting and integrating

complex web search interfaces of the deep web. In: VLDB. (2005) 1314–1317
6. Yuwono, B., Lee, D.L.: Search and ranking algorithms for locating resources on the world

wide web. In: ICDE. (1996) 164–171
7. Androutsopoulos, I., Ritchie, G.D., Thanisch, P.: Natural language interfaces to databases -

an introduction. CoRRcmp-lg/9503016(1995)
8. A. Popescu, O.E., Kautz, H.: Towords a theory of natural language interfaces to databases.

International Conference on Intelligent User Interfaces. (2003)

