
 1

SG-WRAM: Schema Guided Wrapper Maintenance

Xiaofeng Meng, Haiyan Wang, Dongdong Hu, Mingzhe Gu
Information School

Renmin University of China, Beijing, 100872, China
xfmeng@mail.ruc.edu.cn

1. Introduction

The World Wide Web has become one of the most
important connections to various sources of information.
A large proportion of the data is embedded in HTML
documents. This language serves the visual presentation
of data in Internet browser, but does not provide semantic
information for the data presented. This form of data
presentation is, therefore, inappropriate for the demands
of automated, computer assisted information management
system. In particular, if data from different sources needs
to be combined, it is necessary to develop special and
often complex programs to automate the data extraction.

Wrappers are specialized program routines to fulfil
such tasks. They automatically extract data from Internet
web sites and convert the information into a structured
format. As the manual coding of wrappers is time-
consuming and error-prone process, different methods [1,
2, 3, 4, 5, 6, 7, 8, 9, 11, 12] have been proposed to
automate the wrapper generation process.

As a rule, however, a specially developed wrapper is
required for each individual data source, because of the
different and unique structures of web sites. The WWW
is also extremely dynamic and continually evolving,
which results in frequent changes in the structures of web
documents. Consequently, wrappers may stop working
when the structures of the corresponding documents are
changed no matter how they have been generated. It is
often necessary to constantly update or even completely
rewrite existing wrappers, in order to maintain the desired
data extraction capabilities. The simplest way to maintain
wrappers is to re-create wrappers using the new HTML
documents. Obviously, this method is inefficient in that
the maintenance depends mostly on the system developers.

In this demo, we propose a novel schema-guided
approach for wrapper maintenance, called SG-WRAM,
which is based on our previous work, a schema-guided
wrapper generation system (SG-WRAP[8,9]). SG-WRAP
can generate a wrapper to extract data from an HTML
document to produce an XML document conforming to
the user-defined Schema.

Although changes of HTML documents are extremely
various, some features of desired information in previous
document, e.g. syntactic features, data pattern, notation
and underlying schemas are still preserved in the changed

one. Syntactic features, data pattern and notation can be
easily obtained from schemas, previous rules and
extracting results. Therefore, it is feasible to recognize
data items in the changed document using these features.

Based on these observations, we fulfill the
maintenance following four sequential steps. At First,
syntactic features, data pattern and notation are obtained
from the schema, previous rule and extracted results,
then they are used to recognize the data items. After that,
they are grouped according to the given schema. Each
group is an instance of the given schema. At last, the
representative instances are selected to re-induce the
extraction rule. We name these four steps as features
discovery, item recovery, block configuration and
wrapper reparation respectively.

Our schema guided method for wrapper maintenance
has several unique features comparing to the related work.

- We make good use of schema, which is given by user
during the process of wrapper generation, to assist the
procedures of item recovery and block configuration;

- Our experience with real-life web documents shows
that our method can deal with the changes from simple to
complex including context shift, structural shift [12] and
hybrid changes;

- In our system, we give different method for simple
changes in which condition a part of the rule is disabled
and the complex changes in which condition most of the
rule is disabled. That makes the re-inducted rule more
accurate and complete.

2. System Overview

Figure 1 depicts the system architecture of wrapper
extraction and maintenance. The whole system consists of
three major components: wrapper generator, wrapper
executor and wrapper maintainer.

Wrapper generator offers a GUI, whereby the relevant
data within an HTML document is highlighted with a
mouse, and the program then generates a wrapper based
on the specified information [8, 9].

Wrapper executor provides the executing environment
for wrapper and manages the result extracted by wrapper.
Once a wrapper fails to extract documents correctly, that
means the corresponding web documents are changed, it
throws out a message to wrapper maintainer.

 2

Wrapper maintainer is the core component we
discussed in this demo. It completes the maintaining task
based on four modules: Data features discovery, data
item recovery, Block Configuration and Wrapper
Reparation.

3. Maintenance Methods

Basically, we can generalize the changes into simple
changes and complex changes.

Simple changes reflect small alterations on some nodes
in the tree. For simple changes, extraction rules can be
repaired by a few modifications.

Complex changes refer to changes that are relevant to
the structure alterations. For complex changes, extraction
rules can be re-induced after extraction instances can be
re-obtained automatically.

First we give some concepts used in the maintenance.

3.1 Preliminaries

Semantic block: In our method, an HTML document
can be viewed as a set of semantic blocks, which are
fragments of the HTML document conforming to the
user-defined schema. In this demo paper, it’s represented
as block for short.

Candidate block: In the HTML tree, a sub-tree or sub-
trees that are adjacent siblings are called candidate block
b’.

3.2 Simple change maintenance

Because only small changes occur on the page, items
without changes can be located using old extraction rules.

Firstly, Data features discovery obtains data features of
changed data items. Items unchanged can be easily
identified according to their paths in the extraction rules.
Then, with data features, data item recovery searches
changed items within the same area of unchanged data
items. At last, Wrapper Reparation repairs changed part
in the original one. Thus, Block Configuration is not
necessary in the simple change maintenance.

3.3 Complex Change Maintenance

Different from simple change maintenance, complex

change maintenance use all four modules to fulfil the task.
Data features discovery finds the metadata for each

data item within the extraction rule and learn the content
features from schema and extracted results. Then, with
these data features, data item recovery recognizes all
possible data items by traveling the HTML tree of the
changed document.

And in the real world, we find that data of the same
topic are always putted together, which means that, in a
tree view, the data are commonly in a sub-tree or several
neighboring sub-trees. This kind of structure is much
correlative with the structure of the user-defined schema.
Based on such observation, we construct the module of
block configuration. According to the user-defined
schema, the block configuration module is used to group
the recognized data items and construct candidate blocks
to match candidate blocks with blocks defined in the
schema. After that, the best candidate block is selected as
an instance of the given schema, and from which the
extraction rule is repaired. Meanwhile, when we group
some date items, some noise of data items are removed
for they can not be included by the candidate blocks.

At last, Wrapper Reparation picks up the
representative instances to re-induce the extraction by
Wrapper generator.

4. Related work

Recently, several methods are presented to address
automatic repairing of web wrappers. Kushmerick [13, 14]
defined a subproblem, the wrapper verification, and
propose a solution that analyzes the page and extracted
information and detects the page change with a given
change. When the change is detected, the designer is
notified; then s/he re-learns the wrapper from samples of
the new format. Knoblock at el.[5] developed a method
for wrapper repairing in the case of small mark-up change;
it detects the most frequent patterns in the labeled strings;
these patterns are searched in a page when the wrapper is
broken. Recently, Chidlovskii [12] reported his automatic
maintenance work. It repairs wrappers under the
assumption of “small change”. Although it has an
advantage over other methods, it just repairs wrappers

Wrapper
Generator

Wrapper
Executor

Data features
discover

Data Items
Recovery

Block
Configuration

Wrapper
Reparation

Documents Changed
Documents

XML
Repository

Rule Schema

Wrapper

Figure 1. System Architecture

Wrapper maintainer

 3

when the sequence of data items is not changed in the
new page. However, these approaches, any of which
either did not achieve the ultimate goal or addressed a
simplest fraction of the problem, have not resolved
wrapper maintenance problem efficiently and effectively.

5. Conclusions

The system to be demonstrated is implemented in Java

(Sun JDK1.3). During the demo, we will demonstrate the
major algorithms used in SG-WRAM, i.e., the process of
item recovery, block configuration and wrapper
reparation.

 Figure 2 shows some key scenes of the procedures of
our wrapper maintenance. Figure 2.A shows the original
page and the extracted results in the form of XML with
the original wrapper. Figure 2.B shows the changed page
and the results with the original wrapper, in which we
will see that, since some parts of the page have changed,
only parts of the Web document can be correctly
extracted. Figure 2.C gives the comparison of original
rule and the repaired rule. And the left part of Figure 2.D
presents the procedures of item recovery, and the right
part presents the procedure of block configuration in the
process of wrapper maintenance.

Acknowledgements

This research was partially supported by the grants
from 863 High Technology Foundation of China under
grant number 2002AA116030 and from the Natural
Science Foundation of China under grant number
60073014, 60273018.

References

[1] Ashish N, Knoblock C A. “Wrapper generation for semi-
structured Internet sources”. SIGMOD Record, 1997, 26(4): 8-
15.
[2] Baumgartner R, Flesca S, Gottlob G.. “Visual Web
Information Extraction with Lixto”. In Proceedings of the Very
Large Data Bases; 2001, 119-128.
[3] Doorenbos R, Etsionoi O, Weld D S. “A scalable
comparison-shopping agent for the world-wide-web”. In
Proceedings of the First International Conference on
Autonomous Agents, 1997, 39-48.
[4] Hammer J, Brenning M, Garcia-Molina H, Nestorov S,
VassalosV, Yerneni R. “Template-based wrappers in the
TSIMMIS system”. In Proceedings of ACM SIGMOD
Conference, 1997, 532-535.
[5] Knoblock C A, Lerman K, Minton S, Muslea I.
“Accurately and Reliably Extracting Data from the Web: A
Machine Learning Approach”. Bulletin of the IEEE Computer
Society Technical Committee on Data Engineering, 2000, 23(4):
33-41.
[6] Kushmerick N, Weil D, Doorenbos R. “Wrapper induction
for information extraction”. In Proceedings of International
Joint Conference on Artificial Intelligence (IJCAI), 1997, 729-
735.
[7] Liu L, Pu C, Han W. XWRAP: “An XML-enabled
Wrapper Construction System for Web Information Sources”. In
Proceedings of ICDE, 2000, 611-621.
[8] Meng X F, Lu H J, Wang H Y, Gu M Z. “SG-WRAP: A
Schema-Guided Wrapper Generator”. In Proceedings of ICDE,
2002, 331-332.
[9] Meng X F, Lu H J, Wang H Y, Gu M Z. “Schema-Guided
Data Extraction from the Web”. Journal of Computer Science
and Technology (JCST), 2002,17(4): 377-388.
[10] Muslea I, Minton S, Knoblock C A. STALKER: “Learning
extraction rules for semistructured Web-based information
sources”. In Proceedings of AAAI: Workshop on AI and
Information Integration, 1998, 74-81.
[11] Sahuguet A, Azavant F. “Building Light-Weight Wrappers
for Legacy Web Data-Sources Using W4F”. In Proceedings of
VLDB, 1999, 738-741.
[12] Chidlovskii B. “Automatic repairing of Web Wrappers”. In
3rd International Workshop on Web Information and Data
Management, 2001, 24-30.
[13] Kushmerick N. “Wrapper verification”. World Wide Web
Journal, 2000, 3(2): 79-94.
[14] Kushmerick N. “Regression testing for wrapper
maintenance”. In Proceedings of AAAI, 1999,74-79

Figure 2. Demonstration interface

A

B

C

D

