
OrientX : A Schema-based Native XML Database System

Xiaofeng Meng, Yu Wang, Daofeng Luo, Shichao Lu,
Jing An, Yan Chen, Jianbo Ou, Yu Jiang

Information School
Renmin University of China, Beijing, 100872, China

xfmeng@ruc.edu.cn

ABSTRACT
The increasing number of XML repositories has provided
the impetus to design and develop systems that can store
and query XML data efficiently. Non-native XML method
could not adequately be customized to support XML, native
XML database will be more efficient. Most of existed XML
database systems claimed that their systems are schema-
independent. But we argue that schema plays an impor-
tant role in managing XML data. In this paper, we intro-
duce OrientX, a schema-based native XML database system.
Schema information is fully investigated to enhance the effi-
ciency and reliability in every module, including the multi-
granularity native storage strategy, the cost-based XML op-
timizer, the schema-based path index , the XML update,
and the XML security, etc.

Keywords
XML, database, native, schema

1. INTRODUCTION
XML has self-describing characteristic, supports user de-

fined tags, and is quickly becoming the new standard for
data representation and exchange in the Internet. The in-
creasing number of XML repositories has provided the im-
petus to design and develop systems that can store and
query XML data efficiently. Many alternatives to manage
XML document collections are mapping the data into tradi-
tional database systems[2]. This introduces additional lay-
ers between the logical data and its physical storage, slow-
ing down both updates and query processing. None of the
existing DBMS could adequately be customized to support
XML, despite all claims of their vendors. Another alter-
native approach for XML data management is designing a
native XML database system. In native XML database,
XML data is stored directly, retaining its natural tree struc-
ture, and queried directly, processing query statements de-
scribed by XML query languages such as XQuery/XPath on
the tree structure. According to the XML schema from the

bottom up, native method avoids the mapping operations
Some native XML databases have appeared, for example,
Timber[4], Natix[5] and so on. Most of these systems are
schema-independent, that is to say, the schema of the data
are not required of the system. But, OrientX believes that
schema plays an important role in managing XML data and
is indispensable. In fact, making good use of schema infor-
mation could improve the efficiency of storing and retrieving
XML a lot. In this paper, we describe OrientX, an effi-
cient, schema-based native database for storing, querying
and managing XML data. The key intellectual contribution
of this system is to use XML schema in managing XML.
We sufficiently use schema information in all the modules,
including:

• OrientX supports clustering storage strategy based on
schema. The schema can also be used as a guide to
choose the proper storage strategy automatically.

• Path index is built according to the schema by sum-
mering all paths in the data.

• Optimizer collects the statistical information by inte-
grating the schema with the histograms.

• Schema information can be used to validate checking
in query or updating processing.

• OrientX supports role based access control. The tree
of roles has the same structure with the schema in-
formation, each role corresponding to a node in the
schema.

The rest of the paper is organized as follows. We give
an overview of OrientX in Section 2. In Section 3, we de-
scribe our multi-granularity native storage strategy. Section
4 focus on path index of OrientX. Section 5 and section 6
describe the query evaluator and query optimizor. Section
7 describe a novel role based access control for OrientX. We
review related work in Section 8 and conclude in Section 9.

2. ARCHITECTURE OF ORIENTX
OrientX adopts client-server architecture. Client provides

graphical interfaces for user managing and retrieving data.
Server provides an API interface to access database. The
communication between them is implemented by socket tech-
nique. The overall architecture of OrientX is shown in Fig-
ure 1. We introduce in brief some modules here, and some
important modules are focused on in the following sections.

Query XML

Documents
XML

Documents

Record Buffer

Data Manager Schema Manager
Index

 Manager

Access Manager

File Manager

Page BufferStorage Manager

Record

address

Data

Schema

information

Records

Logical Page

Physical Page

 Page cache

I/O

Query

Evaluator

XML Data Processor

 Data

Updater

Figure 1: OrientX Architecture.

File Manager: The underlying file manager communicates
with file system to create, delete, open and close data files,
in units of fixed size such as 8 MB.

Storage Manager: The storage manager manages the stor-
age space of the file in units of a physical page, which is set
to 8 KB. The main tasks include: apply/free physical page,
create/delete dataset, etc.

Buffer Manager: There are two layers of our Buffer Mech-
anism: the lower layer is page buffer, and the higher layer
is record buffer. Like RDBMS, page buffer manager man-
aging the physical pages with LRU(Least Recently Used)
method. Unlike RDBMS, the record in OrientX is tree struc-
ture, and need to be generated from the byte stream, which
may cost some CPU time. Record buffer cached such tree
structures to reduce the generating time. Another main tar-
get of record buffer is to enable OrientX query large docu-
ments. Through record buffer, documents can be read in
peaces(records), and the unoccupied record can be freed to
accommodate new records. In OirentX system, the record
buffer is called tree-flog, which means the current cursor can
jump from records to records on the XML tree.

Access Manager: The access manager provides a uni-
form access interface to data manager, index manager, and
schema manager. Details of the buffer manager and storage
manager are hidden.

Data Manager: The data manager provides functions for
importing, exporting, and retrieving the root of a document,
etc. It formats a record(memory object) into (and from) a
byte-stream.

Schema Manager: Schema-independent system can im-
port XML data without schema. But for accelerating query
processing, the system need to extract the schema form the
data. That may make the schema even more huge and com-
plex than the data. Moreover, the schema has not the func-
tion of constraining data, which will limit the use cases of
schema, such as type checking in query and update. Like tra-

ditional database, OrientX is schema-based. Schema strictly
constraint the type and structure of data. So, data re-
trieving, updating and storing are all under the schema’s
guidance.Schema information can be used in data layout, in
choice of index, in type checking, in user access control, and
in query optimization. Schema in OrientX is consistent with
the XML Schema standard. Schema information is stored as
a special data set in the database. Meanwhile, schema saved
by tree structure is semi-structure itself, so it can restrict
XML data without breaking features of XML data. Schema
manager provides a uniform interface for other modules to
access the schema information.

Data Processor: The data processor includes query eval-
uator and data updater. The former will be described in
Section 5. Now we introduce the later in brief. In RDBMS,
relationship between the records is represented by foreign
key, and in OODBMS, relationship between objects is rep-
resented by object containment. While XML supports both
of them: identity reference and nesting structure. OrientX
keeps the reference integrity within updating. While delet-
ing a complex element, all of the nested elements and values
will be removed. While deleting an element referenced by
other elements, the corresponding reference will be found by
the value index and then deleted. The deleting of reference
directly is also supported.

In our storage prototype, the elements are stored as vari-
able length records. Each record has its parent record’s or
neighbor sibling record’s pointer. The records may change
their address because of increase or decrease contents during
update operations, thus leads to the changes of the pointer.
In order to decrease the modification of the pointers we in-
troduce the oid(object id). Each element has a unique id.
We use the oid table to store the oid and its corresponding
storage address. In the system the record stores its parent
and children oid as the pointer rather than their storage
address. Therefore if the storage address of one record is
changed due to update, we just to update the oid table.

To decrease the address modification of the updating record,
we set a preserve factor of each page to preserve space for
updating record. We supply garbage collection mechanism
for space reuse.

3. ORIENTSTORE: A MULTI-GRANULARITY
STORAGE STRATEGY

Several native storage strategies have been developed in
[4,5,7,9,13]. According to the granularity of the records,
these storage methords can be classified into Element-Based
(EB), Subtree-Based (SB) and Document-Based (DB). Both
the Lore system [7] and TIMBER [4] utilize the classic EB
strategy, where each element is an atomic unit of storage and
is organized in a depth-first traversal manner. Natix [5] is a
well-known SB strategy. It divides the XML document tree
into subtrees according to the physical page size, such that
each subtree is a record. The sizes of the subtrees are kept
as close as possible to the size of the physical page. A split
matrix is defined to ensure that correlated element nodes re-
main clustered. Similar to the EB strategy, the records are
stored in a depth-first traversal way. The storage module
in the Apache Xindice system [13] employs the DB strat-
egy, whereby the entire XML document constitutes a single
record. All the above native storage strategies are schema-
independent, that is, they do not leverage the power of

vender

name
book

publisher title

v

b2

t1 t2p2p1

n
b1

(a) Semantic Blocks (b) Records

Figure 2: CSB Storage.

Schema information(XML Schema or DTD) even when such
information is available. The availability of schema informa-
tion is crucial to data exchange applications, and query opti-
mizations. We observe that schema information also plays a
key role in designing efficient and effective storage strategies
for XML management systems. OrientX exploits schema in-
formation in the design and implementation of two storage
strategies[8]: Clustering Element-Based (CEB), and Clus-
tering Subtree-Based strategies. OrientX also implements
the above schema-independent storage strategies: the strat-
egy in Lore(We call it Depth-First Element-Based) and the
strategy in Natix(We call it Depth-First Subtree-Based).

Depth-First Element-Based: In Depth-First Element-
Based (DEB) strategy, each element node is a record, and
records are stored in Depth-First order. This is quite the
same to Lore.

Depth-First Subtree-Based: Depth-First Subtree-Based
(DEB) strategy divides the XML document tree into sub-
trees according to the physical page size, such that each
subtree is a record. Records are stored in depth-first order.

Clustering Element-Based: The Clustering Element-
Based (CEB) storage strategy is similar to DEB as used in
Lore and TIMBER in which each element node is a record.
However, instead of storing the records in a depth-first traver-
sal fashion, CEB clusters the element records such that
records with the same TagName are placed close together.

Clustering Subtree-Based: The Clustering Subtree-
Based (CSB) storage strategy first partitions the schema
graph into semantic blocks. A semantic block describes
a relatively integrated logical unit. We use the following
heuristic to obtain semantic blocks: A node in a schema
graph is the root of a semantic block if: a).it is a root of the
schema graph, or b).it has a cardinality of ‘*’ or ‘+’, and it
has children nodes. A record in the CSB storage strategy
is an instance of a semantic block. All the instances of the
same semantic block are clustered together.

Figure 2 shows an example of semantic blocks and records.
(a) is the Schema graph, and the dot line partitions the
graph into two semantic blocks: vendor (name, book) and
book (publisher, title). (b) is an instance document, and
the dot line implies three records here: the records b1 (p1,
t1) and b2 (p2, t2) are instances of the semantic block book
(publisher, title), while the record v(n, b1, b2) is an instance
of vendor (name, book). b1 (p1, t1) and b2 (p2, t2) will be
clustered which implies fewer I/Os for a query.

The storage strategy is chosen by the schema and the
query requests. For instance, there must be few nodes hav-
ing the same tag name in the documents having compa-
rable size with the schema. Then cluster-based methods
will lead to high percentage of free space in pages. So the
DEB or DSB strategies can save more storage space. On

Figure 3: SUPEX Structure.

the other hand, when the documents size is larger out than
the schema, CSB and CEB methods may be more attrac-
tive. Another example, if there are many text nodes in the
schema, then most of query requests are location. In that
case, the navigation on depth-first methods will be more
efficient. Otherwise, if there are many value nodes in the
schema, and most of query requests are range condition,
then the system will prefer cluster-based methods.

4. SUPEX: A SCHEMA-GUIDED PATH IN-
DEX FOR XML DATA

An XML data set is a forest of rooted, ordered, labeled
trees. Each node corresponding to an element and the edges
represent elment-subelement relationships. A key issue in
XML query processing is how to determine the ancestor-
descendant relationship between any two elements. We adopt
the numbering scheme proposed by [6]. Every node in XML
document tree is associated with an encode (DocIdOrder:
SizeLevel). For any two given nodes n1(d1, o1: s1, l1) and
n2(d2, o2: s2, l2) of a XML document tree, n1 is an ancestor
of n2 if and only if d1=d2, o1 <o2 <o1+s1. This encoding
scheme is applied to XML document tree and our index.

As shown in Figure 3, SUPEX[11] consists of two struc-
tures: a structural graph(SG), and a element map(EM). SG
is constructed according to the schema, and represents the
structure summary of XML data. EM provides fast entries
to the nodes in SG. SG is a structural summary of top level
elements in the schema. So all possible path starting from
the roots of XML documents conforming to special schema
will appear in SG. EM is a B+ tree. The key of EM is el-
ement name defined in the schema, and the entries in leaf
nodes include a pointer to the nodes in SG. EM is useful for
finding all elements with the same tag.

SG has one root node. Every node in SG except root node
has a label which is a tag name defined in the schema, called
E-Label. Except pointers to children nodes, every node has
two pointers, one pointing to another node in SG which has
the same E-Label called label pointer, another pointing to
a set of fixed-length records of elements having the same
incoming label path from the root of the document tree as
itself called element pointer. We call the recoreds set the
extent of the corresponding node.

Figure 3 shows the SUPEX structure, in which thin bro-
ken line means label pointer, wide broken line means element
pointer and real line means children pointer.

SG is a tree when there is no cycle in the schema. When
the schema is cyclic, SG is still like a tree by omitting the

<results>{

 for $b in doc("bib.xml")/bib/book

 where $b/price > 50

 return

 <result>

 { $b/title }

 { $b//author }

 </result>

 }</results>

Results

(for $b in (doc("bib.xml")), child::bib, child::book)

 return

 Let tmp0:=

 (some $tmp1 in ($b, child::price)

 satisfies

 return $tmp1 > 50)

 return

 if (tmp0)

 then

 result(

 ($b, child::title),

 ($b, descendant::author))

 else ()

(a) XQuery Exprssion Example (b) XAlgebra Expression

Results

(for $b in JOIN (name-index (bib), name-index(book)

 return

 Let tmp0:= (($b, child::price) > 50)

 return

 if (tmp0)

 then

 result(

 ($b, child::title),

 ($b, descendant::author))

 else ()

(C) Rewritten Query Plan

Figure 4: Query Processing Example.

edges pointing to ancestor nodes. To keep the equivalence
between the schema and SG, a tag is used to mark the cycle.
To facilitate the query processing, we associate each node
with a encode like (Order: Size, Tag: BeginOrder). Tag
can be one of three values: 0, 1, or 2. 0 indicates that the
corresponding node is not in a cycle. 1 indicates that the
node is in a cycle, and 2 means that the node is in a subtree
rooted at a node of tag 1. Base on this encoding scheme, we
can judge whether any two nodes in SG have the ancestor-
descendant relationship.

SUPEX supports two basic queries: (1) given a tag, all
elements with this tag can be obtained by the lookup of
EM. (2) Simple label paths from the root of document can
be matched by traversal of SG starting from the root.

In addition to these basic structural relationships, our in-
dex can support partial label path matching. For label paths
like ‘//E1/E2/.../En’, we needn’t traverse the index graph
to get result nodes. By the lookup of EM, we can obtain
the head node of lists with E-Lable E1. For each node in
this list, the subtree rooted at it will be traversed to find
nodes matching ‘E1/E2/ . . . /E’. So only a part of SG will
be traversed to get the result. This will greatly reduce the
cost of partial label path matching.

5. XALGEBRA BASED QUERY EVALUA-
TION

XML Query Enginee, the most important component in
OrientX system, supports the Xquery1.0 recommended by
W3C Work Group.The query engine does not cover all the
features of XQuery[12] but captures its essence.

The Core syntax[1] defines the formal semantics of XQuery
and provides a naive processing model. XAlgebra is similar
to the XQuery formal semantics, but improves it in several
aspects: a)Core syntax decomposes a path expression into
a series of for-nest-loops, puts a distinct-operator after each
evaluation of path expression. XAl gebra only decomposes
a path expression onto a series of simple paths, which can
be processed by matured path matching techniques, rather
than naive nest-loop manner. b) Following Core syntax as
the processing plan, nest-loop is the only choice for process-
ing, and it is hard for Core syntax to take the advantages
of storage, index, and optimization techniques on DBMS.
Furthermore, it will show a inefficiency for evaluating a
query on large XML documents. XAlgebra introduces some
smart processing methods such as sort-merge join, predi-
cate pushing-down, unnesting, etc, to improve the efficiency

of processing. This will improve the efficiency a lot. c) Since
OrientX is schema-dependent, the schema contains the in-
formaiton of the document structure and the node type def-
inition. These information can be helpful to improve the
efficiency of type checking before query processing.

More details about XAlgebra is out of the scope of this
paper. For the reason of space, we only propose the sketch
of query evaluation with a simple example.

The query processing flow is as following. An input query
is first parsed into a syntax tree and transformed into an
internal expression represented in XAlgebra in the parser
analyzer. The query in internal expression is then passed to
the optimizer. In the optimizer, the original query plan is
reorganized based on a set of rewriting rules and statistical
information. The optimization result, a physical query plan
is constructed and it will be evaluated by the evaluation
engine through a set of call to the index manager and data
manager. At last, the evaluation result, an XML tree may be
offered to advance development through the OrientX API,
or materialized to an XML document.

Figure 4(a)is an example of XQuery expression, which lists
the title and authors, grouped by result element for each
book with price larger than 100 in the bibliography. After
parsing and analyzing, the query is transformed into the
internal expression shown in Figure 4(b). Note that, each
path expression in Figure 4(a) is decomposed as a list of
simple paths.

Assuming name index for bib and book elements are avail-
able, then all bib and book elements can be retrieved by
index; and a containment join is used to match the parent-
child relationships among the bib and book elements. Note
that only a document (bib.xml) is referred in the query,
hence the simple path doc(‘bib.xml’) can be omitted here,
for all the data to be accessed from the document root.
Therefore the expression ‘for $b in (doc(‘bib.xml’),

child::bib, child::book)’ in Figure 4(b) can be rewrit-
ten as ‘for $ b in JION(name-index (bib), name-index

(book))’ . Assume that there is one and only one price

element existing under each book element, then the some-
quantify expression can be optimized as ‘($ b, child::price)

> 50’. After optimization, the query plan in figure 4(b) is
rewritten as the one shown in figure 4(c).

6. HISTOPER: A HISTOGRAM BASED QUERY
OPTIMIZER

HistOper supports cost based query optimization. HistOper

B+

tree

000

001

002

003

Eid

CH(000)

CH(001)

CH(002), VH(002)

CH(003), VH(003)

r(000, 1)

d(001, 4)

name(002, 4) price(003, 4)

value(a, b) value(3, 1010)

Figure 5: Statistical Information Model.

can estimate the cost of the paths or subpaths in the query,
and find an optimized execution plan.

Selectivity estimation of path expressions in querying XML
data plays an important role in query optimization. A path
expression may contain multiple branches with predicates,
each of which having its impact on the selectivity of the
entire query. Previous methods of selectivity estimation
have not taken into consideration the correlation between
attribute values and their hierarchical positions, and assume
instead that the selectivity of attribute values on different
nodes and structures is independent and uniform.

HistOper builds an novel statistical information integrat-
ing the histograms into the schema information, which can
capture the correlations in the XML data. Unlike most his-
togram method that process the structure and the value in-
dependently, we propose a novel method based on 2-dimensional
value histograms to estimate the selectivity of path expres-
sions embedded with predicates. The value histograms cap-
ture the correlation between the structures and the values
in the XML data. Another type of histograms, coding his-
tograms, keeps track of the position distribution. Figure 5
is an example of statistical information. Abstractly, our sta-
tistical information model is a node-labeled, directed graph
structure G=(N, E, D, R, L), where each node n ∈ N is
an element or a value. Each element has an identity Eid.
Each edge e ∈ E corresponds to the containment relation-
ship between the nodes. D is a region maintains the count
of the elements or the domain of the values. R is a recursive
nesting tag marking if the node is in the recursive circle.
Each element node has a link l ∈ L points to the coding
histograms of the node, if the node have value as its child,
the VH are also exist. A B+ tree index is accepted to find
the histograms with an Eid.

We define six basic operations on the value histograms as
well as on the coding histograms: V, S, D, A, PA, and PD.
The first two, V and S, are used to study value correlation,
and the rest are for hierarchical correlation. We then con-
struct a cost tree based on such operations. The selectivity
of any node (or branch) in a path expression can be esti-
mated by executing the cost tree. Figure 6 shows an exam-
ple cost tree for the selectivity of r in the path //r/d[price

< 100]. First, we can get the preliminary coding histogram
(SH) by applying the V operation on the VH of the value
node and the value domain of the predicate. Then we can
use the S operation on the SH and the original CH of the
value node to get the new CH, which only counts the nodes
satisfying the predicate in each grid. At last, two A opera-
tions are used to get the selectivity of r in the path. The
cost tree can be simplified by some rules if we know some
nodes in the path are not self-nested through the schema
information.

A

A

CH(000)

CH(000) CH(001)

CH(001) CH(003)

S

CH(003)SH(price>100)

V

VH(003)

Figure 6: Cost Tree.

<bookstore>

 <book>

 <name>xmlac</name>

 <author>

 <name>xxx</name>

 </author>

 </book>

<bookstore>

Manager

Sailor

bookstore

book

name
name

author

Figure 7: Mapping Role to Node.

7. NODE-MAPPING ROLE BASED ACCESS
CONTROL

Because of the different data model between relation data
and XML data, the access control mechanism in relational
database is not capable of managing XML data any more.
Some important aspects need to be reconsidered, such as the
granularity of access control, the semantic of authority, the
relation among the rights on relative node in XML struc-
ture and so on. At the same time, large data capacity and
alteration of the data also should be care of. RBAC has
just been approved to be the member of ANSI. It makes ac-
cess control powerful and simple. We extend the RBAC for
OrientX, calling Node-Mapping Role Based Access Control.

We observed that role hierarchy and the XML data have
some similarities. For example, there is an XML data section
about a bookstore(Shown in Figure 7). If we define that
Manager role can access all the information of this section
and Sailor role can access just the book name, then we can
map the Manager role to the node bookstore and the Sailor
role to the node name in the schema of the data(Shown in
Figure 7).

In formalization, if role A is the superior of role B, the
data set which role A can access should be the superset of
the data set which role B can access. Then we can map the
two roles to two nodes in XML structure which has ancestor-
descendant relation (ancestor is the superior and descendant
is the junior). A role defined the access rules of a subtree
of the Schema. In this way we can be awarded both the
excellence of Role and the convenience of XML data access
controlling. For example, we have used the Dynamic Sep-
aration of Duty Relation(DSD) characteristic to solve the
problem of illegal association information accessing[3].

A role is a set of 3-uary tuples: R = { Node, Context,

Action },where Node denotes the tag name of the root of the

subtree in XML document; Context is a path and defines the
unique position of the node in the schema, and the Action

represents a collection of allowed operation on the node,
includeing read, insert, delete and update.

The roles can be awarded to the user in two ways: positive
and negative. The positive roles assign the actions user can
do, and the negative roles assign the actions user cannot
do. Based on the compatibility, there are two kinds of roles:
general roles and DSD roles. A user can choose many general
roles during one session, and only one DSD role during one
session. Introducing negative roles enable the user assigning
the rules flexibly.

8. RELATED WORK
There are several Native XML Database systems, for ex-

ample, Natix[5], Timber[4] and Tamino[9]. Natix is attrac-
tive of its storage model. XML documents are stored like
the file trees in operating system, and the size of subtrees
can be limited flexibly, XML data fragment insertion and
deletion are also supported. But Natix does little support
to XML schema. And its query performance maybe is inef-
ficient, as it use D-Join step by step to match XPEs (also be
limited with its index structure), which is time-consuming.
Additional, Natix does not pay much attention to interme-
diate result and nested query translation, which are pivotal
for XQuery implementation.

Timber is another mature Native XML Database, which
brings forward the Pattern tree based XQuery processing
method for the first time, and it proposed a proper log-
ical algebra for XQuery. But its storage is borrowed from
the Object-oriented database Shore, which reduces its query
performance.

Tamino is a leading commercial native XML database, yet
descriptions of its architecture are fairly sketchy.

Current native XML database systems are all schema-
independented, so that they can not fully use schema to
enhance the efficiency and ability of the system. OrientX is
schema-based, and get the high overall performance of the
system.

9. CONCLUSION AND DISCUSSION
In this paper, we described the system structure and de-

sign of OrientX, a schema-based native XML database pro-
posed by Renmin University of China. Right now, the stor-
age, query and index parts mentioned in this paper have
already been implemented, and the query optimization, ac-
cess control and update parts are under developing and will
be finished soon. Next, we will publish OrientX to several
high-level applications, such as E-government, news(base on
NewsML), medication management and civil aviation sys-
tem. During the system developing, we find some open
problems for native XML databases:

• Is XQuery suitable for native XML database? Set-at-
a-time processing method embodies the efficiency of
traditional database. But it is hard to apply any set-
at-a-time processing method on XQuery and its core
syntax for its programming language style.

• Tree based algebra is a set-at-a-time method on XML
data. But it is inadequate for expressing complex
query request, especially for nesting query.

• Cost-based optimization method is a hot research topic
for native XML database. But works on logical opti-
mization seems few. A set of heuristic rules for accel-
erating the query is urgently needed. The availability
of tradition rules such as predicate push down, need
to be proved by a great deal of experiments.

• Without the semantic constraint in the schema, up-
dating XML data will become unsafe. On the other
hand, a strict schema will limit the flexibility of XML
data. How to keep the balance?

After all, native XML database is a brand-new research
field, and there are so many problems for us to deal with.

10. REFERENCES
[1] B. Choi, M. Fernandez and J. Simeon. The XQuery

Formal Semantics: A Foundation for Implementation
and Optimization. Technical Report MS-CIS-02-25,
University of Pennsylvania, 2002.

[2] D. Florescu, D. Kossman (1999) Storing and querying
XML data using an RDBMS. IEEE Data Eng Bull
22(3), 27-34.

[3] V. Gowadia, C. Farkas. RDF metadata for XML
access control. In Proc. of 2003 ACM workshop on
XML security. 39-48.

[4] H. V. Jagadish, Shurug AL-Khalifa, et al. TIMBER:
A Native XML Database. Technical Report,
University of Michigan, April 2002.

[5] C.-C. Kanne and G. Moerkotte. Efficient Storage of
XML data. In Proc. of 16th ICDE. San Diego,
California, USA, February 2000. 198.

[6] Q. Li, B. Moon. Indexing and Querying XML Data for
Regular Path Expressions, In Proc. of 27th
VLDB,Roma,Italy, 2001

[7] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and
J. Widom. Lore: A Database Management System for
Semistructured Data. SIGMOD Record,
Vol.26(3):54-66, September 1997.

[8] X. Meng, D. Luo, M. Lee and J. An. OrientStore: A
Schema Based Native XML Storage System. In: Proc.
of VLDB 2003. Berlin, Germany. 1057-1060

[9] H. Schoning. Tamino - A DBMS Designed for XML.
In Proc. of 17th ICDE. Heidelberg, Germany, April
2001. 149-154.

[10] I. Tatarinov, Z.G. Ives, A.Y. Halevy, D.s. Weld.
Updating XML. In Proc. of 2001 SIGMOD
International Conference on Management of Data,
Santa Barbara, CA, USA, May 2001.

[11] J. Wang, X. Meng and S. Wang. SUPEX: A
Schema-Guided Path Index for XML Data. Doctoral
Poster. In: Proc. of 28th VLDB Conf. Hong Kong,
2002.

[12] XQuery1.0: An XML Query Language,W3C Working
Draft,April 2002.Available At
http://www.w3.org/TR/xquery/

[13] Apache Xindice. http://XML.apache.org/xindice/

