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Abstract. Advances in wireless sensors and position technologies such
as GPS enable location-based services that rely on the tracking of con-
tinuously changing positions of moving objects. The key issue in tracking
techniques is how to minimize the number of updates, while providing
accurate locations for query results. In this paper, for tracking network-
constrained moving objects, we first propose a simulation-based predic-
tion model with more accurate location prediction for objects movements
in a traffic road network, which lowers the update frequency and assures
the location precision. Then, according to their predicted future func-
tions, objects are grouped and only the central object in each group
reports its location to the server. The group update strategy further
reduces the total number of objects reporting their locations. A simula-
tion study has been conducted and proved that the group update policy
based on the simulation prediction is superior to traditional update poli-
cies with fewer updates and higher location precision.

1 Introduction

The continued advances in wireless sensors and position technologies such as
GPS enable new data management applications such as traffic management and
location-based services that monitor continuously changing positions of moving
objects [2, 7]. In these applications, large amounts locations can be sampled by
sensors or GPS periodically, then sent from moving clients to the server and
stored in a database. Therefore, continuously maintaining in a database current
locations of moving objects namely tracking technique becomes a fundamental
component of these applications [1, 2, 9, 10]. The key issue is how to minimize
the number of updates, while providing precise locations for query results.

The number of updates from moving objects to the server database depends
on both the update frequency and the number of objects to be updated. To
reduce the location updates, most existing works are proposed to lower the
update frequency by a prediction method [1, 9, 10]. They usually use the linear
prediction which represents objects locations as linear functions of time. The
objects do not report their locations to the server unless their actual positions
exceed the predicted positions to a certain threshold. This provides a general
principle for the location update policies in a moving object database system.



However, few research works focus on improving the update performance from
the aspect of reducing the number of objects to be updated. We observe that
in many applications, objects naturally move in clusters, including vehicles in a
congested road network, packed goods transmitted in a batch, animal and bird
migrations. It is possible that the nearby objects are grouped and only one object
in the group reports its location to the server to represent all objects within it.
Considering real life applications, we focus on objects moving on a road network.
Figure 1 gives an example of grouping vehicles on a part of road network. Due
to the grouping of vehicles in each road segment, the total location updates sent
to the server are reduced from 9 to 5.
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The idea of grouping objects for location updates is similar to the GBL pro-
posed in [6], but the GBL groups objects by their current locations and predicted
locations after a time parameter τ . In fact, it obtains the predicted locations also
by the linear prediction model assuming the linear movement with current veloc-
ity. However, in the urban road network, due to complex traffic conditions, cars
may update their velocities frequently even for each timestamp. In this case,
the linear prediction used in the GBL and other location update methods is
inapplicable because the inaccurate predicted locations result in frequent loca-
tion updates and lots of group management. In this paper, for the purpose of
improving the performance of tracking for network-constrained moving objects,
we focus on the both two factors affecting location updates and propose our
solutions. One is a better prediction model to lower update frequency, and the
other is a group update strategy to reduce the total number of objects reporting
their locations. The accurate prediction model also reduces the maintenance of
the groups and assures the location precision for querying.

Therefore, we first propose a simulation-based prediction (SP) model which
captures traffic features in constrained networks. Specifically, we model road
networks by graphs of cellular automata, which are also used to simulate vehicles
future trajectories in discrete points in accordance with the surrounding traffic
conditions. To refine the accuracy, we simulate two future trajectories to obtain
the predicted movement function, which correspond to the fastest and slowest
possible movements. We then propose a group location update strategy based on
the SP model (GSP) to minimize location updates. In the GSP, for each edge in



the road network, the objects with their predicted movement functions similar
are grouped or clustered and only the object nearest to its group center needs to
report the location of the whole group. Within a certain precision, the locations
of other objects can be approximated to their group location. Finally, through
the experimental evaluations, we show that the GSP strategy has more efficient
update performance as well as higher location precision.

The rest of the paper is organized as follows. Section 2 surveys related work
by classifying the existing tracking techniques. In Section 3, a road network
modeled as a graph of cellular automata is represented and our simulation-based
prediction model is proposed. Section 4 describes our group update strategy.
Section 5 contains an experimental analysis, and finally Section 6 concludes.

2 Related Work

Research on tracking of moving objects has mainly focused on location update
policies. Existing methods can be classified according to the threshold, the route,
the update mode or the representation and prediction of objects future positions.

Updates differ in threshold and route
Wolfson et al.[9] first proposed the dead-reckoning update policies to reduce

the update cost. According to the threshold, they are divided into three poli-
cies, namely the Speed Dead Reckoning (SDR) having a fixed threshold for all
location updates, the Adaptive Dead Reckoning (ADR) having different thresh-
olds to different location updates and the Disconnection Detection Reckoning
(DTDR) having the continuously decreasing threshold since last location up-
date. The policies also assume that the destination and motion plan of the mov-
ing objects is known a priori. In other words, the route is fixed and known. In
[4], Gowrisankar and Nittel propose a dead-reckoning policy that uses angular
and linear deviations. They also assume that moving objects travel on prede-
fined routes. Lam et al. propose two location update mechanisms for further
considering the effect of the continuous query results on the threshold [7]. The
idea is that the moving objects covered by the answers of the queries have a
lower threshold, leading to a higher location accuracy. Zhou et al. [11] also take
the precision of query results as a result of a negotiated threshold by the Aqua
location updating scheme proposed.

Updates differ in representation and prediction of future positions
Wolfson and Yin [10] consider tracking with accuracy guarantees. They in-

troduce the deviation update policy for this purpose and compare it with the
distance policy. The difference between the two polices lies in the representa-
tion of future positions respectively with the linear function in the former and
constant function in the latter. Based on experiments with artificial data gen-
erated to resemble real movement data, they conclude that the distance policy
is outperformed by the deviation policy. Similarly, Civilis et al. [1, 2] propose
three update policies: a point policy, a vector policy, and a segment-based pol-
icy, which differ in how they predict the future positions of a moving object.
In fact, the first and third policy are the good representatives of the policies in



[10]. They further improve the update policies in [2], by exploiting the better
road-network representation and acceleration profiles with routes. It should also
be noted that Ding and Guting [3] have recently discussed the use of what is
essentially segment-based tracking based on their proposed data model for the
management of road-network constrained moving objects. In paper [8], the non-
linear models such as the acceleration are used to represent the trajectory which
is affected by the abnormal traffic such as traffic incident.

Updates based on individual object and their group
Most existing update techniques are developed to process individual updates

efficiently [1, 2, 9, 10]. To reduce the expensive uplink updates from the objects
to the location server, Lam et al. [6] propose a group-based scheme in which
moving objects are grouped so that the group leader will send location update
on behalf of the whole group. A group-based location update scheme for personal
communication network is also proposed in [5]. The aim is to reduce location
registrations by grouping a set of mobile objects at their serving VLRs.

Our work improves the tracking technique from the aspect of prediction
model and update mode, and focuses on the accuracy of the predicted posi-
tions of the objects in urban road networks. Based on their predicted movement
functions, we groups objects to further reduce their location updates. To the best
of our knowledge, there exists no proposal for tracking of moving objects that
combines the simulation based prediction and grouping of objects by exploiting
the movement features of objects in traffic systems.

3 Data Model and Trajectory Prediction

We model a road network with a graph of cellular automata (GCA), where
the nodes of the graph represent road intersections and the edges represent road
segments with no intersections. Each edge consists of a cellular automaton (CA),
which is represented, in a discrete mode, as a finite sequence of cells. The CA
model was used in this context by [12].

In the GCA, a moving object is represented as a symbol attached to the cell
and it can move several cells ahead at each time unit. Intuitively, the velocity is
the number of cells an object can traverse during a time unit. Let i be an object
moving along an edge. Let v(i) be its velocity, x(i) its position, gap(i) the number
of empty cells ahead (forward gap), and Pd(i) a randomized slowdown rate which
specifies the probability it slows down. We assume that Vmax is the maximum
velocity of moving objects. The position and velocity of each object might change
at each transition of the GCA according to the rules below (adapted from [12]):

1. if v(i) < Vmax and v(i) < gap(i) then v(i) ← v(i) + 1
2. if v(i) > gap(i) then v(i) ← gap(i)
3. if v(i) > 0 and random() < Pd(i) then v(i) ← v(i)− 1
4. if (x(i) + v(i)) ≤ l then x(i) ← x(i) + v(i)

The first rule represents linear acceleration until the object reaches the maxi-
mum speed Vmax. The second rule ensures that if there is another object in front



of the current object, it will slow down in order to avoid collision. In the third
rule, the Pd(i) models erratic movement behavior. Finally, the new position of
object i is given by the fourth rule as the sum of the previous position with
the new velocity if it is in the CA. Figure 2 shows a transition of the cellular
automaton of edge (n1, n2) in Figure 1 in two consecutive timestamps. We can
see that at time t, the speed of the object o1 is smaller than the gap (i.e. the
number of cells between the object o1 and o2). On the other hand, the object
o2 will reduce its speed to the size of the gap. According to the fourth rule, the
objects move to the corresponding positions based on their speeds at time t +1.

We use GCAs not only to model road networks, but also to simulate the
movements of moving objects by the transitions of the GCA. Based on the
GCA, a Simulation-based Prediction (SP) model to anticipate future trajectories
of moving objects is proposed. The SP model treats the objects simulated results
as their predicted positions. Then, by the linear regression, a compact and simple
linear function that reflects future movement of a moving object can be obtained.
To refine the accuracy, based on different assumptions on the traffic conditions
we simulate two future trajectories to obtain its predicted movement function.
Figure 3 and Figure 4 show the comparison of the SP model and the linear
prediction (LP) model. We can see from Figure 3 that the LP model cannot
predict accurately the future trajectories of objects due to the frequent changes
of the object velocity in traffic road networks.
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Most existing work uses the CA model for traffic flow simulation in which
the parameter Pd(i) is treated as a random variable to reflect the stochastic,
dynamic nature of traffic system. However, we extend this model for predicting
the future trajectories of objects by setting Pd(i) to values that model different
traffic conditions. For example, laminar traffic can be simulated with Pd(i) set to
0 or a small value, and the congestion can be simulated with a larger Pd(i). By
giving Pd(i) two values, we can derive two future trajectories, which describe,
respectively, the fastest and slowest movements of objects. In other words, the
object future locations are most probably bounded by these two trajectories. The
value of Pd(i) can be obtained by the experiences or by sampling from the given
dataset. Our experiments show one of methods to choose the value of Pd(i). It
is proved that 0 and 0.1 are realistic values of Pd(i) in our cases.



For getting the future predicted function of an object from the simulated
discrete points, we regress the discrete positions to a linear function by the
Least Square Estimation (LSE) in Statistics. It can be calculated efficiently with
low data storage cost. Let the discrete simulated points be (t0, l0), (t1, l1), ...,
(ti, li), ..., (tn−1, ln−1)(i ≥ 0, n > 0), where ti is the time at i+1 timestamp, li is
the relative distance of the moving object in an edge at timestamp ti, n is the
total time units for the simulation, a linear function of time variable t can be
obtained as follows:

l = a0 + a1t (1)

where the slope a1 and the intercept a0 can be calculated in Statistics
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After regressing the two simulated future trajectories to two linear function
denoting L1 and L2 in Figure 4, we can compute the middle straight line L3, the
bisector of the angle a between L1 and L2 as the final predicted function L(t).

Through the SP model, we obtain a compact and simple linear prediction
function for the moving object. However, this is different from the linear pre-
diction in that the simulation-based prediction method not only considers the
speed and direction of each moving object, but also takes correlation of objects
as well as the stochastic behavior of the traffic into account. The experimental
results also show it is a more accurate and effective prediction approach.

4 Group Location Update Strategy

As the number of updates from moving objects to the server database depends
on both the update frequency and the number of objects updated, we propose
a group location update strategy based on the SP model (GSP) to minimize
location updates. In the GSP, for each edge in a road network, the objects are
grouped or clustered by the similarity of their predicted future movement func-
tion and their locations are represented and reported by the group (Figure 1). It
means that the nearby objects with similar movement during the future period
on the same edge are grouped and only the object nearest to its group center
needs to report the location of the whole group. Within a certain precision, the
locations of other objects can be approximated to their group location.

The idea of grouping objects for location updates is similar to the GBL
proposed in [6]. The main differences are that the GSP groups the objects by
their future movement function predicted from the SP model instead of their
current locations and predicted locations after a time parameter τ obtained by



current velocity. Grouping by objects predicted movement function can insure
the validity of the groups. The accurate prediction from the SP model can also
reduce the maintenance of the groups. Due to the constraint of the road network,
each group in the GSP has its lifetime in accordance to the edge. A group only
exists on one edge and will be dissolved when objects within it leave the edge.
Furthermore, unlike the GBL in which objects have to send a lots of messages to
each other and compute the costly similarities for grouping and leader selection,
the GSP executes the grouping on the server after predicting. This alleviates the
resource consumption of moving clients and overloads of wireless communication.

The similarity of two objects simulated future trajectories in the SP model
has to be computed by comparing a lot of feature points on the trajectories. A
straightforward method is to select some of the simulated points to sum their
distance difference. However, the computation cost for simulated trajectories is
very high. For simplicity and low cost, we group objects by comparing their final
predicted linear functions. Therefore, the movement similarity of two objects
on the same edge can be determined by their predicted linear functions and
the length of the edge. Specifically, if both the distance of their initial locations
and their distance when one of the objects arrives the end of the edge are less
than the given threshold (corresponding to the update threshold ε), we group
the two objects together. These distances can be easily computed by their pre-
dicted functions. Figure 5 shows the predicted movement functions (represented
as L1, L2, L3, L4, L5) of the objects o1, o2, o3, o4, o5 on the edge (n1, n2) from
Figure 1. le is the length of the edge and t1, t2, t3, t4 are respectively the time
when the objects o1, o2, o3, o4 arrive the end of the edge. Given the threshold is
7, for objects o1, o2, the location difference between them at initiate time and
t1 are not larger than 7, therefore, they are clustered in one group c1. We then
compare the movement similarities of o3 and o1 as well as o3 and o2. The location
differences are all not larger than 7, so o3 can be inserted to c1. Although at the
initiate time, o3 and o4 are very close with the distance less than 7, they move
far away each other in the future and their distance exceeds 7 when o3 arrives
the end of the edge. They cannot be grouped in one cluster. In the same way,
o4 and o5 form the group c2. Therefore, given a threshold, there are three cases
of the objects predicted linear function when they are grouped together on one
edge. These cases can be seen in the Figure 5 respectively labeled by a (L2 and
L3 with objects moving close), b (L1 and L3 with objects moving far away) and
c (L1 and L2 with one object exceeding another one).

In a road network, we group objects on the same edge. When objects move
out of the edge, they may change direction independently. So we dissolve this
group and regroup the objects in adjacent edges. Each group has its lifetime from
the group formation to all objects within it leaving the edge. For each edge, with
the objects predicted functions, groups are formed by clustering together sets of
objects not only close to each other at a current time, but also likely to move
together for a while on one edge. We select the object closest to the center of its
group both the current time and some period in future on the edge to represent
the group. The central object represents its group and is responsible for reporting
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Fig. 5. Grouping objects by their predicted functions

the group location to the server. For reselecting the central object, according to
objects predicted future functions, we can choose the objects close to the center
of the group during its lifetime as the candidates of the central object. We can
also identify when the central object will move away from the group center and
choose another candidate as a new central object. A joining from a moving object
to a group must be executed as follows. The system first finds the nearby groups
according to the edge the object lies and then compares the movement similarity
of the object and the group by their predicted functions. If the object cannot
join to the nearby groups, a new group will be created with only one member.
When a moving object leaves a group, the central object of the group needs to be
reselected. However, for the object leaving an edge, to reduce the central object
reselection of its group, we just delete it from its group and do not change the
central object until the central object leaves the edge.

In the GSP, the grouping method assures the compactness and movement
similarity of the objects within a group. Given the precision threshold ε, the
objects locations in a group may be approximated by the location of the group
(i.e. location of its central object). Only the location update from the central
object of the group to the location server is necessary. After the server makes
predictions for objects in a road network and initiates their groups, the client
of the central object measures and monitors the deviation between its current
location and predicted location and reports its location to the server. Other ob-
jects do not report their locations unless they enter the new edge. The prediction
and grouping of objects are executed in the server and the group information
(including the edge id, the central object id, its predicted function and a set of
objects within the group) is also stored in the database of the server. The update
algorithm in the server is described in Algorithm 1.

5 Performance Evaluation

In this section, we experimentally measure the performance of the point-based,
segment-based [1], and our GSP update policies. We also evaluate the simulation
based prediction (SP) method used in the GSP update policy with the simulation
parameter Pd and prediction accuracy compared to the linear prediction (LP)
method. We implemented the three update policies in Java and carried out
experiments on a Pentium 4, 2.4G PC with 256MB RAM running Windows XP.



Algorithm 1: GroupUpdate(objID, pos, vel, edgeID, grpID)

input : objID, edgeID and grpID are respectively the identifier of the object
to be updated, its edge and group, pos, vel are its position and velocity

Simulate two future trajectories of objID with different Pd by the CA;
Compute the future predicted function l(t) of objID;
if objID does not enter the new edge then

if objID is the central object of grpID then
Update the current position pos and predicted function l(t) of grpID;
Send the predicted function l(t) of grpID to the client of objID;

end

else
if GetObjNum(grpID) > 1 then

Deletes objID from its original group grpID;
if objID is the central object of grpID then

Reselect the central object of grpID, update and send its group info;
end

else Dissolve the group grpID;
Find the nearest group grp1 for objID on edgeID;
Compute the time te when objID leaves edgeID by l(t) and edgeID length;
if Both distances between objID and grp1 at initiate time and te ≤ ε then

Insert objID into grp1 and send grp1 identifier to the client of objID;
Reselect the central object of grp1, update and send its group info;

else Create a new group grp2 only having objID and send its group info;
end

5.1 Datasets

The datasets of our experiments are generated by Thomas Brinkhoff Network-
based Generator of Moving Objects [13], which is used as a popular benchmark
in many related work. The generator takes a map of a real road network as input
and may simulate the moving behaviors of various kinds of moving objects in
real world. Our experiment is based on the real map of Oldenburg city with
7035 segments. For modeling the road network, we associate those adjacent but
not crossed segments together to form edges of the graph. After that, the total
number of edges is 2980 and their average length is 184. We set the generator
the parameter “maximum time” to be 20, “maximum speed” 50 and the number
of initial moving objects 100000. The generator places these objects at random
positions on the road network, and updates their locations at each time-stamp.
The positions of the objects are given in two dimensional X-Y coordinates. We
transform them to the form of (edgeid, pos), where edgeid denotes the edge
identifier and pos denotes the object relative position.

5.2 Update Performance

For evaluating update performance and accuracy, we consider two metrics, namely,
the number of updates (for 100000 moving objects during 20 time-stamps) and
average error of the location of each object at each times-tamp as following.



average error =
1

mn

n−1∑

j=0

m−1∑

i=0

|lij − lrij | (4)

where lij is the predicted location of moj or approximated location by its
group at the timestamp ti, lrij is the real location of moj at timestamp ti, m is
total update time-stamps and n is the number of moving objects.

Figure 6 and 7 show the update number and average error of three update
policies respectively with different update thresholds. We observe that with in-
crease of the threshold, the update number will decrease and the average error
will increase in any one of these three policies. This is because the larger the
threshold is, the larger the allowable deviation between the predicted location
and its real location, and the less updates it causes. However, the GSP update
policy outperforms the other two policies for fewer number of update and aver-
age error. Specifically, the GSP only causes 30%-40% updates of segment-based
policy and 15%-25% of point-based policy, while improves the location accuracy
with lower average error. This owns to the accurate prediction of the SP method
and the technique of grouping moving objects. For the GSP policy, larger thresh-
old results in more objects in one group and therefore fewer group updates and
higher location average error. In addition, notice that the largest performance
improvement of the GSP policy over other policies is for smaller thresholds.
For thresholds below 10, the GSP policy is nearly three times better than the
segment-based policy and four times than the point-based policy.
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5.3 Prediction Performance

The Slowdown Rate Pd We study the effect of the choices of different Pd, which
determines two predicted trajectories corresponding to the fastest and slowest
movements. We use Pd from 0 to 0.5 and measure the prediction accuracy by the
average error and overflow rate. The overflow rate represents the probability of
the predicted positions exceeding the actual positions. The purpose of this metric
is to find the closest two trajectories binding the actual one as future trajectories.
In this way, we choose the Pd with both the lower average error and overflow



rate, which can also be treated as one of methods to set the proper values of Pd

in a given dataset. Figure 8 and Figure 9 show the prediction accuracy of the SP
method with different Pd. We can see that when Pd is set to 0 and 0.1, both the
average error and overflow rate are lower than others. Therefore, we use them
in the experiments to obtain better prediction results.
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Prediction Accuracy and Cost Finally, we compare the prediction accuracy of
the SP method with the LP method. We measure the average error for predicted
locations (without grouping) with different thresholds. From Figure 10, we ob-
serve that the average error will increase when the threshold increases. This is
tenable in both the LP and SP method. However, the SP method predicts more
accurately than the LP method with any threshold. For the costs of SP method,
as its time complexity depends on many factors, we compute average CPU time
when simulating and predicting the movements of one object along the edge with
length 1000. The results show that the average cost of one prediction is about
0.25ms. This is acceptable even for large number of moving objects.
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6 Conclusion

Motivated by the features of vehicles movements in traffic networks, this paper
presents new techniques to track network-constrained moving objects. Our con-
tribution is twofold. First we propose a prediction model, based on simulation,



which predicts with a great accuracy the future trajectories of moving objects.
This lowers location update frequency in tracking. Then, based on the predic-
tion, we propose a group update strategy which further reduces location updates
and minimizes the cost of wireless communication. The experiments show that
the update strategy has much higher performance and location accuracy.
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