
Vision-based Web Data Records Extraction

Wei Liu, Xiaofeng Meng
School of Information

Renmin University of China
Beijing, 100872, China

{gue2, xfmeng}@ruc.edu.cn

Weiyi Meng
Dept. of Computer Science

SUNY at Binghamton
Binghamton, NY 13902

meng@cs.binghamton.edu

ABSTRACT
This paper studies the problem of extracting data records on
the response pages returned from web databases or search
engines. Existing solutions to this problem are based pri-
marily on analyzing the HTML DOM trees and tags of the
response pages. While these solutions can achieve good re-
sults, they are too heavily dependent on the specifics of
HTML and they may have to be changed should the re-
sponse pages are written in a totally different markup lan-
guage. In this paper, we propose a novel and language in-
dependent technique to solve the data extraction problem.
Our proposed solution performs the extraction using only
the visual information of the response pages when they are
rendered on web browsers. We analyze several types of vi-
sual features in this paper. We also propose a new mea-
sure revision to evaluate the extraction performance. This
measure reflects perfect extraction ratio among all response
pages. Our experimental results indicate that this vision-
based approach can achieve very high extraction accuracy.

Keywords
Web DB, response page, data record

1. INTRODUCTION
The World Wide Web has close to one million searchable

information sources according to a recent survey[1]. These
searchable information sources include both search engines
and Web databases. By posting queries to the search inter-
faces of these information sources, useful information from
them can be retrieved. Often the retrieved information
(query results) is wrapped on response pages returned by
these systems in the form of data records, each of which
corresponds to an entity such as a document or a book.
Data records are usually displayed visually neatly on Web
browsers to ease the consumption of human users. In Figure
1, a number of book records are listed on a response page
from Amazon.com.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

Figure 1: A response page from Amazon

However, to make the retrieved data records machine pro-
cessable, which is needed in many applications such as deep
web crawling and metasearching, they need to be extracted
from the response pages. In this paper, we study the prob-
lem of automatically extracting the data records from the
response pages of web-based search systems.

The problem of web data extraction has received a lot
of attention in recent years[2][5][6][7][8]. The existing solu-
tions are mainly based on analyzing the HTML source files
of the response pages. Although they can achieve reason-
ably high accuracies in the reported experimental results,
the current studies of this problem have several limitations.
First, HTML-based approaches suffer from the following
problems: (1) HTML itself is still evolving and when new
versions or new tags appear, the previous solutions will have
to be amended repeatedly to adapt to new specifications and
new tags. (2) Most previous solutions only considered the
HTML files that do not include scripts such as JavaScript
and CSS. As more and more web pages use more complex
JavaScript and CSS to influence the structure of web pages,
the applicability of the existing solutions will become lower.
(3) If HTML is replaced by a new language in the future,
then previous solutions will have to be revised greatly or
even abandoned, and other approaches must be proposed to
accommodate the new language. Second, traditional perfor-
mance measures, precision and recall, do not fully reflect the
quality of the extraction. Third, most performance studies
used small data sets, which is inadequate in assuring the
impartiality of the experimental results.

There are already some works [9][12] that analyze the lay-
out structure of web pages. They try to effectively repre-
sent and understand the presentation structure of web pages,
which are physical structure independent. But the research
on vision-based web data extraction is still at its infancy. It
is well known that web pages are used to publish informa-
tion for humans to browse, and not designed for computers
to extract information automatically. Based on such con-
sideration, in this paper we propose a novel approach to

extract data records automatically based on the visual rep-
resentation of web pages. Like [8][7], our approach also aims
at the response pages that have multiple data records. Our
approach employs a three-step strategy to achieve this ob-
jective. First, given a response page, transform it into a
Visual Block tree based on its visual representation; second,
discover the region (data region) which contains all the data
records in the Visual Block tree; third, extract data records
from the data region.

This paper has the following contributions:
1. We believe this is the first work that utilizes only the

visual content features on the response page as displayed on
a browser to extract data records automatically.

2. A new performance measure, revision, is proposed
to evaluate the approaches for web data extraction. The
measure revision is the percentage of the web sites whose
records cannot be perfectly extracted (i.e., at least one of the
precision and recall is not 100%). For these sites, manual
revision of the extraction rules is needed.

3. A data set of 1,000 web databases and search engines is
used in our experiment study. This is by far the largest data
set used in similar studies (previous works seldom used 200
sites). Our experimental results indicate that our approach
is very effective.

2. RELATED WORKS
Until now, many approaches have been reported in the

literature for extracting information from Web pages. Re-
cently, many automatic approaches [5][6][7][8] have been pro-
posed instead of manual approaches [2] and semi-automatic
approaches [3] [4]. For example, [6] find patterns or gram-
mars from multiple pages in HTML DOM trees containing
similar data records, and they require an initial set of pages
containing similar data records. In [5], a string matching
method is proposed, which is based on the observation that
all the data records are placed in a specific region and this
is reflected in the tag tree by the fact that they share the
same path in DOM tree. The method DEPTA[7] used tree
alignment instead of tag strings, which exploits nested tree
structures to perform more accurate data extraction, so it
can be considered as an improvement of MDR[8]. The only
works that we are aware of that utilize some visual informa-
tion to extract data records are [13][14]. However, in these
approaches, tag structures are still the primary information
utilized while visual information plays a small role. For ex-
ample, in [13], when the visual information is not used, the
recall and precision decrease by only 5%. In contrast, in
this paper, our approach performs data record extraction
completely based on visual information.

Although the works discussed above applied different tech-
niques and theories, they have a common characteristic:
they are all implemented based on HTML DOM trees and
tags by parsing the HTML documents. In Section 1, we
discussed the latent and inevitable limitations of them.

Since web pages are used to publish information for hu-
mans to browse and read, the desired information we want
extracted must be visible, so the visual features of web pages
can be very helpful for web information extraction. Cur-
rently, some works are proposed to process web pages based
on their visual representation. For example, a web page
segmentation algorithm VIPs is proposed in [9] which sim-
ulates how a user understands web layout structure based
on his/her visual perception. Our approach is implemented

based on VIPs. [10] is proposed to implement link analysis
based on the layout and visual information of web pages.
Until now, the layout and visual information is not effec-
tively utilized to extract structural web information, and it
is only considered as a heuristic accessorial means.

3. INTERESTING VISUAL OBSERVATIONS
FOR RESPONSE PAGES

Web pages are used to publish information on the Web.
To make the information on web pages easier to understand,
web page designers often associate different types of informa-
tion with distinct visual characteristics (such as font, color,
layout, etc.). As a result, visual features are important for
identifying special information on Web pages.

Response pages are special web pages that contain data
records retrieved from Web information sources, and the
data records contained in them also have some interesting
distinct visual features according to our observation. Below
we describe the main visual features our approach uses.

Position Features (PF): These features indicate the lo-
cation of the data region on a response page.

• PF1: Data regions are always centered horizontally.

• PF2: The size of the data region is usually large rela-
tive to the area size of the whole page.

Though web pages are designed by different people, these
designers all have the common consideration in placing the
data region: the data records are the contents in focus on re-
sponse pages, and they are always centered and conspicuous
on web pages to catch the user’s attention. By investigating
a large number of response pages, we found two interesting
facts. First, data regions are always located in the middle
section horizontally on response pages. Second, the size of
a data region is usually large when there are enough data
records in the data region. The actual size of a data region
may change greatly for different systems because it is not
only influenced by the number of data records retrieved but
also by what information is included in each data record,
which is application dependent. Therefore, our approach
does not use the actual size, instead it uses the ratio of the
size of the data region to the size of whole response page.

Layout Features (LF): These features indicate how the
data records in the data region are typically arranged.

• LF1: The data records are usually aligned flush left in
the data region.

• LF2: All data records are adjoining.

• LF3: Adjoining data records do not overlap, and the
space between any two adjoining records is the same.

The designers of web pages always arrange the data records
in some format in order to make them visually regular. The
regularity can be presented by one of the two layout models.

In Model 1, The data records are arrayed in a single col-
umn evenly, though they may be different in width and
height. LF1 implies that the data records have the same
distance to the left boundary of the data region. In Model
2, data records are arranged in multiple columns, and the
data records in the same column have the same distance
to the left boundary of the data region. In addition, data
records do not overlap, which means that the regions of dif-
ferent data records can be separated. Based on our observa-
tion, the response pages of all search engines follow Model 1
while the response pages of web databases may follow either

of the two models. Model 2 is a little bit more complicated
than Model 1 in layout, and it can be processed with some
extension to the techniques used to process Model 1. In
this paper, we focus on dealing with Model 1 due to the
limitation of paper length.

We should note that feature LF1 is not always true as
some data records on certain response pages of some sites
(noticeably Google) may be indented. But the indented data
records and the un-indented ones have very similar visual
features. In this case, all data records that satisfy Model 1
are identified first, and then the indented data records are
extracted utilizing the knowledge obtained from un-indented
data records that have already been identified.

Appearance Features (AF): These features capture the
visual features within data records.

• AF1: Data records are very similar in their appear-
ances, and the similarity includes the sizes of the im-
ages they contain and the fonts they use.

• AF2: Data contents of the same type in different data
records have similar presentations in three aspects:
size of image, font of plain text and font of link text
(The font of text is determined by font-size, font-color,
font-weight and font-style).

Data records usually contain three types of data contents,
i.e., images, plain texts (the texts without hyperlinks) and
link texts (the texts with hyperlinks). Table 1 shows the
information on the three aspects of data records in Figure
1, and we can find that the four data records are very close
on the three aspects.

Our data record extraction solution is developed mainly
based on the above three types of visual features. Fea-
ture PF is used to locate the region containing all the data
records on a response page; feature LF and feature AF are
combined together to extract the data records accurately.

Content Feature (CF): These features hint the regular-
ity of the contents in data records.

• CF1: All data records have mandatory contents and
some may have optional contents.

• CF2: The presentation of contents in a data record
follows a fixed order.

The data records are the entities in real world, and they
consist of data units with different semantic concepts. The
data units can be classified into two kinds: mandatory and
optional. Mandatory units are those that must appear in
each data record. For example, if every book data record
must have a title, then titles are mandatory data units.
In contrast, optional units may be missing in some data
records. For example, discounted price for products in e-
commerce web sites is likely an optional unit because some
products may not have discount price.

4. WEB DATA RECORD EXTRACTION

Figure 2: The content structure (a) and its Visual
Block tree (b)

Based on the visual features introduced in the previous
section, we propose a vision-based approach to extract data
records from response pages. Our approach consists of three
main steps. First, use the VIPs [9] algorithm to construct
the Visual Block tree for each response page. Second, lo-
cate the data region in the Visual Block tree based on the
PF features. Third, extract the data records from the data
region based on the LF and AF features.

4.1 Building Visual Block tree
The Vision-based Page Segmentation (VIPs) algorithm

aims to extract the content structure of a web page based
on its visual presentation. Such content structure is a tree
structure, and each node in the tree corresponds to a rectan-
gular region on a web page. The leaf blocks are the blocks
that cannot be segmented further, and they represent the
minimum semantic units, such as continuous texts or im-
ages. There is a containment relationship between a parent
node and a child node, i.e., the rectangle corresponding to a
child node is contained in the rectangle corresponding to the
parent node. We call this tree structure Visual Block tree
in this paper. In our implementation we adopt the VIPS al-
gorithm to build a Visual Block tree for each response page.
Figure 2(a) shows the content structure of the response page
shown in Figure 1 and Figure 2(b) gives its corresponding
Visual Block tree. Actually, Visual Block tree is more com-
plicated than what Figure 2 shows (there are often hundreds
even thousands of blocks in a Visual Block tree).

For each block in the Visual Block tree, its position (the
position on response page) and its size (width and height)
are logged. The leaf blocks can be classified into three kinds:
image block, plain text block and link text block, which
represent three kinds of information in data records respec-
tively. If a leaf block is a plain text block or a link text
block, the font information is attached to it.

4.2 Data region discovery
PF1 and PF2 indicate that the data records are the pri-

mary content on the response pages and the data region
is centrally located on these pages. The data region corre-
sponds to a block in the Visual Block tree (in this paper we
only consider response pages that have only a single data
region). We locate the data region by finding the block
that satisfies the two PF features. Each feature can be
considered a rule or a requirement. The first rule can be
applied directly, while the second rule can be represented

Figure 3: A general case of data region

by (areab/arearesponsepage) ≥ Tdataregion, where areab is
the area of block b, arearesponsepage is the area of the re-
sponse page, and Tdataregion is the threshold used to judge
whether b is sufficiently large relative to arearesponsepage.
The threshold is trained from sample response pages col-
lected from different real web sites. For the blocks that
satisfy both rules, we select the block at the lowest level in
the Visual Block tree.

4.3 Data records extraction from data region
In order to extract data records from the data region ac-

curately, two facts must be considered. First, there may be
blocks that do not belong to any data record, such as the sta-
tistical information (about 2,038 matching results for java)
and annotation about data records (1 2 3 4 5 [Next]). These
blocks are called noise blocks in this paper. According to
LF2, noise blocks cannot appear between data records and
they can only appear at the top or the bottom of the data
region. Second, one data record may correspond to one or
more blocks in the Visual Block tree, and the total number
of blocks one data record contains is not fixed. For example,
in Figure 1, “Buy new” price exists in all four data records,
while “Used & new” price only exists in the first three data
records. Figure 3 shows an example of a data region that
has the above problems: Block B1 (statistical information)
and B9 (annotation) are noise blocks; there are three data
records (B2 and B3 form data record 1; B4, B5 and B6
form data record 2; B7 and B8 form data record 3), and the
dashed boxes are the boundaries of data records.

This step is to discover the boundary of data records based
on the LF and AF features. That is, we attempt to de-
termine which blocks belong to the same data record. We
achieve this with the following three sub-steps: Sub-step1:
Filter out some noise blocks; Sub-step2: Cluster the remain-
ing blocks by computing their appearance similarity; Sub-
step3: Discover data record boundary by regrouping blocks.

4.3.1 Noise blocks filtering
Because noise blocks are always at the top or bottom, we

check the blocks located at the two positions according to
LF1. If a block is not aligned flush left, it will be removed
from the data region as a noise block. In this sub-step, we
cannot assure all noise blocks are removed. For example, in
Figure 3, block B9 can be removed in this sub-step, while
block B1 cannot be removed.

4.3.2 Blocks clustering

The remaining blocks in the data region are clustered
based on their appearance similarity. Since there are three
kinds of information in data records, i.e., images, plain text
and link text, the appearance similarity of blocks is com-
puted from the three aspects. For images, we care about
the size; for plain text and link text, we care about the
shared fonts. Intuitively, if two blocks are more similar on
image size, font, they should be more similar in appearance.
The appearance similarity formula between two blocks B1
and B2 is given below:

sim(B1, B2) = wi × simIMG(B1, B2)

+wpt × simPT (B1, B2) + wlt × simLT (B1, B2)

where simIMG(B1, B2) is the similarity based on image
size, simPT(B1, B2) is the similarity on plain text font, and
simLT(B1, B2) is the similarity on link text font. And wi, wpt

and wlt are the weights of these similarities, respectively.
Table 2 gives the formulas to compute the component simi-
larities and the weights in different cases. The weight of one
type of contents is proportional to their total size relative to
the total size of the two blocks.

A simple one-pass clustering algorithm is applied. The
basic idea of this algorithm is as follows. First, starting from
an arbitrary order of all the input blocks, take the first block
from the list and use it to form a cluster. Next, for each of
the remaining blocks, say B, compute its similarity with each
existing cluster. Let C be the cluster that has the maximum
similarity with A. If sim(B, C)> Tas for some threshold Tas,
which is to be trained by sample pages (generally, Tas is
set to 0.8), then add B to C; otherwise, form a new cluster
based on B. Function sim(B, C) is defined to be the average
of the similarities between B and all blocks in C computed
using the Formula above.

As an example, by applying this method to the blocks in
Figure 1, the blocks containing the titles of the data records
are clustered together after clustering, so are the prices of
data records and other contents.

4.3.3 Blocks regrouping
In 4.3.2, the blocks in the data region are grouped into

several clusters. However, these clusters do not correspond
to data records. On the contrary, the blocks in the same
cluster likely all come from different data records. According
to AF2, the blocks in the same cluster have the same type
of contents of the data records.

The blocks in the data region are regrouped, and the
blocks belonging to the same data record form a group. This
regrouping process has the following three phases:

Phase 1. For each cluster Ci, obtain its minimum-bounding
box Ri, which is the smallest rectangle on the response page
that can enclose all the blocks in Ci. We get the same num-
ber of boxes as the clusters. Reorder the blocks in Ci from
top to bottom according to their positions in web browser.
Thus, Bi,j is above Bi,j+1 on web browser.

Phase 2. Suppose Cmax is the cluster with the maximum
number of blocks. If there are multiple such clusters, select
the one whose box is positioned higher than the others on the
web browser (here “higher position” is based on the highest
point in each block). Let the number of blocks in Cmax be
n. Each block in Cmax forms an initial group. So there are
n initial groups (G1, G2, , Gn) with each group Gk having
only one block Bmax,k.

Phase 3. For each cluster Ci, if Ri overlaps with Rmax on

the web browser, process all the blocks in Ci. If Ri is lower
(higher) than Rmax, then for each block Bi,j in Ci, find the
nearest block Bmax,k in Cmax that is higher (lower) than
Bi,j and put Bi,j into Gk. When all clusters are processed,
each group is a data record.

The basic idea of the process is as follows. According
to LF2 and LF3, no noise block can appear between data
records, and its corresponding box will not overlap with oth-
ers. So the boxes that overlap with others enclose all the
blocks that belong to data records. In sub-step2 (section
4.3.2), the blocks containing the data contents of the same
type will be in the same cluster (e.g., for book records, the
blocks containing titles will be clustered together). Accord-
ing to CF1, if a cluster has the maximum number of blocks,
then the blocks in this cluster are the mandatory contents in
data records, and the number of blocks in it is the number
of data records. If there is more than one such cluster, we
select one as Cmax (generally, the one whose box is higher
than the others on the web browser is selected). We select
the blocks in Cmax as the seeds of the data records, and
each block forms an initial group. In each initial group Gk,
there is only one block Bmax,k. Then we try to put the
blocks in other clusters into the right groups. That means
if a block Bi,j (in Ci, Ci is not Cmax) and a block Bmax,k

(in Cmax) are in the same data record, then Bi,j should be
put into the group Bmax,k belongs to. In another word, the
blocks in the same data record are also in the same group.
According to LF3, no two adjoining data records overlap.
So for Bmax,k in Cmax, the blocks that belong to the same
data record with Bmax,k must be below Bmax,k−1 and above
Bmax,k+1. For each Ci, if Ri is lower (higher) than Rmax,
then the block on top of Ri is lower (higher) than the block
on top of Rmax. According to CF2, this determines Bi,j

is lower (higher) than Bmax,k if they belong to the same
data record. So we can conclude that, if Bmax,k is the near-
est block higher (lower) than Bi,j , then Bi,j is put into the
group Bmax,k belongs to.

5. EXPERIMENTS
We have built an operational prototype system based on

our method, and we evaluate it in this section. This proto-
type system is implemented with C# on a Pentium 4 2GH
PC. For response pages with no more than 20 data records,
the whole process takes no more than 3 seconds.

5.1 Data set
Most previous works on web data extraction conducted

experimental evaluations on relatively small data sets, and
as a result, the experimental results are often not very reli-
able. Sometimes, the same system/approach yields very dif-
ferent experimental results depending on the data sets used
(e.g., see the experimental comparisons reported in [8][13]
about three approaches). In general, there are two reasons
that may lead to this situation: first, the size of the data
set used is too small, and second, the data set used is not
sufficiently representative of the general situation.

In this paper, we use a much larger data set than those
used in other similar studies to avoid the problems men-
tioned above. Our data set is collected from the Complete-
planet web site (www.completeplanet.com). Complete-planet
is currently the largest depository for deep web, which has
collected the search entries of more than 70,000 web databases
and search engines. These search systems are organized un-
der 43 topics covering all the main domains in real world.
We select 1,000 web sites from these topics (the top 10 to 30
web sites in each topic). During our selection, duplicates un-
der different topics are not used. In addition, web sites that
are powered by well-known search engines such as Google
are not used. This is to maximize the diversity among the
selected web sites. For each web site selected, we get at
least five response pages by submitting different queries to
reduce randomness. Only response pages containing at least
two data records are used. In summary, our data set is much
larger and more diverse than any data set used in related
works. We plan to make the data set publicly available in
the near future.

5.2 Performance measures
Two measures, precision and recall, are widely used to

measure the performance of data record extraction algo-
rithms in published literatures. Precision is the percentage
of correctly extracted records among all extracted records
and recall is the percentage of correctly extracted records
among all records that exist on response pages. In our exper-
iments, a data record is correctly extracted only if anything
in it is not missed and anything not in it is not included.

Besides precision and recall, there is an important mea-
sure neglected by other researchers. It is the number of web
sites with perfect precision and recall, i.e., both precision
and recall are 100% at the same time. This measure has a

great meaning for web data extraction in real applications.
We give a simple example to explain this. Suppose there
are three approaches (A1, A2 and A3) which can extract
data records from response pages, and they use the same
data set (5 web sites, 10 data records in each web site). A1
extracts 9 records for each site and they are all correct. So
the average precision and recall of A1 are 100% and 90%,
respectively. A2 extracts 11 records for each site and 10
are correct. So the average precision and recall of A2 are
90.9% and 100%, respectively. A3 extracts 10 records for
4 of the 5 sites and they are all correct. For the 5th site,
A3 extracts no records. So the average precision and recall
of A3 are both 80%. Based on average precision and recall,
A1 and A2 are better than A3. But in real applications A3
may be the best choice. The reason is that in order to make
precision and recall 100%, A1 and A2 have to be manually
tuned/adjusted for each web site, while A3 only needs to be
manually tuned for one web site. In other words, A3 needs
the minimum manual intervention.

In this paper we propose a new measure called revision .
Its definition is given below.

revision =
WSt −WSc

WSt

where WSc is the total number of web sites whose preci-
sion and recall are both 100%, and WSt is total number of
web sites processed. This measure represents the degree of
manual intervention required.

5.3 Experimental results
We evaluate our prototype system ViDRE and compare it

with MDR. We choose MDR based on two considerations:
first, it can be downloaded from web site and can run lo-
cally; second, it is very similar to ViDRE (a single page at
a time; data extracted at record level). MDR has a simi-
larity threshold, which is set at default value (60%) in our
test, based on the suggestion of the authors of MDR. Our
ViDRE also has a similarity threshold, which is set at 0.8.
We show the experimental results in Table 3.

From Table 3, we can draw two conclusions. First, the
performance of ViDRE is very good. That means vision-
based approach can also reach a high accuracy (precision
and recall). Second, ViDRE is much better than MDR on
revision. MDR has to be revised for nearly half of the web
sites tested, while ViDRE only need to be revised for less
than one eighth of these sites.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented a fully automated technique

to extract search result data records from response pages

dynamically generated by search engines or Web DBs. Our
technique utilizes only the visual content features on the
response page, which is HTML language or any other lan-
guage independent. This differentiates our technique from
other competing techniques for similar applications. Our
experimental results on a large data set indicate that our
technique can achieve high extraction accuracy.

In the future, we plan to address several issues and im-
prove our vision-based approach further. First, if there is
only one data record on a response page, our approach will
fail. We intend to tackle this problem by comparing multi-
ple response pages from one web site. Second, data record
extraction is slow when the number of data records is large
(say more than 50). We plan to look into the issue of improv-
ing the efficiency of our approach. Third, we plan to collect
a set of response pages from real web sites which are not
designed with HTML, and show our vision-based approach
is really language independent.

7. ACKNOWLEDGMENTS
This research was partially supported by the grants from

the NSFC under grant number 60573091, 60273018, China
National Basic Research and Development Program’s Se-
mantic Grid Project (No. 2003CB317000), the Key Project
of Ministry of Education of China under Grant No.03044,
Program for New Century Excellent Talents in University
(NCET), and US NSF grants IIS-0414981 and CNS-0454298.

8. REFERENCES
[1] K. Chang, B. He, C. Li, M. Patel, and Z. Zhang. Structured

Databases on the Web: Observations and Implications. In
SIGMOD Record, 33(3), pages 61-70, 2004.

[2] G. O. Arocena, A. O. Mendelzon. WebOQL: Restructuring
Documents, Databases, and Webs. In ICDE, pages 24-33,
1998.

[3] X. Meng, H. Lu, H. Wang. SG-WRAP: A Schema-Guided
Wrapper Generation. In ICDE, pages 331-332, 2002.

[4] R. Baumgartner, S. Flesca, G. Gottlob. Visual Web
Information Extraction with Lixto. In VLDB , pages
119-128, 2001.

[5] C. Chang, S. Lui. IEPAD: Information extraction based on
pattern discovery. In WWW, pages 681-688, 2001.

[6] V. Crescenzi, G. Mecca, P. Merialdo. Roadrunner: Towards
automatic data extraction from large web sites. In VLDB,
pages 109-118, 2001.

[7] Y. Zhai, B. Liu. Web data extraction based on partial tree
alignment. In WWW, pages 76-85, 2005.

[8] B. Liu, R. L. Grossman, Yanhong Zhai. Mining data records
in Web pages. In KDD, pages 601-606, 2003.

[9] D. Cai, S. Yu, J. Wen, W. Ma. Extracting Content Structure
for Web Pages Based on Visual Representation. In APWeb,
pages 406-417, 2003.

[10] D. Cai, X. He, J. Wen, W. Ma. Block-level link analysis. In
SIGIR, pages 440-447, 2004.

[11] D. Cai, X. He, Z. Li, W. Ma, J. Wen. Hierarchical clustering
of WWW image search results using visual, textual and link
information. In ACM Multimedia, pages 952-959, 2004.

[12] X. Gu, J. Chen, W. Ma, G. Chen. Visual Based Content
Understanding towards Web Adaptation. In AH, pages
164-173, 2002.

[13] H. Zhao, W. Meng, Z. Wu, V. Raghavan, C. T. Yu. Fully
automatic wrapper generation for search engines. In WWW,
pages 66-75, 2005.

[14] K. Simon, G. Lausen. ViPER: Augmenting Automatic
Information Extraction with Visual Perceptions. In CIKM,
pages 381-388, 2005.

