
Schema-Guided Wrapper Maintenance for Web-Data Extraction

Xiaofeng Meng, Dongdong Hu, Haiyan Wang

School of Information,
Renmin University of China,

Beijing 100872, China
xfmeng@mail.ruc.edu.cn

Chen Li

School of Information and CS
University of California, Irvine,

CA 92697-3425,USA
chenli@ics.uci.edu

Abstract
Extracting data from Web pages using wrappers is a
fundamental problem arising in a large variety of
applications of vast practical interest. There are two
main issues relevant to Web-data extraction, namely
wrapper generation and wrapper maintenance. In
this paper, based on a prototype system, called SG-
WRAP, which can effectively generate wrappers
(extraction rules) to extract data from given HTML
pages. We propose a novel schema-guided approach
to automatic wrapper maintenance. It is based on the
observation that despite various page changes, many
important features of the pages are preserved, such
as syntactic features, annotations, and hyperlinks.
Our approach uses these preserved features to
identify the locations of the desired values in the
changed pages, and repair wrappers correspondingly.
Our intensive experiments over 16 real-world Web
sites show that the proposed automatic approach can
effectively maintain wrappers to extract desired data
with high accuracies.

1 Introduction
The World Wide Web has become one of the most
important connections to various information sources. A
large proportion of the Web data is embedded in HTML
documents. This language serves the visual presentation of
data in browsers, but not for automated, computer-assisted
information management systems. Thus if data from
different sources needs to be integrated, it is necessary to
develop special and often complex programs to extract data
from Web pages. To achieve this goal, people have
developed wrappers [7], which are specialised programs
that can automatically extract data from Web pages and
convert the information into a structured format. Different
methods [1, 2, 5, 7, 8, 9, 13, 14, 15, 17] have been proposed
to automate the wrapper-generation process.

There are many challenges in constructing wrappers.
Often, a wrapper needs to be developed for each data source
because of the heterogeneous page structures from different
web sites. Thus generating wrappers for different sources
could be time consuming and error prone. In addition, Web

pages are extremely dynamic and continually evolving,
which results in frequent changes in their structures.
Consequently, wrappers may stop working in the presence
of these changes. It is often critical to update or even
completely rewrite existing wrappers, so that we can still
extract the desired data. One way to maintain wrappers is to
re-create wrappers from scratch using the new pages. But
this method is inefficient due to the heavy workload to the
system developers.

Recently, several methods are presented to address the
problem of automatically repairing (maintaining) web
wrappers. Kushmerick [11, 15] define a sub-problem of it,
called wrapper verification, which checks if a wrapper stops
extracting correct data. Their proposed solution analyzes
pages and extracted information, and detects the page
changes. If she finds that the pages have changed, the
designer is notified; then she can relearn the wrapper from
the pages with the new structure. Knoblock at el. [8]
developed a method for wrapper repairing in the case of
small mark-up changes. Chidlovskii [4] presents an
automatic-maintenance approach, which can repair wrappers
under the assumption that there are only small changes.

In this paper, we propose a novel schema-guided
approach to wrapper maintenance, which is based on our
previous work of schema-guided wrapper generator SG-
WRAP[14,15]. The maintenance solution is based on the
following observations. Although changes of HTML
documents are various, some features of desired information
in pages are often preserved, such as syntactic features of
data items, possible hyperlink, and annotations (see section
3.1). In addition, user often express the same targets to
extract, so the underlying schemas for the extracted data
often do not change. It is feasible to recognize data items in
the changed pages using these features. We maintain
wrappers in four steps. At First, features are obtained from
the user-defined schema, previous extraction rule, and the
extracted results. Secondly, we recognize the data items in
the changed page with these features, and group them
according to the schema. Each group is a possible instance
of the given schema, which is mentioned as semantic block
in the later section. Finally, the representative instances are
selected to re-induce the extraction rule for the new page.
During the whole process, user-defined schemas are fully
used. In addition, our experience with real Web pages shows

Figure 1: The Architecture of SG-WRAM

that this approach can deal with not only some simple
changes, but also most of the complex changes including
context shifts, structural shifts [4], and their combinations.

The rest of this paper is organized as follows. Section 2
describes the architecture of the system. Section 3 provides
some background of our schema-guided wrapper generator,
SG-WRAP. In Section 4 we discuss how to maintain
wrappers when page changes. Section 5 reports our
intensive experiments on real Web sites. Section 6 discusses
related work. In Section 7 we conclude the paper and
discuss future research directions.

2 System Architecture
Figure 1 depicts the architecture of the implemented

system SG-WRAM[16]. The system consists of three major
components: wrapper generator, wrapper engine, and
wrapper maintainer.

The wrapper generator provides a GUI, which allows
users to provide an HTML document and an XML schema
(DTD), and specify mappings between them. Then the
system will generate an extraction rule (wrapper) for this
page. The rule extracts data from the page and constructs an
XML document conforming to the specified XML schema
[14, 15].

The wrapper engine provides the execution
environments of the generated rules. Given an extraction
rule and an HTML page, the engine runs the rule to extract
data from the page. In the case where the rule fails, the
engine informs the wrapper maintainer to fix the rule
automatically.

The wrapper maintainer automatically repairs a wrapper
that fails to extract correct data after the pages have changed.
In this paper we focus on the wrapper-maintenance problem,
and existing techniques on wrapper verification [10] to test
whether a wrapper stops working.

2.1 Schema-Guided Wrapper Generation

The visual supervised wrapper generating approach
serves as the base for our techniques of automatic wrapper
maintenance. The main idea of the approach is the following.
A user defines the structure of her target information by
providing a XML schema in the form of a DTD (Figure 2).
Given an HTML page, by using a GUI toolkit, the user
creates mappings from useful values in the HTML page to
the corresponding schema elements. Internally the system
parses the HTML page into a DOM[18] tree, and computes
the corresponding internal mappings from the HTML tree to
the schema tree. Using these mappings the system can
generate a tree pattern and output an extraction rule in
XQuery expression

An annotation of a value used in our approach is a
piece of descriptive information that can describe the
content of this value. The annotation may lies in another text
node near this value in the HTML tree, or can also in the
same text node of this value. Table 1 shows the annotations
of a few data values (see Figure 3(a)). Note that the
annotation of a value could be empty.

Table 1: Annotations for HTML data values

Data values in HTML page Annotations
May Morning -
Ugo Liberatore directed by
Jane Birkin; John Steiner; Rosella Falk Featuring
15.38-23.26 DVD
14.98-18.99 VHS

2.2 Extraction Rule

The rule in SG-WRAM is an FLWR expression of
XQuery [20]. By applying this expression on the HTML
page, we can generate an XML document conforming the
DTD. In general, in an extraction rule:

• A schema element marked with symbol “+” or “*”
(e.g., VideoList) corresponds to a clause of
“FOR … RETURN …”.

• Any other element (e.g., Name, Director, etc.)
corresponds to a clause of “LET … RETURN …”.

The structure of the rule is based on the DTD schema.
For each LET or FOR clause, the system fills in the
appropriate XPath[19] on the HTML tree based on the
internal mappings. Here’s an instance of internal mapping
for Figure 3(a), which is transparent to user. D means the
data value, HP is the path to this value in HTML tree and SP
shows the path to its corresponding DTD element in DTD.
Note that the XPath function “contains()” in HP records the
annotation for this data value. The first parameter is the path
to the annotation starting from the data value, and the
second is the value of the annotation.

Wrapper Maintainer

Wrapper
Generator

Wrapper
Executor

Data features
discover

Data Items
Recovery

Block
Configuration

Wrapper
Reparation

Documents Changed
Documents

XML
Repository

RuleSchema

Wrapper

MAPPING(D: “Ugo Liberatore”,
HP: ……/text()[0][contains(null,"directed by")],
SP: VideoList/Video/Director).

The rule induction algorithm in SG-WRAP starts from
the root of the DTD tree and finally computes the extraction
rule by recursively calling itself on the children of the
current DTD element. The algorithm first finds all the
mappings whose SPs contain this element. Then it computes
a common path of the subtrees in the HTML tree that can
include these mappings. A common path is the exactly same
parts of the XPath expression. Next, if the element is
marked by symbol “*” or “+” in the schema tree, there may
be multiple subtrees that contain the input mappings of the
current instance, thus the algorithm searches similar
subtrees by tentatively generalizing the paths. At last, the
generalized common path is used to generate the rule for
this element. If the element is not a leaf, the algorithm calls
itself recursively for each of its child elements. The rules
returned are added to the current rule as subrules. After all
these steps, the extraction rule is created.

3 Maintaining Extraction Rules
Web pages may change from time to time, and the

extraction rules could stop working due to these changes,
because even some slight changes in the Web page layout
can break a wrapper and prevent it from extracting data
correctly. Our later experiment also shows that the format
changes often makes the wrappers can hardly extract the
correct data items. Thus we want to repair the extraction
rules automatically so that they can work for new pages.

The problem of wrapper maintenance includes two
subproblems, the first is wrapper verification, and the other
is wrapper reparation. Much work has been done on
wrapper verification and we focus on wrapper reparation in
this paper.

Syntactic features are wildly used for data item recovery
in most of the related work, which commonly includes the
information of data pattern, string length and so on. But our

experience showed that some other data features also plays
an important role when maintaining wrappers. E.g. suppose
a page contains the following data items: “Our Price: $1.00”
and “List Price: $1.20”, it’s often difficult to distinguish
these two, even the information of context are also available,
since they have the same syntactic features.

So besides syntactic features of data items, we also
consider annotations, possible hyperlinks on data items, and
the underlying schemas. The syntactic features are certain
syntactic conditions of data items, e.g., a street address often
has a number and the name of the street. The data pattern
gives us an exact description of the data items. We use
regular expressions to represent data patterns. As shown in
Section 3.1, an annotation of a data item is a descriptive
string for this value in the HTML page. For the possible
hyperlink on a data item, our experiments show that the
information about whether a data item has an associated
hyperlink is often preserved after the page changes.

Our approach of wrapper maintenance has four steps.
• Data-feature discovery: Data features are computed

from the given DTD, the previous extraction rule, and
the previous extracted results.

• Data-item recovery: Data features are used to
recognize the relevant data items in the new page.

• Block configuration: We group the recognized data
items according to the user-defined schema and the
HTML tree structure. Each semantic block is an
instance of the given schema. (See Section 4.3 for more
details.)

• Wrapper reparation: The representative instances are
selected from the results of block configuration to re-
induce the new extraction rule for this changed page.
 In this section we discuss these four steps in details.

Figure 3 shows the original example page and the changed
example page from Yahoo. The original extraction rule
fails to extract correct data from the new page because
Yahoo has changed its underlying template and the paths to
all the data items have changed. We take the following
steps to repair the rule automatically.

3.1 Item Features Discovery

We consider three important features of each DTD element,
represented as a triple (L, A, P):

<!ELEMENT VideoList (Video+)>
<!ELEMENT Video (Name, Director, Actors,
Price)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Director (#PCDATA)>
<!ELEMENT Actors (#PCDATA)>
<!ELEMENT Price (VHSPrice, DVDPrice)>
<!ELEMENT VHSPrice (#PCDATA)>
<!ELEMENT DVDPrice (#PCDATA)>

Figure 2: Target DTD schema

(a) Original Page

(b) Changed Page

Figure 3: Sample Web Pages

• L: A Boolean value (TRUE or FALSE) to indicate
if the data item d corresponding to this element has
an associated hyperlink.

• A: An annotation of the data value d, as described
in Section 3.

• P: A data pattern, which is a regular expression for
this data value.

 For instance, Table 2 shows the tuples for the DTD
elements “Name”, “Director” and “Actor”. It has a row for
each element with a unique ID.

 The system computes the entries for each DTD element
as follows. The value of L is straightforward: its value is
TRUE if there is a hyperlink associated to the corresponding
data element in the HTML page, and FALSE otherwise. The
annotation is recorded in the extraction rule with the XPath
function of “contains()”(see section 3). And for the data
pattern of each DTD element, we could generate it by
studying several example pages with the same structure [6],
using machine learning techniques, or applying pattern-
extraction techniques [3].

3.2 Data-Item Recovery

In this step, we traverse the new HTML tree following the
depth-first traversal (DFS) order. For each leaf node n, if the
system finds that a data value may be an annotation of an
item, it tries to find the corresponding value of this item.
Otherwise, we check the item table to see if it satisfies the
three conditions (features) of an item row r. That is, if r.L =
“TRUE” (“FALSE”), then node n does (not) have an
associated hyperlink. The annotation of node n should be
the same as r.A(it can be null). The string of this value is
recognized by the regular expression (data pattern) of r. In
this case, the leaf node n is called an instance of the item r.
Node n is expected to be an instance of the corresponding
DTD element. For example, if a node string n is an instance
of the Item 2 in Table 2, then n should have an annotation
“Directed by”, it has no hyperlink, and is accepted by the
data pattern, “[A-Z][a-z]{0,}(.)*”. In this case, this node is
one of the target nodes of Item 2. We create an item-
instance list in this step, which is an instance array
following the depth-first traversal order, and it is maintained
in the process of the data-item recovery.

During this step, if the annotation of an item changed in
the new pages, it will be treated as a different item. E.g. it’s

a great task for a program to decide whether “Our Price:
$1.00” and “Price: $1.00” are corresponding to the same
DTD element. What’s more, because our algorithm bases on
a given schema, we don’t discuss newly add data items in
this paper for the reason that they do not appear in the given
schema.

Meanwhile, some noises who repeatedly occur in most of
the semantic blocks or all of the semantic blocks, e.g. pages
about E-book from www.amazon.com contains a sentence
of “Click here for more info” in most of the blocks, it’s
often recognized as a possible data item in the course of
item recovery, are removed from the item instance table. In
fact, these noises are some parts of the underlying template
of the pages.

At last, we get the item instance list as shown in Table 3.
The ID here is the ID of an item in the Item Table 2. For the
limited space, we only provide the results on the first 3
items.

3.3 Block Configuration

After recovering all the possible data items, we want to
find out the underlying organization of these data items. We
find that the data items are grouped in different semantic
blocks. We first introduce a few important notations. An
HTML document can be viewed as containing a set of
semantic blocks, and each semantic block is a fragment of
the HTML tree that conforms to the user-defined schema. A
semantic block includes a set of instances of schema
elements. It is a subtree, or several sibling subtrees that
include all the instances of schema elements. Each instance
of schema element is a row of the Item Instance Table
(Table 3). So in this step we construct semantic blocks from
the new HTML page.

A semantic block is called an atomic semantic block if it
satisfies the following conditions:

• It is a subtree or set of sibling subtrees; and
• The occurrences of data values conform to the

definition of schema.
Intuitively, an atomic semantic block is the minimum

extractable unit with which we can extract an XML
document conforming to the schema, it’s similar to the
instances user selected in wrapper generation. Comparing

Table 2: Data Features

ID DTD
Element

L A P

1 Name T NULL [A-Z][a-z]{0,}
2 Director F Directed by [A-Z][a-z]{0,}
3 Actors F Featuring [A-Z][a-z]{0,}(.)*
4 VHSPrice F VHS [$][0-9]{0,}[0-9](.)

[0-9]{2}
4 DVDPrice F DVD [$][0-9]{0,}[0-9](.)

[0-9]{2}

Table 3: Item Instance Table

No. ID PATH
1 1 …table[1]/tr[0] /td[1]/span[0]/b[0]/a[0]/text()[0]
2 2 …table[1]/tr[0]/ /td[1]/span[1]/text[contains(

 /preceding-sibling::b[0],"Directed by")]
3 3 …table[1]/tr[0]/ /td[1]/span[2]/text()[contains(

/preceding-sibling::b[0],"Featuring")]
4 1 …table[2]/tr[0] /td[1]/span[0]/b[0]/a[0]/text()[0]
5 2 …table[2]/tr[0]/ /td[1]/span[1]/text[contains(

 /preceding-sibling::b[0],"Directed by")]
6 3 …table[2]/tr[0]/ /td[1]/span[2]/text()[contains(

/preceding-sibling::b[0],"Featuring")]

with the schema, a match between a block A and the schema
can be one of the following three cases:
• Over match: There is at least one item i in the schema

that occurs at least twice in block A.
• Full match: Block A contains all items of the schema

and satisfies the constraint of each item in the schema,
such as ‘+’ or ‘*’, ‘?’ etc.

• Partial match: Block A contains a subset of items of
the schema.

In the block-configuration step, we first identify the
level of block configuration in a top-down manner. At the
level k of the new HTML tree, each sub-tree is viewed as a
possible block. Subtree weight of a subtree is the number of
possible data items in this subtree. As most of the Web
pages containing interesting data come from underlying
template, our observation shows this guarantees that amost
all the data are always located in a big subtree or several
subtrees, although there’s often complex structure in these
subtrees. We use this Subtree Weight for excluding some
low-weighted noise subtrees.

After classifying all possible blocks at a level, the
number of blocks in each kind of matches is counted
without considering the non-important subtrees. The group
R with the largest number of a special match is used to
decide the next step.
• If R is the full-match group, return all the blocks that

are full matched.
• If R is the partial-match group, merge sub-trees in the

level k-1.
• If R is the over-match group, turn to the level k+1 and

continue to block configuration.
So if the blocks in the changed pages can fully match

with the schema, this step will stop at the level where the
system find all the full matched blocks.

But in many cases, we cannot find the right level where
we can get all the full matched blocks, e.g. the changed page
contains only parts of the data items from the original page.
So at a certain step the system finds that data items are
scattered in several partial matched blocks, while they
should be in the same block. So we should merge them.
First, we merge two sibling subtrees. If the result is still a
partial match, we continue merging sibling subtrees with the
same parent. We repeat this step, until the algorithm stops at
level n, where we find that the algorithm get too many over-
matched blocks at level n-1 and get too many partial-
matched blocks at level n+1.

Thus in the Item Instance Table (Table 3), the items
from row 1 to row 3 are finally decided in the same block
and those from row 4 to row 6 are in another block.

3.4 Wrapper Reparation

The results of block-configuration are a set of semantic
blocks. Next, we pick up a representative block as an
instance to construct mappings from the data values in the
new HTML page to the DTD schema. Then we can re-

induce the new extraction rule by calling the wrapper
generator.

In our running example, we choose the first block in the
Table 3 to construct the internal mappings as follows:

M1’(D: “Lucky Day”,
HP:…/table/tr[0]/td[1]/span[0]/b[0]/a[0]/text()[0],
SP: VideoList/Video/Name)

M2’(D: “Penelope Buitenhuis”,
HP: …/table/tr[0] /td[1]/span/text()[contains(/preceding-

sibling::b[0],"Directed by")],
SP: VideoList/Video/Director),

M3’(D: “Amanda Donohoe, Tony Lo Bianco, Andrew Gillies”,
HP:…/table/tr[0]/td[1]/span/text()[contains(/preceding-

sibling::b[0],"Featuring")],
SP: VideoList/Video/ Actors),
……
By running the rule induction algorithm in SG-WRAP,

we generate the new extraction rule.
Of course, we also face the risk of a possible bad

instance making some of the data items cannot be
successfully extracted, and a few of data items are missed
when the repaired wrapper applies to other pages with the
similar structure. E.g. dealing with a set of pages from the
same search engine, a few data items in some pages are
perhaps missed because of some tiny difference in structures
comparing with the common structure. If it’s needed, the
SG-WRAP system will automatically select other
representative instances from the results of block
configuration to refine the repaired wrapper. Then the rules
are automatically integrated. Since our extraction rule uses
XQuery expression, it’s easy to integrate two extraction
rules. The process is the following:

• If the rule from new instances contains new
predicates for a certain data item, the predicates are
added into the extraction rule.

• If the new rule contains a new path to a data item,
the path is added into the extraction rule.

4 Experiments

To evaluate our approaches to wrapper maintenance, we
conducted a number of experiments on real Web pages. We
monitored 16 Web sites October 2002 to May 2003. The
sites are listed in Appendix A. For each Web site, we
periodically archived some pages of the same URL or pages
from the same query.

In order to increase the chance of getting changed pages
from the real Web sites, we collected several sets of pages
with different structures from each site, and of course, we
need different wrappers for these different structures.

For each set of collected pages we do the following:
(1). Run the SG-WRAP system on the earliest pages and

generate a wrapper for each set of pages.
(2). Apply the initial wrapper to the newly collected

Web pages. By manually checking how many data
items corresponding to the elements in the DTD can

(3). be correctly extracted, we make certain if a page has
changed.

(4). For each set of changed pages, through our
approach of wrapper maintenance, we get a repaired
wrapper. Then the repaired wrapper is applied on
the changed pages.

4.1 Evaluation Metrics

We first define the following assistant parameters:
• CN: number of correct data items that should be

extracted in a page;
• EN: number of extracted data items by the wrappers;
• CEN: number of the correctly extracted data items

by the wrappers.
We use two metrics, Precision and Recall, to evaluate

the results of our algorithm of wrapper maintenance.
• Recall (R): proportion of the correctly extracted data

items of all the data items that should be extracted.
It can be presented as “R = CEN/CN”.

• Precision (P): proportion of the correctly extracted
data items of all the data items that have been
extracted. It can be presented as “P = CEN/EN”.

4.2 Analysis of Changed Pages

After applying the initial wrappers on the newly
collected pages, we find those who make poor performances
on Recall and Precision and manually check if they have
taken format changes. We find some of the pages changed
from the following sites, shown in Table 4. The first column
of the table lists the wrapper name. The other columns list
the value of R, P. The last column
shows the number of changed pages of the sources we
selected for the experiment, which is used in the latter tests.

The symbol of “-” means that the value of P isn’t
computable. It’s because the initial wrappers cannot get any
data item from the changed pages, thus the value of EN and

CEN are all 0, which makes the value of Precision P =
CEN/EN not computable.

Here’re some details: On 1Bookstreet; Amazon
Book, Amazon Magazine and Excite Currency,
the initial wrapper can still extract some data items from the
changed pages.

CIA Factbook changes the structure and still
remaining the non-table structure. And on the other example
sites, the templates of the sites are changed, making the
initial wrapper invalid completely. E.g. Yahoo Quotes
changes the structure from a complex table to non-table
structure.

4.3 Effectiveness Test

After identifying those changed pages, the system
automatically computes data features and takes the steps of
wrapper maintenance. In this test, we re-induce extraction
rules from a single changed page, the wrapper is only
refined with the instances within the page, without being
refined for the page set. Then we run the maintenance
algorithm automatically and check the results by human.

4.3.1 Basic Results

Table 5 is the results of wrapper maintenance. For each
wrapper, we compute the following metrics: Recall,
Precision after the step of item recovery, and the
corresponding values after the system repaired the
extraction rule and apply the new wrapper on the changed
pages.

Among the results, CIA Factbook, CNN
Currency, Excite Currency, Yahoo Quote get
perfect results on the 4 metrics. CIA Factbook benefits
from the fact that all the data features of the date items are
perfectly preserved, although the Web site has changed its
underlying template completely. The data features here
means all the 3 features of data pattern, annotation and

Table 4: Initial wrapper on changed pages

Name R% P%
Item
Number

Page
Number

1Bookstreet 82.54 100 6 12
Allbooks4less Book 0 - 4 15
Amazon Book (search) 40.49 100 6 15
Amazon Magazine 20.01 100 5 15
Barnesandnoble Book 0 100 5 15
CIA Factbook 0 100 10 5
CNN Currency 50.00 100 6 15
Excite Currency 42.86 100 11 18
Hotels Hotel 0 - 4 15
Yahoo Shopping Video 0 - 6 15
Yahoo Quotes 0 - 6 10
Yahoo People Email 0 - 3 10

Table 5: Wrapper maintenance

Name R%(IR) P%(IR) R%(EX) P%(EX)
1Bookstreet 98.67 71.26 100 100
Allbooks4less Book 75 32.69 75 51.34
Amazon Book (search) 83.05 36.3 83.05 90.74
Amazon Magazine 100 60.15 100 100
Barnesandnoble 78.72 43.13 78.72 100
CIA Factbook 100 100 100 100
CNN Currency 100 100 100 100
Excite Currency 100 100 100 100
Hotels Hotel 50 35.61 50 41.87
Yahoo Shopping 100 51.49 100 92.86
Yahoo Quotes 100 100 100 100
Yahoo People 100 53.54 100 100

hyperlink flag. As to CNN Currency, Excite
Currency, Yahoo Quote, all of them have all the data
items in a simple table, and all the data items of them are
purely digit. What’s more, the annotations of them are
perfectly preserved, that is, the table head are the same. So
the system can precisely find out all the data items without
any noises in all the steps.

On 1Bookstreet, all the data features are preserved,
so the item “You Save” with small structure change on it
can be located from the changed pages. Because the item of
“Availability” has multi expressions in the sites, and the
example pages cannot contain all the patterns of these
expressions, several corresponding item instances are
missed when taking the item recovery step. But during the
step of rule reparation, the common path computed in the
extraction rule helps find these item instances, so the value
of R%(EX) get 100% in the extracted results.

On Amazon Book, annotation of an item of “Our
Price” changed to “Buy New”, and the system treated them
as different data items, so repaired extraction rule did not
contain this data item. Meanwhile, because the pages
contain another big subtree showing “the most popular
books”, which made the system get 3 blocks from them,
while these blocks are not wanted. So P%(EX) fails to get a
satisfactory value. So does Barnesandnoble, the system
failed to recognize the data item of “Availability” because
of changed data pattern.

 On Hotels and Allbooks4less, both of them get
poor performance on almost all the metrics. Although most
of the data patterns of them are not changed, but almost all
the other features, annotation and hyperlink flag, fail to be
preserved, so during the step of item recovery, too many
noises are falsely recognized and can not been effectively
excluded in the latter steps. Thus the system can hardly find
correct blocks from the results of block configuration, and
the repaired extraction rule cannot work well
correspondingly.

What’s more, we find that the value of P%(IR) are much
higher than the P%(EX) on almost all the examples, which
means the step of block configuration has excluded many of
the noise subtrees.

We have discussed that these examples have cover a
large scale of representative structure changes, we conclude
that our maintenance algorithm has high practicability.
Meanwhile, our experiment also shows the usage of
annotation and hyperlink flag brings much advantage for
wrapper maintaining.

4.3.2 Extensive Discussion on Results

In the previous section we know that annotation and
hyperlink takes an important role in wrapper maintenance
with the help of traditional usage of data pattern (syntactic
features). Figure 4 indicates how the data features of
annotation and hyperlink work in our approach.

Firstly, we find about 80% of the data items have
annotations, and almost all of this data items can be
successfully extracted by repaired wrapper with cooperation
with data pattern.

Although fewer data items have the data feature of
hyperlink, they are mostly accorded with the item “Name”
of a book or other merchandise, those data items can all be
extracted. Otherwise, we’ll have to rely on the syntactic
features of them. The “Only Pattern” part in Figure 4
illustrates the case. The biggest trouble taken by this case is
too many noises may be created during the step of item
recovery, making the wrapper cannot be successfully
maintained. In fact, as to the examples of Hotels in Table
5, the system has to recognize 3 of 4 data items by pure data
pattern, which produced too much noises and greatly affect
the following steps.

5 Related works
There are two aspects on wrapper maintenance: change

detection and wrapper reparation. Kushmerick [10] focused
on wrapper verification, i.e., change detection, and
presented an algorithm RAPTURE for solving this problem.
RAPTURE compares the pre-verified label with the label
output by the wrapper being verified. Specifically, it
compares the value of various numeric features of the
strings comprising the label output by the wrapper. Then, an
overall probability that the wrapper is correct for the page is
computed. If the overall probability is less than a user-
defined threshold, the page is considered to be unchanged;
otherwise, it is considered to have changed. But if the
generic features of some data fields are similar to the right
one, their system cannot detect the change.

[12] addressed the both aspects of wrapper maintenance:
changed detection and wrapper reparation. For the first
problem, they applied machine learning techniques to learn
a set of patterns that can describe the information that is
being extracted from each of the relevant fields. They used
the starting and ending strings as the description of the data
field. If the pattern describes statistically the same
proportion of the test examples as the training examples, the
wrapper is considered to be working correctly. Next, the
wrapper re-induction algorithm takes a set of training

0
10
20
30
40
50
60
70
80
90

100

Annotation Hyperlink Only Pattern

Preserved

Extracted

Figure 4: Discussion on Data Features

examples and a set of pages from the same source, and uses
machine learning techniques to identify examples of the
data field on the new pages. This method produces too many
candidates of data fields. Many of them are noises. The
process of clustering the candidates for each data field does
not consider the relationship of all data fields. Furthermore,
the top ranked cluster may not include all correct candidates.
If we only use the examples in top ranked cluster for the re-
induction, the new rule may be unfitted for all pages.

Compared with the above methods, our approach has
several advantages:
(1). It can detect more changes than others. For instance,

suppose we want to extract the Title, List Price, and
Our Price from the following table.

Title List Price Our Price
Data on Web $29.00 $23.00
Java Programming $59.00 $49.00

If the page is changed and the column of Our price is put
before the column of List Price:

Title Our Price List Price
Data on Web $23.00 $29.00
Java Programming $49.00 $59.00

The methods proposed in [10, 12] cannot detect this kind
of changes, because the generic features and data patterns of
List Price and Our Price are the same. Notice our approach
considers the annotations of data items. Thus by applying
the extraction rule to the changed page, only the titles of two
books are in the extraction result. After checking the result,
the system finds that nothing is extracted for List Price and
Our Price, and thus knows that the wrapper failed working
(2). In the phase of item recovery, by using our data features

(data patterns, annotations, and hyperlink flags), our
approach produces less unrelated candidates than that of
[12].

(3). By using the schema to group the data items, our
approach is effective to reduce the noise data items and
get right new mappings to re-generate the extraction
rule.

6 Conclusion
In this paper, based on our previous work of schema-guided
wrapper generator SG-WRAP, we propose a novel schema-
guided approach to the issue of wrapper maintenance. By
using the preserved data features in the changed pages, our
approach can identify the locations of the desired data items
in the changed pages, and automatically generate new
wrappers correspondingly. Our intensive experiments with
real Web pages showed that the proposed approach can
effectively maintain wrappers to extract desired data with
high accuracies.

7 References
[1] Ashish N, Knoblock C A. Wrapper generation for semi-

structured Internet sources. SIGMOD Record, 1997, 26(4):
8-15.

[2] Baumgartner R, Flesca S, Gottlob G..Visual Web
Information Extraction with Lixto. In Proceedings of the
Very Large Data Bases; 2001, 119-128.

[3] Brin S. Extracting patterns and relations from the world
wide web. In International WebDB Workshop, Valencia,
Spain, pages 172-183, 1998.

[4] Chidlovskii B. Automatic repairing of Web Wrappers. In
3rd International Workshop on Web Information and Data
Management, 2001, 24-30.

[5] Doorenbos R, Etsionoi O, Weld D S. A scalable
comparison-shopping agent for the world-wide-web. In
Proceedings of the First International Conference on
Autonomous Agents, 1997, 39-48.

[6] Gupta A., Harinarayan V., Quass D., and Rajaraman A.
Method and apparatus for structuring the querying and
interpretation of semistructured information. United States
Patent number 5,826,258, 1998.

[7] Hammer J, Brenning M, Garcia-Molina H, Nestorov S,
VassalosV, Yerneni R. Template-based wrappers in the
TSIMMIS system. In Proceedings of ACM SIGMOD
Conference, 1997, 532-535.

[8] Knoblock C A, Lerman K, Minton S, Muslea I. Accurately
and Reliably Extracting Data from the Web: A Machine
Learning Approach. Bulletin of the IEEE Computer
Society Technical Committee on Data Engineering, 2000,
23(4): 33-41.

[9] Kushmerick N, Weil D, Doorenbos R. Wrapper induction
for information extraction. In Proceedings of International
Joint Conference on Artificial Intelligence (IJCAI), 1997,
729-735.

[10] Kushmerick N. Regression testing for wrapper
maintenance. In Proceedings of AAAI, 1999,74-79

[11] Kushmerick N. Wrapper verification. World Wide Web
Journal, 2000, 3(2): 79-94.

[12] Lerman K. and Minton S.. Learning the common structure
of data. In AAAI2000.

[13] Liu L, Pu C, Han W. XWRAP: An XML-enabled Wrapper
Construction System for Web Information Sources. In
Proceedings of ICDE, 2000, 611-621.

[14] Meng X F, Lu H J, Wang H Y, Gu M Z. SG-WRAP: A
Schema-Guided Wrapper Generator. Demonstration in
ICDE, 2002, 331-332.

[15] Meng X F, Lu H J, Wang H Y, Gu M Z. Schema-Guided
Data Extraction from the Web. Journal of Computer
Science and Technology (JCST), 2002,17(4).

[16] Meng X F, Wang H Y, Hu D D, SG-WRAM: Schema
Guided Wrapper Maintenance, Demonstration in
Proceedings of ICDE, 2003, 750-752.

[17] Sahuguet A, Azavant F. Building Light-Weight Wrappers
for Legacy Web Data-Sources Using W4F. In Proceedings
of VLDB, 1999, 738-741.

[18] DOM Document Object Model (DOM) Level 2 Core
Specification http://www.w3.org/TR/DOM-Level-2-Core

[19] XML Path Language (XPath) 2.0,
http://www.w3.org/TR/xpath20/

[20] XQuery 1.0: An XML Query Language,
http://www.w3.org/TR/xquery/

