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在过去的十年间，随着互联网的迅速发展，整个 Web 的数据量已经超过了

200,000TB，并仍在快速地增长，这使其成为人们获取有用信息的最重要的途径

之一。另一方面，随着 3G 时代的到来，大量的手机、移动设备需要频繁访问互

联网，以从互联网上获取丰富的信息，这是一个必然的趋势。而 3G 所来带的高

带宽，使得未来手机将不再是一个简单的通话工具，人们从互联网上获取信息将

越来越依赖于手机和以及其它移动设备。 
目前，虽然用户已经能够通过手机及其它移动设备访问互联网，进行信息查

询。但是无论从互联网上的信息集成系统而言，还是从手机上的查询服务而言，

都远远不能满足用户的需求。因此如何解决面向移动用户的 Web 数据集成问题，

成为实验室今后关注的一个新的研究领域，目前研究界还缺乏有关的研究成果，

我们认为这是一个创新的机遇。 

此外，云计算是当今信息产业最受关注的一种计算模式，在这种模式下，企

业和个人可以根据自己的需要购买存储设备和计算能力，而不是花费大量资金购

买大规模高性能计算机。作为云计算的一项关键技术，云数据存储和云数据管理

为业界带来巨大的潜在商用价值。随着信息产业的发展，企业和公司产生的数据

量快速增长，通常数据规模可以达到 TB 甚至 PB 级别。如何管理和分析海量数据

是目前很多领域所面临的问题，例如在医疗、通信和互联网领域。云环境是由大

量的性能普通、价格便宜的计算节点组成的一种无共享大规模并行处理环境，所

以从成本和性能两方面考虑，越来越多的企业更愿意把自己的数据中心从昂贵的

高性能计算机转移到共有或私有云环境中。对此实验室的提出的新的研究课题是

云计算环境下数据库技术，实现一种具有高可用性、高容错性、可扩展性和高性

能的云数据库系统。为此我们创办了首个云数据管理的研讨会 CouldDB2009

（First International Workshop on Cloud Data Management, conjunction with 

CIKM2009, Hong Kong）,并与工业界建议了密切的合作关系，开设了“移动&云

计算系列学术报告”。 

一年即将过去，在继过去三年有关实验室科研情况的年度报告的基础上，再

次整理了 2009 年的年度进展报告，感觉即是对我们的鞭策与鼓励，也是对同行

的一份心意。 

这一年实验室还是喜事连连。我们历经九年的研究成果“纯 XML 数据库系

统技术”获得本年度中国计算机学会“王选奖”一等奖。其次硕士生王仲远同学

获得中国人民大学最高奖励“吴玉章奖学金”，刘伟博士获得中国人民大学校级

优秀博士论文奖。这些奖励得益于实验室师生的共同努力，以及我们一贯坚持的

严谨的学风。此外我所主持的项目“基于受限网络的移动对象数据库关键技术研

究（项目批准号：60573091）”被评为“特优”，这是我所主持的项目第二次被评

为“特优”。  



本年度我们还举办了两届闪存数据库系统研讨会（The Workshop on 
Flash-based Database Systems），这是在我们所主持的国家自然科学基金重点项目

“闪存数据库技术研究”的支持下创立的学术交流平台，也是课题组探索的一种

新的课题组织方式。我们发现，小同行间的深入交流，有助于研究研究水平的提

高。目前课题组在闪存数据库存储管理、缓冲区管理、查询处理和事务处理，以

及闪存开发板、闪存硬件测试等方面的取得最新研究进展和技术成果。研究表明

目前闪存对现有数据库的性能提升在 10 倍左右，课题组的研究目标是将这一性

能再提升 5-10 倍。 
在此谨以此年报感谢来自学校方方面面的支持，感谢国家自然基金委和 863

计划的资助，感谢所有关心和支持过我们的人们。 
 

孟小峰 

              2009 年 12 月 31 日于北京 
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-demand scalability, you 
need a non-
requirements:

Can change very quickly and,

Can grow very rapidly.

Difficult to manage with a single in-house 
RDBMS server.
Although RDBMS scale well:

When limited to a single node.

Overwhelming complexity to scale on multiple sever nodes.

6 /29

Current State

Most enterprise solutions are based on 
RDBMS technology.
Significant Operational Challenges:

Provisioning for Peak Demand

Resource under-utilization

Capacity planning: too many variables

Storage management: a massive challenge

System upgrades: extremely time-consuming
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What is Cloud Computing?

Old idea: Software as a service (SaaS)
Def: delivering applications over the internet

Utility Computing: pay-as-you-go computing
Illusion of infinite resources

No up-front cost

Fine-grained billing (e.g. hourly)

8 /29

Why Now?

Experience with very large datacenters

Unprecedented economies of scale

Other factors

Pervasive broadband internet

Pay-as-you-go billing model
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Cloud Computing Spectrum

Instruction Set VM (Amazon EC2, 3Tera)

Framework VM

Google AppEngine, Force.com
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Cloud Killer Apps

Mobile and web applications

Extensions of desktop software

Matlab, Mathematica

Batch processing/MapReduce
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Economics of Cloud Users

Pay by use instead of provisioning for peak
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Economics of Cloud Users

Risk of over-provisioning: underutilization
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Economics of Cloud Users

Heavy penalty for under-provisioning

14 /29

Engineering Definition

Providing services on virtual machines 

allocated on top of a large physical 

machine pool.
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Business Definition

A method to address scalability and 

availability concerns for large scale 

applications.
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Data Management in the Cloud?
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The Vision

R&D Challenges at the macro level:

Where and how does the DBMS fit into this model.

R&D Challenges at micro level:

Specific technology components that must be 

developed to enable the migration of enterprise data 

into the clouds.
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Data and Networks: Attempt 

Distributed Database (1980s):

Idealized view: unified access to distributed data

Prohibitively expensive: global synchronization

Remained a laboratory prototype:

Associated technology widely in-use: 2PC
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Data and Networks: Attempt 

20 /29

Data and Networks: Pragmatics
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Database on S3: 

Updates may not preserve initiation order

Eventual guarantee

Proposed solution:

Pending Update Queue

Checkpoint protocol to ensure consistent ordering

ACID: only Atomicity + Durability

22 /29

Unbundling Txns in the Cloud

Research results:

Management for Cloud Infrastructures

Attempts to refit the DBMS engine in the cloud 

storage and computing 
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Analytical Processing

24 /29

Architectural and System Impacts

Current state:
MapReduce Paradigm for data analysis

What is missing:
Auxiliary structures and indexes for associative access to data 
(i.e., attribute-based access)

Caveat: inherent inconsistency and approximation

Future projection:
Eventual merger of databases (ODSs) and data warehouses as 
we have learned to use and implement them.
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Business data may not always reflect the state of the 
world or the business:

Inherent lack of perfect information

Secondary data need not be updated with primary 
data:

Inherent latency

Transactions/Events may temporarily violate 
integrity constraints:

Referential integrity may need to be compromised

26 /29

Data Security & Privacy

Data privacy remains a show-stopper in the 
context of database outsourcing.

Encryption-based solutions are too expensive and 
are projected to be so in the foreseeable future:

Other approaches:

Information-theoretic approaches that uses data-

Hardware-based solution for information security
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Self management and self tuning 
in cloud-based data management

Self management and self tuning

Query optimization on thousands of nodes
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Remarks

Data Management for Cloud Computing poses a 
fundamental challenge to database researchers:

Scalability

Reliability

Data Consistency

Radically different approaches and solution are 
warranted to overcome this challenge:

Need to understand the nature of new applications
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Web Data Management for Mobile Users 
Zheng Huo, Jing Zhao, Xiangmei Hu 
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1. Introduction 

Mobile devices are becoming increasingly popular 
as a means of information access while on-the-go. 
With the emergence of web access friendly mobile 
devices, the number of mobile users who will access 
the web using their mobile devices is expected to 
increase drastically in the near future. Meanwhile most 
Web data are stored in millions of deep web data 
sources which can be accessed by desktop and also 
mobile users, however, the mobile users have other 
needs, or maybe they can’t access deep web data 
conveniently as desktop users,  such as the terminal 
have small screen, and the input capabilities is not as 
strong as desktop users. Sometimes mobile users’ 
information needs are more location sensitive than 
desktop users. So the challenge is how to provide 
useful and convenient services for mobile users. In our 
survey of this topic, we found several questions to be 
solved, and we proposed an initial framework for web 
data management for mobile users. 

2. Features of mobile users 

There have bee several large scale examinations for 
user search behavior through search engine logs for 
both computer and mobile search. The result of this 
analysis have been used to improve performances of 
mobile users’ access to the deep web. 
Shorter queries - As analysis shows, the query length 
of the mobile users is shorter than desktop users. For 
computer-based search, the average number of words 
per query is 2.93 and the average number of characters 
per query is 18.72. The length of conventional mobile 
phone queries is the shortest of all the mediums, with 
an average query consisting of 2.44 words and 15.89 

characters. The shorter query terms can be easily 
understood since the limitation of input function in 
mobile devices. 
Information needs - Mobile users look for very 
different topics than standard desktop web users. 
Researchers find that the most popular mobile topics 
are local services and travel & commuting. 
Location of mobile users - There is strong evidence 
indicating that location-based searches are popular 
among mobile searchers. By taking into account of 
users’ location information, we can provide more 
personalized services. 
Small screen size - This makes it difficult or 
impossible to see text and graphics dependent on the 
standard size of a desktop computer screen. So what 
kind of integrated interface is suitable for mobile users 
is a challenging problem. 
Lack of windows - On a desktop computer, the ability 
to open more than one window at a time allows for 
multi-tasking and for easy revert to a previous page. 
On mobile devices, only one page can be displayed at a 
time, and pages can only be viewed in the sequence 
they were originally accessed. 
Computing and memory limits - Most of them have 
slow computing speed and small storage capacity 
which restricts spatial search calculations, routing 
operations and the creation of a user specific “mobile” 
map.
Type limitation of accessible pages - Many sites that 
can be accessed on a desktop cannot on a mobile 
device. Many devices cannot access pages with a 
secured connection, Flash or other similar software, 
PDFs, or video sites, although recently this has been 
changing.
Lower speed - On most mobile devices, the speed of 
service is very slow, often slower than dial-up Internet 
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access. 
Compressed pages - Many pages, in their conversion 
to mobile format, are squeezed into an order different 
from how they would customarily be viewed on a 
desktop computer. 
Size of messages limits - Many devices have limits on 
the number of characters that can be sent in an email 
message. 
Expensive cost - the access and bandwidth charges 
levied by cell phone networks are much, much higher 
than those for fixed-line internet access. 

3. Main framework 

We will introduce some web data integration issues 
in this part, this is specially for mobile users based on 
the behavior analysis and features of mobile users 
above. Figure 1 shows the main part of the deep web 
data integration modules for mobile users. Following 
are the functions of each part. 
WDS discovery- Discovering accessible web 
databases in the web. 
Interface clustering- This part classifies web data 

sources according to their domains. 
Interface analysis- Analyzing and extracting the 
schema information in query interfaces. 
WDS profile (interface)- Meta information about WDS 
query interface, including attribute, type, etc. 
Interface integration- Integrating interfaces of several 
WDS to a global integrated interface
Domain selection- Specifying a suitable domain for 
users.
Query predicate match- Matching queries submitted to 
the easy query interface to the integrated interface
WDS selection- Selecting suitable web data sources for 
users
Query translation- Translating user queries to local 
queries.
WDS connection- Submitting queries to WDS

WDS content analysis- Analyze content of WDS 

WDS profile (content)- Meta data of WDS, including 

scale of a Web database, distribution of values in each 

attributes. 

Result extraction- Getting results from web pages
Result annotation- Finishing semantic annotation of the 
results

Fig.1 Main Framework 
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Entity identification- identifying records that are 
describing the same real word entity.
Result representation- Showing the results, including 
contents and layout of the presentation
Result ranking- Ranking the results according to the user 
context.
User mobile profile- information about users, including 
the screen size of user devices, computing resources and 
the location of users.

In the framework, when a mobile user input a 
query term to a easy query interface, the query is sent 
to the search domain selection part, which will select 
the most related domain according to the users’ query 
terms. Then the query is sent to a integrated query 
interface. From the integrated interface, the query is 
sent to a traditional deep web data integration steps, 
such as ,WDS selection ,query translation and so on. 
What is special for mobile users is that, before the 
process of deep web data integration issues, the user 
mobile profile is introduced. As we showed above, the 
user mobile profile is key context for mobile searching, 
since it stores information about the users—location of 
users, computing ability, screen size of user devices etc. 
So the information can be used in the query processing, 
we will introduce it in detail in next section. After 
processing of the query, the result extraction will 
extract results from various web pages and send the 
collected results to the result annotation. The results 
are combined with some semantic meanings in this part. 
After entity identification, result representation and 
result ranking, the final results is sent to the users. In 
order to display more information in a small screen in a 
mobile device, it is always useful to have a result 
cluster in the system. The result cluster will cluster the 
results in hierarchy, each hierarchy is about a same 
topic, this is not yet included in the architecture. 

Following are some topics on the frameworks 
above. Not every module of the framework is 
discussed in detail, since some of the modules are 
already been maturely researched. Topics from 3.1 to 
3.4 are mainly concerned on web data integration 
issues, and the following four topics focused more on 
mobile issues. 

3.1 Web database selection 

(a) WDB selection based on content 
When a query is submitted to an integrated 

interface, it needs to be passed to the Web data sources 
(WDSs) represented by the integrated interface. If the 
number of WDSs for this integrated interface is small, 
the query can be passed to all of them. However, if the 
number is large, it may be inefficient to invoke these 
WDSs for each query. Metasearch engines involving 
text search engines, only scattered work has been 
reported when deep web WDSs with structured data 
are involved. Metasearch engines involves only text 
documents and the representative of each search 
engine contains terms and some statistics for each term. 
In contrast, WDBs involve three types of attributes, i.e., 
textual, categorical and numerical attributes. 
Categorical attributes usually have a small number of 
distinct values and they are usually implemented as a 
selection list or a group of checkboxes or radio buttons 
on a search interface. The former can be considered as 
a special case of the latter when the structured data 
have just one textual attribute. The representative for 
each type of attribute may be different. We aimed at 
when the query interface has various attributes or 
some attributes is missed, it is necessary to find 
representations of WDBs and find useful methods 
based on this. 

(2) WDB selection based on the location of mobile 

users

When it comes to mobile users, the location 
information is an important information. Ranking 
WDBs according to users’ location can help users to 
get what they want. 

(3) Service area identification of WDBs 
We need to identify the service areas of a WDB. 

In order to match a mobile user’s location with the 
information provided by a WDB, it is desirable to find 
out the intended service areas of WDBs. Some WDBs 
have very narrow service areas, some have multiple 
service areas, and some even have national or 
international coverage. We plan to study how to 
identify the service area of specialized local WDBs. 

50



3.2 Entity identification across multiple deep 
web data sources  

Entity identification is to determine if two or 
more records retrieved from different data sources 
actually correspond to the same real world entity. This 
is critical in several application scenarios in deep Web 
data integration. For example, in comparison shopping, 
it makes sense to compare the prices of two product 
records only if the two product records correspond to 
the same one. A general method for determining 
whether two records R1 and R2 are matched consists 
of two steps. First, values in corresponding attributes 
from R1 and R2 are matched. Specifically, for each 
attribute A, a similarity between R1[A] and R2[A] is 
computed. Second, the similarities between value pairs 
under all attributes are aggregated to determine 
whether R1 and R2 are matched. 

Many researches have been done on entity 
identification, here, there are some initial thoughts on 
new method of doing this. For attribute value matching, 
we plan to develop a library of domain specific string 
matching functions. 

3.3 Geo information on web pages 

As we have analyzed above, mobile users is 
always “on-the-go” when they access to the web, 
another important feature is that mobile users search 
for location based information much more frequently 
than desktop users. One interesting issue is the 
problem of associating an address to each result or web 
page. Many web pages are associated with an 
organization or a unit of an organization. As a result, 
the address of the organization or the unit, whichever is 
more directly related to the page, can be considered as 
the address of the page, or the geo information of the 
web page, when the page itself does not contain an 
address, we can check if there are other implicit 
information which may contain geo information. We 
are interested in determining what address each page 
should be associated to. We can extract and index 
location information embedded in these resources, so it 
is easy for mobile users to receive the right location 
information from the web pages. 

3.4 Search result extraction wrapper 
generation and maintenance  

After the query is evaluated, the retrieved search 
result records are embedded in dynamically generated 
response pages. Specifically, there are two tasks – one 
is result extraction which is to extract the SRRs from 
the response pages and the other is result annotation
which is to assign semantic meanings to the data 
units/instances within each SRR. The second task in 
turn consists of two subtasks, the first one is data 
alignment which aligns/groups data units from 
different SRRa on the same result page according to 
their semantics and the second one is data annotation
which assigns a semantic label to each group of data 
units. As different search engines usually organizes 
and displays their SRRs differently and the SRRs 
returned by different search engines, even from the 
same domain, often consist of different types of 
information, different result extraction, data alignment 
and data annotation rules are needed for different 
search engines. Because millions of search engines are 
present on the Web and they frequently change their 
result display formats, highly automated solutions are 
needed to generate and maintain these wrappers.  

For result extraction, we plan to carry out research 
in two directions. The first is to improve visual-feature 
based solution so that response pages where SRRs are 
organized into multiple columns and multiple sections 
can be handled accurately and the time needed to 
perform the extraction can be significantly reduced. 
The second is to combine visual-features and 
non-visual-features in a way that can maximize their 
contributions to accurate result extraction. For data 
alignment and data annotation, we plan to find 
solutions for the problems caused by attributes with 
multiple values or nearly identical values. We also plan 
to create a library of patterns for some common values 
such as email, telephone number, address, etc.  

3.5 Location sensitive retrieval 

For mobile search, a relevant result must match 
the user query by content and is close to the user’s 
location. We plan to take WDS’s service areas into 
consideration when performing search engine selection. 
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Furthermore, for results returned from local WDSs, we 
will try to identify the address associated with each 
result and perform location-sensitive result merging. A 
mobile user is more likely to prefer products/services 
close to his current location. The locations of mobile 
users can be determined by the mobile service provider 
when the mobile devices are in use.  

A typical scenario is like this, suppose a mobile 
user is searching for information of the nearest 
restaurant, he not only needs the way to the restaurant 
or how the reach the nearest restaurant, he also wants 
more information about the restaurant, such as, 
services, prices or other guests’ opinions. In this 
situation, traditional location servers or web servers 
can not provide services like this, so it is our 
motivation to do the research on web data integration 
for mobile users. 

3.6 Search result clustering 

As many analyses shows, mobile users tend not to 
“click” the search results, because it is not convenient 
for mobile users to “click into” a result, also, since the 
limitation of navigation systems in mobile devices, 
users do not always concern the search results which 
have bad ranking results. So it is important to improve 
the search result clustering methods. 

Some researches have been done on search result 
clustering. In [4] they proposed a method to tackle the 
problem of mobile search using search result clustering, 
which consists of organizing the results obtained in 
response to a query into a hierarchy of labeled clusters 
that reflect the different components of the query topic. 

By clustering the results, one single “page” on 
mobile device can display more information, it can 
improve users’ experience in mobile search. 

3.7 Concise snippet generation 

Mobile devices usually have a small display 
screen, limiting the amount of information that can be 
displayed. Many investigation shows that, mobile users 
do not always “click” the search results, since the 
communication networks is slower than desktop users. 
So if shorter snippets for search results can be 

generated, then more results can be displayed on each 
screen, leading to better user experience. In this project, 
we are interested in reducing the size of the snippet 
returned from a WDS without compromising the 
effectiveness of the snippet in helping the user 
determine the usefulness of the result.  

3.8 Result representation 

Mobile devices have much more different user 
interface than desktop devices. Designing an effective 
mobile search users interface is challenging, as 
interacting with the results is often complicated by the 
lack of available screen space and limited interaction 
methods. In [7], the author proposed a method which 
can automatically compute categories to present the 
user with an overview of the result set. 

4 Conclusions 

 In this paper, we figured out some research 
point on deep web data integration for mobile 
users. We are more concerned on the Geo information 
extraction on the web pages and the location sensitive 
retrieval during the process. The availability of 
location-driven data, location-enabled devices, and 
location application is guaranteed to expand the 
opportunities that exist in the combination of mobile 
users and the web. We proposed an initial framework 
based on the metasearch method, it will be optimized 
and extended in the future in order to deal the problems 
of location sensitive processes which is more 
concerned nowadays. 
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Cloud Data Management (CDM)
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Outline

Motivation of CDM
Survey of CDM

IBM SUR Cloud DB Project

NSN Cloud Project

Future Research Work
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Motivation of CDM

Rapid Data Increase

2007: 281EB (1EB = 1000PB)

IDC: 60% per year (double - 18month)

Facebook: 850 million photos 

& 8 million videos ONE day

Web pages, logs, media contents
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Motivation of CDM

Challenges

Scalability

Load Balance

Congestion / Delay 

Efficiency

Cost

Fault Tolerance

Energy Conservation
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Motivation of CDM

Advantages of CDM

Scalability

Fault Tolerance

Performance/Efficiency

Performance-cost

Living and evolving
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Motivation of CDM

Comparison

Traditional Storage and DB

RAID/NAS/SAN

Hundreds of nodes

Cloud Data Management

Commodity Computers + SATA Disk

Tens of thousands of storage nodes
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Motivation of CDM

Cloud Data Management Systems

Scalability

100 10,000 nodes

Efficiency

Application-driven

Cost

Commodity Computers + SATA Disks

Flash / Disk Energy Conservation
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Motivation of CDM

CDM Industry

Internet Service Cloud Platform

Google/Amazon

Cloud Products

IBM Blue Cloud

MS - Azure

Enterprise-class Private Cloud

China Mobile

National Health Care
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Outline

Motivation of CDM

Survey of CDM
IBM SUR Cloud DB Project

NSN Cloud Project

Future Research Work
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Survey of CDM

CDM System Survey
Commercial Systems

Google- GFS + BigTable

MS- Azure

Yahoo!- PNUTS

Amazon- Dynamo

Open Source Systems
HDFS

KFS

Hbase

HyperTable

Cassandra

CouchDB

Voldemort
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Survey of CDM

Cloud Database:

Key-value data model

R/W performance / Parallelism

No/ Simple SQL operations
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Survey of CDM

Cloud Storage:

Architecture:

Master-Slave

GFS, HDFS

Baidu Cloud

P2P

Cassandra
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Outline

Motivation of CDM

Survey of CDM

IBM SUR Cloud DB Project
NSN Cloud Project

Future Research Work

14 /26

IBM SUR Cloud DB Project

Cloud Data 

Management Systems

Based on Cassandra 

(Facebook)
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Outline

Motivation of CDM

Survey of CDM

IBM SUR Cloud DB Project

NSN Cloud Project
Future Research Work
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NSN Cloud Project

Background

Telecom Cloud

Scalability

Cut costs

Unified platform WAP Server

CSC

WAP Server

CSC

WAP

...HugeTable HugeTable

API

API

CSC ...

POSIX

SQL SQL
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NSN Cloud Project

Deliverables

Package of source code for CDM

CMRI WAP specification as input

Based on open source cloud project

Suit telecom app/workload

Demo of CDM*

Integrated with NSN WAP Server

Relevant investigation report and technical 

documentation
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NSN Cloud Project

Solution

Cloud Storage

Based on HDFS (Java, M-S arch)

Data dist strategy

Cloud Database

Hbase (Java)

Data type

DB Func

SQL support

Performance opt

WAP Server

CSC

DN DN DN

NN

NN

CSC

WAP Server

CSC

WAP

...

...

...

WAP
-- API
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NSN Cloud Project
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Outline

Motivation of CDM

Survey of CDM

IBM SUR Cloud DB Project

NSN Cloud Project

Future Research Work
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Future Research Work

Cloud Database

Data model

DB operation extension

Efficiency 

Multi steps

Distributed operations
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Future Research Work

Cloud Storage

Architecture: Master-Slave vs P2P

Flash 

Energy Conservation
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Future Research Work

Architecture: Master-Slave vs P2P

P2P

Easy to manage, scalable

Fault tolerant

Master-Slave

High efficiency
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Future Research Work

Mixed Storage (Flash + Disk)

Flash Database

Commercial SSD based optimization

Flash storage board
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Future Research Work

Mixed Storage (Flash + Disk)

Costs

Erase
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Future Research Work

Energy Conservation

More Energy-Efficient SSD

Dynamic data distribution
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Survey on Data Management 
in the Cloud

Yingjie Shi
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Outline

Systems surveyed

Comparison of Systems

Experiment Benchmark
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Systems Surveyed

BigTable

HBase

HyperTable

Hive

HadoopDB

GreenPlum

CouchDB

Voldemort

PNUTS

SQL Azure

M
a
p
R

e
d
u
c
e

BigTable-like

DBMS-based
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BigTable Basic Information

To manage structured data that is designed to scale 

to a very large size: petabytes of data across 

thousands of commodity servers

Motivations

Scale is too large for most commercial databases

Low-level storage optimizations help performance significantly
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BigTable Goals

Fault-tolerant, persistent

Scalable

1000s of servers

Millions of reads/writes, efficient scans

Self-managing

Simple!
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BigTable Applications
Based on: GFS(Google File System)

Applications:

Scale of servers:

No. of tablet servers No. of clusters

259

47

20

50

>500 12
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BigTable Data Model
It is a sparse, distributed, persistent 

multidimensional sorted map. 

row key

column key =column family:qualifier

The map is indexed by a row key, column key, and a timestamp;

each value in the map is an uninterpreted array of bytes.
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BigTable Storage
Column family oriented storage(key->value)

(row:string, column:string, time:int64) ->string
row=row0, column=anchor:cnnsi.com, timestamp=1174184619081 XXXXXXXXX
row=row0, column=anchor:my.look.ca, timestamp=1174184620720 XXXXXXXXX
row=row0, column=anchor:my.look.ca, timestamp=1174184617161 XXXXXXXXX
row=row1, column=anchor:cnnsi.com, timestamp=1174184619081 XXXXXXXXX
row=row1, column=anchor:my.look.ca, timestamp=1174184620721 XXXXXXXXX
row=row1, column=anchor:my.look.ca, timestamp=1174184617167 XXXXXXXXX
row=row2, column=anchor:cnnsi.com, timestamp=1174184619081 XXXXXXXXX
row=row2, column=anchor:my.look.ca, timestamp=1174184620724 XXXXXXXXX
row=row2, column=anchor:my.look.ca, timestamp=1174184617167 XXXXXXXXX
row=row3, column=anchor:cnnsi.com, timestamp=1174184619081 XXXXXXXXX
row=row3, column=anchor:my.look.ca, timestamp=1174184620724 XXXXXXXXX
row=row3, column=anchor:my.look.ca, timestamp=1174184617168 XXXXXXXXX
row=row4, column=anchor:cnnsi.com, timestamp=1174184619081 XXXXXXXXX
row=row4, column=anchor:my.look.ca, timestamp=1174184620724 XXXXXXXXX
row=row4, column=anchor:my.look.ca, timestamp=1174184617168 XXXXXXXXX
row=row5, column=anchor:cnnsi.com, timestamp=1174184619082 XXXXXXXXX
row=row5, column=anchor:my.look.ca, timestamp=1174184620725 XXXXXXXXX
row=row5, column=anchor:my.look.ca, timestamp=1174184617168 XXXXXXXXX
row=row6, column=anchor:cnnsi.com, timestamp=1174184619082 XXXXXXXXX
row=row6, column=anchor:my.look.ca, timestamp=1174184620725 XXXXXXXXX
row=row6, column=anchor:my.look.ca, timestamp=1174184617168 XXXXXXXXX
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HBase

A clone project of BigTable using Java

Developers: Apache Software Foundation

Runs on top of Hadoop core

Production users:

10 /31

Hypertable

A clone project of BigTable in C++

Developers:

Runs on top of CloudStore(KFS,Kosmos File 

System)
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BigTable-like VS RDBMS

Fast Query Rate

No Joins, No SQL support, column-oriented 

database

Uses one Bigtable instead of having many 

normalized tables

Is not even in 1NF in a traditional view

Support historial queries
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Hive - Basic Information 

A system for managing and querying 

structured data built on top of Hadoop

Map-Reduce for execution

HDFS for storage

Metadata on raw files

Key Building Principles:

SQL as a familiar data warehousing tool

Extensibility Types, Functions, Formats, Scripts

Scalability and Performance
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Experiment 

benchmark

Hybrid
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HadoopDB-Philosophy

Two largest components of the data 

management market

Transactional data management

Analytical datamanagement

Two technologies used for data analysis in a 

shared-nothing MPP architecture

Parallel database

MapReduce-based system

Analytical datamanagement

Moved to 

cloud
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HadoopDB-Philosophy

Scalability Tolerance High Performance

Parallel 
database

MapReduce

What we want

Scalability:1000 nodes 

High Performance:Queries on structured data
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Query Tolerance

Server A Server B Server C Server D

SQL Method1:Redo the 

whole SQL

Method2:Redo the 

failed part
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HadoopDB-Philosophy

Goals
Performance

Tolerance

Scalability

Flexible query interface

Design idea
Multiple, independent, single-node databases coordinated 

by Hadoop

Database layer--PostgreSQL

Communication layer--Hadoop

Translation layer--Hive
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PNUTS

Developer:

Applications: Social network, advertising application

Application characteristic:

Scalability

Geographic scope

Fast response requirement

High availability

Simplified query needs

Relaxed consistency needs
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SQL Azure

A relational database service on the Windows 

Azure Platform that is built on SQL Server 

technologies

Objects can be created on SQL Azure: 

Tables

Indexes

Views

Stored Procedures

Triggers

20 /31
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Outline

Systems surveyed

Comparison of Systems

Experiment Benchmark
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Characteristic of Cloud Database
Performance

Scalability
Ability to scale by adding resources with minimal 
operational effort and minimal impact on system 
performance

Performance increases with the scale of the system 
extends

High Availability and Fault Tolerance

Ability to run in a heterogeneous environment

All applications are read-only or read-mostly
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Summary of Applications

Data Analysis

Internet Service

Private Cloud

Web Applications

Some operations that can tolerate relaxed 

consistency

BigTable HBase HyperTable 

PNUTS
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Architecture
MapReduce-based

BigTable HBase 

Hypertable Hive

scalability

fault tolerance

ability to run in a 

heterogeneous 

environment

DBMS-based

SQL Azure PNUTS 

Voldemort

easy to support 

SQL

easy to utilize index, 

optimization method

bottleneck of data 

storage

HadoopDB

sounds good

Performance?

Hybrid of MapReduce 

and DBMS

a lot of work to do 

to support SQL

data replication in 

file system
data replication 

upon DBMS
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Data Model

Big Map Model

BigTable,HBase,Hypertable

Simple Relational Data Model

Hive, PNUTS, SQL Azure and HadoopDB 

It depends on the real application!
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Consistency

Two kinds of 

consistency:

strong consistency 

ACID(Atomicity 

Consistency Isolation 

Durability)

weak consistency 

BASE(Basically Available 

Soft-state Eventual 

consistency )

C
P

A BigTable,HBase, 

Hive,Hypertable,HadoopDB

C
P

A

PNUTS
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A tailor 

3NF

LOCK ACIDRDBMS
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Outline

Systems surveyed

Comparison of Systems

Experiment Benchmark
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Experiment Benchmark MapReduce 

DBMS

HadoopDB 

Hadoop

DBMS
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Experiment Benchmark

Tasks:

Data Load

Grep Task

Selection Task

Join Task

Aggregation Task

Data

Grep

UserVisits

Rankings

Documents

Structured data

Unstructured data

89



31 /31

References

Daniel J. Abadi. Data Management in the Cloud: Limitations and Opportunities. 
Bulletin of the IEEE Computer Society Technical Committee on Data 
Engineering

Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, 
Suresh Anthony, Hao Liu, Pete Wyckoff and Raghotham Murthy. Hive-A 
Warehousing Solution Over a MapReduce Framework. VLDB 2009

Azza Abouzeid, Kamil BajdaPawlikowski, Daniel Abadi, Avi Silberschatz, 
Alexander Rasin. HadoopDB: An Architectural Hybrid of MapReduce and DBMS 
Technologies for Analytical Workloads. VLDB 2009

Armando Fox, Eric A. Brewer. Harvest, Yield, and Scalable Tolerant Systems. 
Proceedings of the The Seventh Workshop on Hot Topics in Operating Systems 
1999

J. Hamilton. Cooperative expendable micro-slice servers (cems): Low cost, low 
power servers for internet-scale services. In Proc. of CIDR, 2009.

J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large 
Clusters. In OSDI, 2004.

Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam 
Silberstein,Philip Bohannon, HansArno Jacobsen, Nick Puz, Daniel Weaver and 

90



I/O  
 

 

IOPS
+

  

91



Understanding IO patterns of SSDs

Da Zhou

1/22

Outline

Random/Sequential read/Write

Address offset

Delay

Relay

Burst

Delay + Burst

Semi Access

Conclusion
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Experiment Setup

SSD:
Access granularity: 512 bytes
Test tool: IOMeter
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Random Write

0
5000

10000
15000
20000
25000
30000
35000
40000

RW SW RR SR

Intel

0

5000

10000

15000

20000

RW SW RR SR

HDD

0
500

1000
1500
2000
2500
3000
3500
4000
4500

RW SW RR SR

PQI

0

2000

4000

6000

8000

10000

RW SW RR SR

OCZ

5/22

Random Write
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Hints

Random write performance is low for most of 

SSDs

New high-end SSD has high random write 

performance

Random write is slower than sequential write.
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Sequential Write VS Align Write
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Random write VS Random write Align
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PQI, OCZ: directly written into flash memory chip
Intel:  group written because of cache. Align leads to flush directly.
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Delay
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Replay
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Write-Read
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Burst 5
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PQI, OCZ : Data are written into flash memory directly. While burst will improve 
the efficiency of Cache.
Intel, HDD: The capacity of cache is larger. More data are cached in RAM.
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Burst and Delay
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Random write alignment
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Intel: Data  in the same 4kb area are flushed in the same time. When data do not locate in 
the same 4kb area, they will be flushed independently. 
PQI, OCZ: data are flushed into SSD directly.
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Sequential write alignment
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SSD: More erase operations will be triggered.
HDD: Sequential write random write
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Random read alignment
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Sequential read alignment
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PQI, OCZ: ??? 
Intel: Prefetch is not utilized. Suppose the size is 4 KB, the remain data is needed.
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Random Write VS Sequential Write VS Semi-
Random write
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Intel:   RW, SW: Cache;   Read RS 50%:  Data which is cached by RW is flushed by SW 
quickly. The reason maybe is the sequential write need a lot of cache. Or sequential 
write has higher priority than random write to use cache. 
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Random Read VS Sequential Read VS Semi-
random Read
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Intel:   RR, SR: Prefetch;   Read RS 50%:  Data which is prefetched by RR is evicted by 
SR quickly.  SR need more cache or high priority to  use cache.
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99% random Read, 1% random write
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1 Write = 3360/190 reads= 18 reads

Real Read: 2441/3360= 72% 

Ideal Read: 100/118= 84%

Write affects read
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99% random Read, 1% random write
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1 Write = 11754/4954 reads= 2.4 reads

Real Read: 8200/11754= 69% 

Ideal Read: 100/112.4= 97%

Problem is more obvious
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ABSTRACT
Recently, the cloud computing platform is getting more and more
attentions as a new trend of data management. Currently there
are several cloud computing products that can provide various ser-
vices. However, currently the cloud platforms only support sim-
ple keyword-based queries and can’t answer complex queries effi-
ciently due to lack of efficient index techniques. In this paper we
propose an efficient approach to build multi-dimensional index for
Cloud computing system. We use the combination of R-tree and
KD-tree to organize data records and offer fast query processing
and efficient index maintenance. Our approach can process typ-
ical multi-dimensional queries including point queries and range
queries efficiently. Besides, frequent change of data on big amount
of machines makes the index maintenance a challenging problem,
and to cope with this problem we proposed a cost estimation-based
index update strategy that can effectively update the index struc-
ture. Our experiments show that our indexing techniques improve
query efficiency by an order of magnitude compared with alter-
native approaches, and scale well with the size of the data. Our
approach is quite general and independent from the underlying in-
frastructure and can be easily carried over for implementation on
various Cloud computing platforms.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—distributed applications; H.2.4 [Database Management]:
Systems—concurrency, transaction processing

General Terms
Algorithms

Keywords
multi-dimensional index, distributed index, query processing

1. INTRODUCTION
Internet has been developing at an astonishing speed. Each day

a huge amounts of information is put on the Internet in the form

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CloudDB’09, November 2, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-802-5/09/11 ...$10.00.

of digital data. Many new Internet applications emerge and most
of them require to process a large scale of data efficiently. How-
ever, traditional data management tools have been insufficient for
this new demands. For example, database systems softwares of-
ten are multi-tenancy, which means that online users must share
the same software’s resources simultaneously. When unexpected
spikes come, users may meet the situation of shortage of resources
and a drop of quality of service. Therefore, scalability is a cru-
cial requirement for future Web applications. Under those circum-
stances, a new computing infrastructure, cloud computing, emerges.
Though the unified definition of cloud computing has not been con-
firmed[1], it is considered as a revolution in IT industry. Systems
supporting cloud computing dynamically allocate computational
resources according to users’ requests. Existing Cloud comput-
ing systems include Amazon’s Elastic Computing Cloud(EC2)[2],
IBM’s Blue Cloud[3] and Google’s MapReduce[4]. They adopt
flexible resources management mechanism and provide good scal-
ability. Scalable data structures can satisfy resource demands of
Cloud systems’ users. Cloud computing systems are usually com-
prised of a large number of computers, store huge amounts of data,
and provide services for millions of users. Resources allocation is
typically elastic in cloud systems, which makes each user feel that
he owns infinite amount of resources. A typical example of scalable
data structure is Google’s BigTable[5].

Currently, most of Cloud infrastructures are based on Distributed
File Systems. DFS usually use key-value storage models to store
data. The data in Cloud systems are organized in the form of key-
value pairs. Therefore, current Cloud systems can only support
keyword search. When a query comes, result data are retrieved
from DFS in accordance with contained keywords. Although many
famous Cloud systems uses this information storage pattern, such
as Google’s GFS[6] and Hadoop’s HDFS[7], they only provide ser-
vices of keyword queries for users. Therefore, users can only ac-
cess information through "point query" which matches records to
satisfy the verbal and/or numerical values.

The emergence of cloud computing is due to the need of increas-
ing advanced data management. And it needs to serve a large va-
riety of applications better for more Web users. Therefore, future
cloud infrastructures should be developed to support more types of
queries with more functions, e.g. muti-dimensional queries.

Cloud computing platforms contain hundreds and thousands of
machine nodes, and they process workloads and tasks in parallel.
This is a typical characteristic of cloud computing infrastructures.
When a user submits a query, result data are retrieved from un-
derlying storage tables and then distributed to a set of processing
nodes for parallel scanning. Without the support of efficient index
structure, query processing is quite time-consuming, especially for
complex queries. Therefore, building more efficient index structure
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is a pressing demand. Moreover, because of huge amounts of data
in cloud systems, the index should be able to provide high retrieval
rate.

Up to now, there are some proposals of building efficient index
for cloud infrastructures. Aguilera et al.[8] proposed a scalable dis-
tributed B-tree for their Cloud system. Other research work pro-
posed a kind of index based on hash index structure. However,
these indices just can index single column. They can not efficiently
support range queries referring to multi-columns’ data.

In order to support range queries efficiently in the Cloud system,
we present a scalable and flexible multi-dimensional index struc-
ture based on the combination of R-Tree and KD-tree.

In summary, this paper makes the following contributions:

• We propose an efficient and scalable multi-dimensional in-
dex structure. With this structure we can answer typical point
queries and range queries efficiently. Our index scales very
well as the data volume or cluster size grows.

• We propose a cost estimation-based index update strategy.
With this strategy we can assure that update will only be done
when it’s necessary and the benefit of update is ensured.

• We perform a series of experiments on large scale of machine
nodes with large volume of data. The experiment confirms
that our index structure is quite efficient and scalable.

2. RELATED WORK
Cloud computing brings new ways of Web services for Web

users and enterprises. There have been some cloud computing
systems. Typical examples include Amazon’s Elastic Computing
Cloud(EC2)[2], and IBM’s Blue Cloud[3] and Google’s MapRe-
duce[4]. These systems designed for cloud computing usually only
support basic key/value based queries, and lacks more efficient in-
dex structures.

The concept of cloud computing initially comes from search en-
gines’ infrastructure. Unlike DBMS, search engines usually does
not adopt order-preserving tree indexes, such as B-tree or hash ta-
ble. To improve performance and support more types of queries,
some works tried to build index on cloud computing platforms.
The work in [9] proposed an extension of MapReduce to join het-
erogeneous datasets and execute relational algebra operations. And
searching tree indexes were built in bulk MapReduce operations.
However, this work mainly focused on improving search engines’
performances and might lack generality when used in cloud com-
puting platforms.

B-tree is a very commonly used index in database management
systems, and most prior work on B-tree usually focused on ones
stored in a single computer’s memory space. The work in [8] pre-
sented a more general and flexible index structure: a fault-tolerant
and scalable distributed B-tree for cloud systems. Distributed trans-
actions is used to make changes to B-tree nodes. B-tree nodes can
be migrated online between servers for load-balancing. This design
is based on a distributed data sharing service, Sinfonia[10], which
provides fault tolerance and a light-weight distributed atomic prim-
itive. However, this index schema may cause high memory over-
head because of inner nodes’ replication, especially for client com-
puters. Moreover, although B-tree has been widely used as single-
attribute index in database systems, it is inefficient in dealing with
indices composed of multi-attributes.

The paper by S. Wu and K.-L. Wu[11] proposed an improved
indexing framework for cloud systems. This indexing framework
supports all existing index structures. The hash index and B+-tree
index are used to demonstrate the effectiveness of the framework.

Figure 1: Framework of Request Processing in Cloud

And machine nodes are organized in a structured Peer-to-Peer net-
work which can effectively reduce the index maintenance cost. Al-
though this index schema is scalable and flexible, the Peer-to-Peer
structure is not very suitable for cloud systems.

There are also some algorithms of distributed B-tree in distributed
file systems and databases(e.g.,[12, 13]). However, these distributed
B-tree indices can not support multi-dimensional query answering
effectively. Because even if an attribute column in the data table
is indexed by a distributed B-tree, answering multi-dimensional
queries still need to find eligible result records on other attributes.
And query answering is still possible to have long response time.

Much work on distributed index structures has been done by re-
searchers, such as distributed hash tables(DHT) (e.g. [14, 15]).
However, these indexes in [14, 15, 16] are designed and deployed
on Peer-to-Peer data structures. Although some DHT extensions
can support range queries[16], P2P structures work with little syn-
chrony and may cause weak even no consistency. In contrast, cloud
systems must be able to provide certain level of consistency. More-
over, nodes in P2P structures are equal with each other. Cloud sys-
tem has master nodes which are responsible for distributing com-
puting tasks and resources to slave nodes. Therefore, these dis-
tributed hash index can’t meet the demand of cloud systems.

In contrast with that, our distributed index can efficiently support
various queries(e.g. point query, range query), and provide high
retrieve and update rates.

3. QUERYING AND UPDATE IN THE CLOUD
As a basic characteristic of the cloud platform, a cluster consist-

ing of hundreds or thousands of PC is responsible for the mission of
computing and storage of data. As Figure 1 shows, machine nodes
in the cluster can be categorized into two types: master nodes and
slave nodes. Master nodes and slave nodes are not too much dif-
ferent except that if a machine is playing the role of master node
it will store some meta data about the whole system along with
other regular data that slave nodes also have to store. Slave nodes
store data records and their replicas for efficiency and security. Al-
though one of the distinguishing characteristics of Cloud platform
from the Client-Server architecture based systems is that the Cloud
systems don’t need central servers, it still needs a set of machines to
maintain meta data about the whole system, and this makes many
operations more efficient.

In the cloud platform, client requests are often posed against the
master nodes. After that the master nodes decide which slave nodes
are relevant to the request and then the client will communicate
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with those nodes directly. The framework of request process in
cloud platform is in Figure 1. So as a typical request, query pro-
cessing in the cloud platform can be divided into two phases: lo-
cating relative nodes and processing the request on selected slave
nodes. The procedure could be expressed as algorithm 1.

Algorithm 1 Process query on cloud
1: procedure SET PROCESSQUERY(Query q)
2: Set nodes = empty;
3: nodes.add(getRelativeNodes(q));
4: Set results = empty;
5: for (each node n in the nodes) do
6: results.add(n.retrieveRecords(q));
7: end for
8: return results;
9: end procedure

Maintenance of the index upon data insertion and deletion is also
a major aspect of an index. Like the query processing procedure,
insertion and deletion can also be divided into locating relative
nodes and performing the operation on relative nodes. The two
procedures can be described as algorithm 2 and 3:

Algorithm 2 Record insertion to cloud
1: procedure BOOLEAN INSERTRECORD(Record r)
2: Set nodeSet = empty;
3: nodeSet.add(getNodesForRecord(r));
4: for (each node n in nodeS et) do
5: if (n.insertRecord(r) == false) then
6: return false;
7: end if
8: end for
9: return true;

10: end procedure

Algorithm 3 Record deletion from cloud
1: procedure INT DELETERECORDS(Query q)
2: Set nodeSet = empty;
3: nodeSet.add(getRelativeNodes(q));
4: int count = 0;
5: for (each node n in the nodeS et) do
6: count += n.deleteRecords(q);
7: end for
8: return count;
9: end procedure

From the above discussion we can see that the key functional
components of a multi-dimensional index are:

Query Processing

• Locating relative slave nodes for query

• Processing query on each slave node and fetch results

Index Maintenance

• Locating appropriate slave nodes for record insertion

• Locating relative slave nodes for data deletion (same as that
in query processing)

• Inserting records into individual slave node

• Deleting records from individual slave node

In the following part of the paper, we will discuss how to build
and maintain multi-dimensional indices in cloud computing en-
vironment by conducting the 6 key functional components listed
above.

4. MULTI-DIMENSIONAL INDEX
As the Cloud computing platform can be considered as a cluster

of PC machines, we can build a global index of the platform by
building local indices on each individual machine. Requests to the
virtual global index could be answered by executing the query on
local indices and then combining the returned results. Before in-
troducing our index approach, we give a short introduction to the
structures we will use.

4.1 R-Tree and KD-tree
R-tree[17] is a popular multi-dimensional index, which is usually

used in spatial and multi-dimensional applications. R-tree index is
a data structure that captures some of the spirit of the B-tree for
multi-dimensional data. A R-tree index represents data that con-
sists of 2-dimensional, or higher dimensional regions. An interior
node of an R-tree corresponds to some interior region. In principle,
the region can be of any shape.

A kd-tree[18] is a binary tree in which each interior node has an
associated attribute a and a value V that splits the data points into
two parts: those with a-value less than V and those with a-value
equal to or greater than V. The attributes at different levels of the
tree are different, with levels rotating among the attributes of all
dimensions.

4.2 Basic Structure
For the basic structure, we build the multi-dimensional index for

the platform by building local KD-tree index for each slave nodes.
The reason for our choice of KD-tree instead of other structures is
that the KD-tree can efficiently support point query, partial match
query and range query.

Query Processing
In the relative node locating phase we choose all the nodes in

the cluster as candidates of the query since currently we don’t have
the knowledge about data distribution on each slave node, and thus
makes all nodes possible to contain records relative to the query.
And in the record retrieving phase, each node utilizes the local KD-
tree index to get records on that node. The procedures are describe
as algorithm 4 and 5:

Algorithm 4 Get candidate nodes to search for the query
1: procedure SET GETRELATIVENODES(Query q)
2: return all the nodes of the platform;
3: end procedure

Algorithm 5 Get records satisfying the query on the node
1: procedure SET RETRIVERECORDS(Query q)
2: Set recordSet = lookupKDTree(q);
3: return recordSet;
4: end procedure

Index Maintenance
For data insertion, since in the basic structure there is not any

metadata to consider so we only take load balance into consider-
ation. Hence, we pick a set of nodes based on some load balance
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Figure 2: Framework of EMINC

approach, which is not the focus of this paper so we will not discuss
it. After that, we apply the insert function defined on the local KD-
tree. For data deletion, as each node is a potential node for query
processing, we need to perform local deletion on every slave node.

4.3 Pruning Irrelevant Nodes with R-tree
The approach we have shown distributes local indices on slave

nodes without maintaining any meta-data and this directly leads to
inefficiency of query processing. The efficiency of locating relative
nodes can be improved by maintaining bounding information of
each dimension on each node and prune irrelevant nodes during
query processing.

To prune irrelevant nodes on query processing, we construct a
node cube for each slave node. A node cube indicates the range of
value on each indexed attribute in this node.

Definition 1. A node cube is a sequence of value intervals, and
each interval represents the value range of one indexed attribute
on this node. If there’s only one value on some dimension, the
corresponding interval regresses to a value point.

Example 1 :If we construct a two-dimension index on attribute age
and salary of a table, we can make a node cube of {[30, 40], [100,
200]} meaning that records on this node have age attribute between
30 and 40 and salary attribute between 100 and 200.

After we build a cube for each slave node, we maintain the cubes
on master nodes with an R-tree. The reason why we choose R-tree
instead of KD-tree for cube information is that the R-tree was de-
signed for managing data regions and in our scenario the cubes
are actually multi-dimensional data regions. We call this index
approach EMINC: Efficient Multi-dimensional Index with Node
Cube. Framework of EMINC is shown in Figure 2

Definition 2. EMINC index structure consists of a R-tree in mas-
ter nodes and one KD-tree on each slave node. Each leaf node of
the R-tree contains a node cube and one or more pointers that point
to the slave nodes corresponding to the node cube.

With the node cube information in EMINC, query processing
can be greatly improved by pruning irrelative nodes in the nodes
locating phase. And in order to keep cube information available
and useful, insertion and deletion on slave nodes that may change
their cubes should inform master nodes for update of cube.

Query Processing
When a query is posed, we first get the key value or key range

on each demand, construct a query cube for query. Query cube is
an analogy concept to node cube with the following definition:

Definition 3. A query cube is a sequence of intervals, and each
interval represents the value range of one attribute in this query. If
either side of the attribute is not specified, we assign it the biggest
negative or positive value accordingly.

With the query cube we resort to the R-tree for nodes that are re-
lated to the query by issuing the classic "where am I" query. Specif-
ically, we look up the R-tree to find those slave nodes whose node
cubes intersect with the query cube of the query. The definition of
cube intersection is as follows:

Definition 4. Intersection of two cubes (node cube or query
cube) means that for each attribute the two corresponding inter-
vals must have overlap. If one of the two intervals has regressed
to a point, then the intersection semantic is replaced by the inter-
val containing the point or the two points being equal, depending
whether there is one point or two.

We can see from the definition of intersection that this can be
done with the typical "where am I" query on R-tree. And only
the intersecting nodes are possible to contain records satisfying the
query, so that a big part of irrelevant nodes are pruned. After locat-
ing relative nodes, we do local search on the slave node. The new
nodes locating procedure is as algorithm 6:

Algorithm 6 Get candidate nodes using cube
1: procedure SET GETRELATIVENODES(Query q)
2: QueryCube cube = getCubeForQuery(Query q);
3: Set nodeSet = getNodesForCube(cube);
4: return nodeSet;
5: end procedure

Index Maintenance
In order for the node cube information to stay effective, we have

to update the cube on master nodes if the cube is out-of-date due to
data insertion or deletion on slave nodes. If the cube information
on master nodes is not updated in time, the query processing will
either miss relative records or search more irrelative nodes.

Recall that the first step of data insertion is to select the appro-
priate slave nodes to insert to. Selection of nodes can affect future
query processing efficiency. If we can select the nodes in a way
that data records are "clustered" by their indexed attribute values,
then future query processing can benefit greatly from this since less
slave nodes need to be explored for one query. Based on this idea,
we try to give such nodes higher priority in data insertion : nodes
that have node cube that can cover the record to be inserted, and
by cover we mean that each indexed value of the record is in the
corresponding interval of the node cube. Under this principle, the
node selection procedure is shown as algorithm 7.

After selecting the nodes to insert to, record is inserted into them.
Insertion of a new data record may cause the node cube of this
node to expand on one or more dimensions if the current cube can’t
enclose the new record. And if this happens, this node must inform
the master node of the change and give the new node cube to master
node to keep it up to date. The update on master node is a typical
update operation on R-tree.

Example 2 : Suppose the current node cube is {[30, 40], [100,
200]}. If we insert a new record (42, 210), and then the new cube

107



Algorithm 7 Select nodes for insertion
1: procedure SET SELECTNODES(Record r)
2: candidateSet = empty;
3: int count = 0;
4: for (count < replica amount) do
5: Node node = selectNodeWithCoveringCube(r);
6: if (node is not null) then
7: candidateSet.add(node);
8: else
9: // This means there is no more such nodes.

10: break from loop;
11: end if
12: end for
13: if (count < replica amount) then
14: // Choose rest of the nodes.
15: int remaining = replica amount - count;
16: // Choose nodes based on load balance, etc.
17: Set remainingSet = chooseTheRest(remaining);
18: candidateSet.add(remainingSet);
19: end if

return candidateSet;
20: end procedure

will be {[30, 42], [100, 210]}. If the cube information is not up-
dated in time, a query looking for records with the first attribute
between 41 and 50 will ignore this node.

The new insertion procedure goes as algoritm 8.

Algorithm 8 Insert record to slave node
1: procedure BOOLEAN INSERTRECORD(Record r)
2: Boolean b = insertToKDTree(r);
3: if (b == false) then
4: return false;
5: end if
6: if (current cube is empty) then
7: Make cube based on this record;
8: end if
9: if (current cube has expanded or a new cube is created)

then
10: Update cube on master nodes;
11: end if
12: return true;
13: end procedure

Likewise, deletion of a data record on slave nodes will possibly
cause certain intervals to shrink if the deleted record lies on one of
the vertices of the cube and there is no record on that vertex after
the deletion. If this happens, the node cube will also be updated. If
the new cube is not update in time, further queries will still think
this node to contain some data this node is not holding any more.
Therefore, the deletion procedure goes like algorithm 9:

Algorithm 9 delete records on slave node
1: procedure INT DELETERECORDS(Query q)
2: Int count = deleteFromKDTree(q);
3: if (current cube has shrunk) then
4: Update cube on master nodes;
5: end if
6: return count;
7: end procedure

Figure 3: Cutting Node Cube

4.4 Extended Node Bounding
With EMINC, we use bounding technique to filter unnecessary

queries. However, EMINC has some limitations and could be fur-
ther extended to provide much better performance.

In EMINC, we make one cube for each node to describe the
smallest and biggest key value on this node. But under some occa-
sions, the performance could still be poor.

Example 3 : Suppose we have two nodes now: data on node A have
key value on attribute X from 1 to 100, each integer included; data
on node B have only three values, 1, 50 and 100. By the previous
approach, node cubes of the two nodes will both be [1,100] on di-
mension(attribute) X. And now we have a query asking for records
with attribute X between 60 and 80. In the current situation both
of the nodes will be selected as candidate since their cubes both
intersect with the query cube. But we can easily see that search on
node B will end up getting nothing since node B doesn’t hold any
record between 60 and 80.

We can see from the extreme case stated in above example that if
we use one node cube to describe a node, the cube may be so sparse
that it will lead to a great number of waste of searching since sparse
distribution on nodes will cause many unrelated queries. To deal
with this problem, we propose to extend EMINC to use multiple
node cubes to represent a slave node more precisely, and by doing
this we will be able to filter out much more irrelevant queries.

In order to achieve higher accuracy, we need to cut the original
node cube into several denser smaller cubes, and then adjust the
smaller cubes by checking data records within each cube. We name
this approach EEMINC: Extended EMINC.

Definition 5. EEMINC is an extension of EMINC. The differ-
ence from EMINC is that in EEMINC data records on one slave
node will be represented by multiple node cubes. The shape and
amount of node cubes is dependant on the method used for cutting
the original single node cube.

Here we give an example on turning the node cube of EMINC
into cubes of EEMINC. Discussion on different methods of cutting
attributes will be presented later in the section.

Example 4 : Suppose on some node A, we have 7 data records:
[0, 0], [12, 12], [15, 15], [13, 21], [17, 30],[23, 5], [30, 6]. See the
distribution of data in the coordinate in Figure 3. The node cube of
this node is {[0, 30], [0, 30]}. Now we cut both axis X and Y to
three equal pieces and get nine small regions. From the distribution
of records we can see that only four of the nine regions have records
in them, and we only keep those four regions. Now we make four
node cubes by checking the actual records within each of the four
regions, and what we get are: {[0, 0], [0, 0]}, {[12, 15], [12, 15]},
{[13, 17], [21, 30]}, {[23, 30], [5, 6]}
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In the above example we divided a node cube into nine smaller
cubes and picked four of them. The next step is to deliver the cubes
to master nodes. After maintaining the new smaller cubes, master
nodes can direct queries more accurately. After the reconstruction
of node cubes, we turn one sparse cube into several smaller but
denser cubes, and that is the key factor of efficiency improvement.
With this approach we can further filter out more irrelevant queries
in query processing.

Query Processing
The query processing procedure will not present much differ-

ence from that in EMINC. The difference lies in the efficiency.
With node cubes with better granularity, the chance of forward-
ing queries to nodes that don’t have relative records will be greatly
diminished.

Index Maintenance
When a new data record needs to be inserted, we first check if it

can be enclosed by one of the existing cubes. If we fail to find such
cube, we expand the nearest cube to enclose this record. When a
record needs to be deleted, we look for the cube it’s in and check
if this record is on the vertex of that cube, and if the answer is yes,
the node cube shrinks.

However, as the slave node accumulates more and more data up-
date operations, node cubes may need to be updated since the data
distribution within a node cube may be sparse or uneven again.
And when this happens, we shall need to update that node cube
to maintain the efficiency. To achieve this we have to answer two
questions: when to update the cube and how to reshape the cube ?

We answer the second question first. The reshaping process is
similar to the process of cutting the original single cube into several
small cubes. The core problem is how to cut each attribute dimen-
sion into small intervals. In this paper we try several methods to do
the cutting and compare their performances in our evaluation.

• Random cutting. Pick several random value points on the
attribute and cut by the points. This cutting method may
seems somewhat too "random" to be effective, however, in
many occasions the distribution of data also shows certain
level of randomness and under that circumstance this method
may give good performance, but it is not guaranteed due to
the randomness.

• Equal cutting. Cut the attribute into several equal inter-
vals. If data insertion operations are controlled by the master
in a way that data on each slave node shows approximate
hypodispersion, the equal cutting would give good perfor-
mance.

• Clustering-based cutting. Cut the attribute by clustering
values on the attribute using clustering algorithms and cut be-
tween clusters. On some occasions, data records are inserted
in a batch way, a transaction for example. So one batch of
records may appear to be a cluster and the total records on
this node can be seen as a set of clusters. Under this circum-
stance, clustering-based cutting method will perform much
better than random and equal cutting since it captures the
characteristic of data. However, the cost of this method is
also higher since a typical clustering algorithms is in O(n2)
time complexity.

No matter what method is used for cutting, we should stop cut-
ting when the total number of nodes cubes reaches a certain amount
because the number of cubes should be kept relatively small com-
paring to the number of records since large number of cubes will
bring down the efficiency of the master nodes.

4.5 Cost Estimation based Update Strategy
Now we go back to the first problem of when to do the reshap-

ing of node cubes. As we can see that updating node cubes can
give great benefit to query processing, but the cost of updating is
also nontrivial since even the fastest cutting method is in O(n) time
complexity where n is the number of data records on this slave
node. So when to do the update depends on the comparison of
benefit and cost of doing so. So the basic idea is: benefit > cost.

Here we propose a cost-estimation-based approach to handle the
cube update problem. First we introduce several concepts and pa-
rameters we will need for estimation.

Definition 6. Volume of a node cube is defined as the maximum
number of unique records that this cube can cover. We note volume
of a cube by v.

Example 5 : For the node cube {[1, 11], [2, 5]}, the volume is
(11-1)*(5-2) = 30.

To simplify the discussion, we make the following assumption:

Assumption 1. The amount of queries forwarded to each slave
node is proportional to the total volume of all the node cubes of the
slave node.

This assumption is reasonable since the bigger is the total vol-
ume, the more data records it is likely to hold. Thus more queries
are directed to this node. Then we can easily conclude that in the
process of reshaping one node cube into one or more smaller cubes,
the smaller the total volume of the small cubes is, the better. This
also means that the cutting method must be able to decrease the
volume otherwise it makes no sense to do the update.

For each node cube, we use nq to denote the number of queries
whose query cubes intersect with this cube in each time unit. We
can see that nq describes the contribution of this cube to the query
load on this node. And from the above assumption we can see that
nq is proportional to the volume v of the cube. We use qt to denote
the average time needed to process a query on this node. mt is used
to denote the time needed to do a update of cube. Those parameters
could be maintained by the cloud platform as metadata.

To make the benefit and cost of update comparable, we express
both of them in the metric of number of queries. In other words,
we express benefits by how many unrelated queries we can avoid
after the update, and express cost by how many queries we could
have processed if we use the update time for answering queries.

Benefit of the update can be evaluated by the number of queries
that will no longer be forwarded to this node due to this update.
And recall that the number of queries is proportional to the volume
of cube, so we have:

With the metric of number of query, we express benefit of an
update as:

bene f it = (δv/v) × nq × δT (1)

δv refers to the decrement of volume after the update, so δv/v×nq
means the amount of query that will no longer be forwarded to
this node due to this update in one time unit since the amount of
query is proportional to the volume. We denote the δv/v as the
benefit ratio of this update since it tells the percentage of queries
this update can save. δT is the time span from now to when next
update happens. So the benefit of this update can be measured by
how many irrelative queries we can avoid.

The time cost of the whole reshaping procedure consists of two
major parts: reshape the cube into one or more cubes and insert the
new cubes to the R-tree on master nodes. As we mentioned that the
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number of cubes is kept relatively small. Thus, the cost of inserting
them into the R-tree on master nodes will also be neglectable com-
paring to the reshaping time which is often at least proportional
to the size of data records (we express this trivial cost as ε). So
what we really care is the time cost of reshaping. Using the query
number metric, we express cost as:

cost = (mt + ε)/qt ≈ mt/qt (2)

We use an iterative two phase approach for the update strategy.
After each update, we first calculate a minimal time span before
the next update could happen - the δT we introduced. When the
time span expires, we calculate the benefit of doing the next update,
and if the benefit is acceptable based on several factors, we do the
update, and if the benefit is not qualified, we wait another δT and
check it again.

Substitute formula 2 and 3 into formula 1 we get

(δv/v) × nq × δT > mt/qt (3)

Reform formula 4 we have

δT > (mt × v)/(qt × δv × nq) (4)

And this is the condition that δT must meet to ensure the bene-
fit. All the parameters concerned could be got from the last update
process or maintained by the platform.

And when the δT expires, we have to check each of the descen-
dant cube if we need to update them. The reason for this check is
highly dependant on several aspects such as amount of data update
operation, expected benefit of next update, performance require-
ment of the platform and so on.

• Record update frequency. If there has not been many up-
date operation since last cube update, we may gain little from
another update.

• Expected benefit ratio. Expected benefit ratio refers to the
benefit ratio of next update if we do the update now, and it
is also calculated based on estimation. For example, if the
operations occurred didn’t quite change the distribution of
data in the cube, the expected benefit of doing an reshaping
will be pretty small.

• Performance requirement. Although we use a δT to as-
sure each update being enough utilized, the real time cost of
the update process is still inevitable as the update will slow
down the real time query processing. So if the performance
requirement of the platform is hight, the cube update should
not be frequent.

The factors are highly dependant on the specific requirement of
the platform and application. We leave the study of combining
these factors as future work.

From the discussion we can summarize the process of doing up-
date after one update as algorithm 10 :

Now we can see that after the first update of node cube, the index
maintenance could continue as we discussed. The only remaining
problem is when to perform the first update of node cube. In fact,
when to do the first update has high correlation with what we dis-
cussed in the checking phase. That is, the environment and require-
ment of the application and platform must be carefully studied in
order to make the decision. Due to limit of time and length of this
paper, we will take this as a future work.

Algorithm 10 Deciding next update
1: Time t = calculate minimal time span;
2: wait(t);
3: boolean isToUpdate = check();
4:
5: while (isToUpdate == false) do
6: wait(t);
7: isToUpdate = check();
8: end while
9:

10: if (cube number below limit) then
11: updateCube();
12: handle new cubes in R-tree on master nodes;
13: end if

5. EVALUATION
We now evaluate the performance and scalability of our multi-

dimensional index in cloud computing systems. Our testing in-
frastructure includes 6 machines which are connected together to
simulate cloud computing platforms. Communication bandwidth
was 1Gps. Each machine had a 2.33GHz Intel Core2 Quad CPU,
4GB of main memory, and a 320G disk. Machines ran Ubuntu 9.04
Server OS.

We use this infrastructure to simulate different sizes of cloud
computing systems. We conducted 10 simulation experiments, rang-
ing from 100 nodes to 1000 nodes. Each time 100 more nodes are
considered to be added into the cloud computing system. In our in-
frastructure, one machine plays the role of master nodes and store
metadata and control distribution. Each of the other five machines
simulates 100 to 1000 slave nodes.

We design two sets of experiments to evaluate our multi-dimensional
index’s performance and scalability. One is point query (equiva-
lence queries), the other is range query with selectivity being about
one ten thousandth. Respectively, we measured the query answer
time through using scan, multi-dimensional index with a node cube
(EMINC), multi-dimensional index with fine-grained granularity
cube(extended EMINC) by random cutting, Equal cutting, K-Means
clustering cutting, DBScan clustering cutting. For each experiment,
we obtain the result based on 3 runs.

Firstly, we used six methods to execute the point query. Scan
method used Map-Reduce functions to scan data on every slave
node. EMINC method build a KD-tree on every slave node and
construct a node cube for R-Tree on the master node. EEMINC
method used several methods to do the cutting. We adopt two clus-
tering algorithms: K-Means clustering and DBScan clustering. The
first is a classical clustering algorithm, and the second is a density
based clustering algorithm. These cutting algorithms make bet-
ter granularity and improve query processing efficiency. Figure 4
shows the point query experiment result. As can be seen, EM-
INC can solve the multi-dimensional query inefficient problem, but
EEMINC perform much better than table scan and EMINC. Equal
cutting, random cutting and K-Means clustering cutting have simi-
lar performance in our dataset. These three methods answered the
point query in 1 thousand nodes and 10 million records only cost
40 ∼ 50 ms, which shows our method is efficient. Figure 4 il-
lustrates the scalability of our methods. This graph show that our
multi-dimensional distributed index scales almost linearly with the
number of nodes in the system.

Secondly, we used six methods to execute the range query. Each
query got one ten thousandth of the size of all records. Figure
5 shows the range query experiment result. Compared with the
cost of point access, the range query execution time shows that our
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Figure 4: Point Query Experiment Result

multi-dimensional distributed index can also support range query
efficiently. And EEMINC method is still the most effective index
to answer these queries. Figure 5 shows our methods are high avail-
ability and scale to hundreds of nodes.

Figure 5: Range Query Experiment Result

6. CONCLUSION
In this paper we presented EMINC and EEMINC for building

efficient multi-dimensional index in Cloud platform. We used the
combination of R-tree and KD-tree to support the index structure.
We developed the node bounding technique to reduce query pro-
cessing cost on the Cloud platform. In order to maintain efficiency
of the index, we proposed a cost estimation-based approach for in-
dex update. And we proved the efficacy of our approach with vast
experiment.

For future work, we will study how to cut node cube according to
data distribution in the cube to achieve better performance, both in-
dex building performance and query processing performance. We
also plan to complete the cost estimation model by formalize the
check phase of our two-phase estimation approach. And the ap-
proaches we proposed didn’t give much attention to multiple repli-
cas of data and left that to the underlying file system, however, if
we take that into consideration the efficiency and stability of the
index can be further enhanced.
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ABSTRACT
Many users need to refer to content in existing files (pictures,
tables, emails, web pages and etc.) when they write doc-
uments(programs, presentations, proposals and etc.), and
often need to revisit these referenced files for review, re-
vision or reconfirmation. Therefore it is meaningful to dis-
cover an approach to help users revisit these references effec-
tively. Traditional approaches(file explorer, desktop search,
and etc.) fail to work in this case. In this paper, we propose
an efficient solution for this problem. We firstly define a new
personal data relationship: Context-based Reference(CR),
which is generated by user behaviors. We also propose ef-
ficient methods to identify CR relationship and present a
new type of query based on it: Context-based Query(C-
Query), which helps users efficiently revisit personal docu-
ments based on CR relationship. Our experiments validate
the effectiveness and efficiency of our methods.

Categories and Subject Descriptors
H.2.m [Database Management]: Miscellaneous

General Terms
Algorithms, Human Factors, Performance

Keywords
Context, Query, Personal DataSpace

1. INTRODUCTION
With development of information technology, more and

more personal data items are collected, and Personal Infor-
mation Management (PIM) [1] becomes a critical problem
and a promising research area. Studies show that many
personal data accesses(> 58%) are ”revisit” [3, 4, 5], and
”meaningful” data relationships(senderOf, authorOf, pub-
lishedIn and etc.) can help users relocate expected items
more effectively [2]. However, there are two basic questions
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need to be answered: (1)what relationships are ”meaningful”
and (2) how to identify these ”meaningful” relationships.

Since the aim of identifying data relationships is to im-
prove effectiveness of data query, the definition of ”meaning-
ful” depends on user query requirements. When users pro-
duce personal documents(programs, presentations, propos-
als, and etc.), they often refer to some contents in existing
files. In addition, when a user accesses one of her documents
or redo a task, she often needs to revisit its references for
revision or reconfirmation. Therefore ”referenceOf” is one of
the ”meaningful” relationships of personal data.

The popular tools used by persons to revisit expected doc-
uments are folder explorer and desktop search. Folder ex-
plorer demands users remember path and name of the ex-
pected files. If a user can only remember fuzzy information,
she has to try possible paths many times. Therefore folder
explorer can not work well in this case. Desktop search de-
mands users remember keywords included by the expected
files, which does not work well when a user can not remem-
ber exact keywords.

There are also some works on Personal DataSpace(PDS)
model [6], personal data integration [7, 8], index [9] and
query [11]. But all these works focus on improving efficiency
of personal data operation by identifying objective associa-
tions of items(senderOf, authorOf, and etc.). Our work is
different, we focus on proposing a new personal data rela-
tionship based on user behaviors and a new type of query.
Our main contributions can be summarized as below.

• Propose a new semantic relationship between personal
data items: Context-Based Reference(CR), which is
generated by user behaviors. We also propose an ef-
fective method for identifying CR relationship.

• Propose a new type of query in PDS: Context-based
Query(C-Query), which is based on CR relationship.
We give a solution framework of C-Query and propose
an efficient approach for C-Query processing.

The rest of this paper is organized as follows: In Section
2, we give a solution framework. In Section 3, we describe
the algorithms for identifying CR relationship. In Section 4,
we introduce the approach for C-Query processing. Section
5 evaluates our measures and section 6 concludes this paper.

2. SOLUTION FRAMEWORK
As shown in Figure 1. Our solution framework includes

four parts: CR Database(CDB), Context-based Reference
Relation(CRR) Identifier, C-Query Engine and Query In-
terface.
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PDS Engine

Figure 1: C-Query Implementation Framework

• CR Database: It is the data structure for describ-
ing personal data items and data relationships. We
take several relation tables to store CR relationship,
because relation tables are simply implemented and
work at a high performance.

• CRR identifier: It monitors user operations. When
a user conducts an operation, it captures user opera-
tion and update CR database in time.

• C-Query Engine: It handles user query and pro-
duces results. When a user submits a C-Query require-
ment, it produces result based on the CR database and
user input.

• Query Interface It is utilized to handle user input
and display query results. To help users relocate ex-
pected items quickly, it allows users to refine query
results easily.

In this framework, CRR identifier is the basis of our so-
lution, and is also a big challenge, because (1) there is no
explicit information for mining this relationship and (2) the
approach for identifying CRR shouldn’t increase users’ bur-
den. Studies [10] show that the two items accessed contin-
uously often has associations. Inspired from this idea, we
propose a method for identifying CR relationship based on
user behaviors. To make it more clear, we first introduce
the following concepts.

Definition 2.1 (Personal Data Item). A personal
data item(PDI) is the basic element of personal data, and
is the smallest unit of personal data operation(read, modify,
delete, and etc.).

There are multiple data relationships among personal data
items, such as senderOf, authorOf, referenceOf, and so on.
Based on personal data items and their relationships, we
propose a new concept: Personal DataSpace.

Definition 2.2 (Personal DataSpace). A Personal
dataspace D is described as a 2-tuple (N , R), where N is a
set of personal data items and R is a set of personal data
relationships.

Definition 2.3 (Context-based Reference Relation).

We denote it as RCR(I1, I2, U), where I1 and I2 are two per-
sonal data items, and U is a user, which means there is a
reference relationship between I1 and I2, which is generated
by activities of U .

3. CR-RELATIONSHIP IDENTIFYING
In this section we first overview CR relationship, then

present algorithms for identifying CR-Relationship.

3.1 Overview CR Relationship
To tackle the problem of absence of public personal data

set, we implement a prototype to capture user access behav-
iors(operations on desktop, email box and web pages). We
run it in personal computers of five persons of our group,
and obtain a data set, which includes the access logs of the
five users in two months. Based on analyzing these user
access logs we propose a new concept: Time Sequential List.

Definition 3.1 (Time Sequential List). A Time
Sequential List(TSL) is an item list ordered by access se-
quence. We say it (I1, I2, ..., In), where Ii is a personal data
item, and ∀i, if 1 ≤ i ≤ n − 1, Ii <> Ii+1.

In a TSL, there is no two sequent items mapping to a
same item. Figure 2 shows an example of time sequential
list. By analyzing the access logs of the five users, we dis-
cover three types of CR relationship: Sequence Adjacent
Relation(SAR), Sequential Inclusive Relation(SIR) and Lin-
eage Relation(LR). To make them clear, we define them as
below.

Definition 3.2 (Sequencial Adjacent Relation).

We denote it as binary relation. Let Ii and Ij are two items
of PDS, if Ii and Ij appear in TSL sequentially, (Ii, Ij) ∈
RSAR.

We define SAR as a symmetrical relation, it means if
(A, B) ∈ RSAR, (B, A) ∈ RSAR. Take the access list shown
in figure 2 for example, A and C are accessed frequently,
then (A, C) ∈ RSAR and (C, A) ∈ RSAR.

Definition 3.3 (Item Sequential Loop). Let L′ be
a TSL and L′ = (X1, X2, ..., Xn). If L′′ = (Xi, Xi+1, ..., Xj)
is a sub list of L′, j−i ≥ 2 and Xi.item = Xj .item. We call
L′′ an item sequential loop(ISL). We call Xi.item the master
item, and call the items of {Xi+1, ..., Xj−1} slave items.

In the example shown by figure 2, there are following ISLs
(A,B,A), (A,C,D,A), (B,E,F,G,B), and so on.

Definition 3.4 (Sequential Inclusive Relation).

A sequential inclusive relation RSIR is a binary relation.
Let L′ be an item sequential loop, X ′ is the master item,
and Y1, Y2, .., Ym are the slave items of it, {(X ′, Yi)|1 ≤ i ≤
m} ⊆ RSIR.

In the example shown by figure 2, (A, C, D, A) is a ISL,
then {(A, C), (A, D)} ∈ RSIR.

Definition 3.5 (Lineage Relation). We denote it as
RLR(I1, I2), where I1 and I2 are two items of PDS, RLR(I1, I2)
denotes I1 and I2 are two versions of a same personal data
item. We define LR as symmetrical relation.

Figure 2 shows an example of user access sequential list,
where A is the early version of H, therefore (A, H) ∈ RLR

and (H, A) ∈ RLR. LR is also generated by user behav-
iors(copy to, save as, and etc.).

113



A B A C D A B E F G B H

Figure 2: An example of time sequential list

A B A C D A B E F G B

SL1

SL2

SL4

SL5

SL3

H

Figure 3: Sequential loop examples

3.2 Identify Sequential Adjacent Relation
We take a triple set TS = {(xi, xj , w)} to specify SAR

relationship, where xi and xj are two items and w is the
weight of RSAR(xi, xj). We define w as the times the two
items orderly appear in ISL. Based on the access sequence
list, we can construct TS easily. Its input is an item access
list (X1, X2, ..., Xn), and its output is a triple set T ′. In the
list each Xi represents an operation, and Xi.I represents the
item referenced by Xi. Firstly, we scan the items of the ac-
cess list one by one, if (Xi.I, Xi+1.I) ∈ T ′, W (Xi.I, Xi+1.I)
is added by 1, otherwise we insert a new tuple (Xi.I, Xi+1.I),
and set its weight as 1. It is an incremental process to build
TS. Every time when a new operation is monitored, TS will
be updated at once.

3.3 Identify Sequential Inclusive Relation
Based on Item Sequence Loop(ISL), we can derive Se-

quence Inclusive Relation(SIR). In the definition of ISL, we
do not set limitation for the length of ISL, obviously it re-
sults in low precision. Therefore we propose a new concept.

Definition 3.6 (Minimum Sequential Loop). Let L′

be a SL, and �L′′, L′′ be a SL and L′′ ⊂ L′, we call L′ a
minimum sequential loop(MSL).

For example, as shown in figure 3, SL2 is included in SL3,
and SL3 is included in SL5, thus SL3 and SL5 are not MSL.
Because there are not SLs in SL1, SL2 and SL4, they are
MSLs.

Our method for identifying SIR is based on MSL. Let
(X1, X2, ..., Xn) be a time sequence list, and (I1, I2, ..., In) is
the corresponding item list. Assume a new operation Xn+1

is monitored, and its item is In+1, we scan backwards to find
a MSL mastered by the new item In+1. When we find the
nearest Xi, where Xi.I = Xn+1.I, and there does not exist
a SL in the list (Xi, Xi+1, ..., Xn+1), it means we find a MSL
(Xi, Xi+1, ..., Xn, Xn+1), and we can identify the following
inclusive relations: {(In+1, Ii+1), (In+1, Ii+2), ..., (In+1, In)}.
The same as SAR, We take a triple set to describe SIR.

3.4 Identify Lineage Relation
As the naive method, we can identify it by monitoring

the special operations of users(copy to, save as, and etc.).
Because this method depends on monitoring specific appli-
cations, it is a challenging problem to monitor all possible
applications. By analyzing user access logs we find there

is a high similarity between the names of two personal files
which are two different versions of one document. And users
prefer to name different versions of a document with simi-
lar strings, and tend to distinct them with prefix or postfix.
Based on the observation, we present an edit distance-based
approach to decide LR by computing the name similarity
of two files. For the reason of space limitation, we do not
introduce it in details here.

4. QUERY PROCESSING
After identifying CR relationship, we can revisit personal

data items based on it. In this section, we introduce the
processing of C-Query. In our method, we take three adja-
cency matrixes MSAR , MSIR and MLR to specify the three
relationships SAR, SIR and LR. Therefore we can compute
the query results based on the following formula:

M
R = M

I × M
LR × (MSAR + M

SIR)

Here MI is an entry vector (x1, x2, ..., xn), if Ii belongs
to the input items, xi = 1, else xi = 0. Based on the for-
mula, we can get a result vector MR. Let t be the threshold
predefined, if MR(i) > t then Ii is one item of the query
results. To get a high recall here we take a relax policy: if
MR(i) > 0, we think item Ii belongs to the result set. It
means we take all ”suspicious” items as results.

According to the characteristics of C-Query, we design a
friendly and flexible interface. Users can input an existing
item, or select it by exploring personal resources. It also
provides multiple ways for users to refine query results, such
as filter or sort the results based on type, access time, key-
words, and etc. If the input is a multi-version item, it can
display all versions of it and all references of each version.

5. EVALUATION
We selected 5 students(2 undergraduate students, 2 mas-

ter students and 1 PhD student) as participants of our ex-
periments. They run our prototype on their computers.
By this way we collected a data set for experiments. We
collected two-month access logs(include accesses to desktop
files, emails and web pages) of each participant. Table 1
shows the specification of the data set. The meaning of each
column is specified as follows.

• Slogs is the number of tuples of user access log file.

• Sitems is the number of items which has been accessed
by user Ui in the two months.

• SLR is the number of elements in the set of Item Lin-
eage Relationship(LR).

• SSAR is the number of elements in the set of Sequencial
Adjacent Relation(SAR).

• SSIR is the number of elements in the set of Sequencial
Inclusive Relationship(SIR).

Our aim is to help users revisit personal documents based
on CR relationship. Therefore effectiveness and efficiency
are the key factors of our approach. Let I ′ be the input
item, based on the three CR relationships(SAR, SIR and
LR), we derive several algorithms to identify CR relation-
ship. (1) SIR. It takes the items with SIR to I ′ as re-
sults. (2) SAR. It takes the items with SAR to I ′ as results.

114



(a) (b) (c)

Comparison of recall

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

Users

A
v

e
r
a

g
e
 r

e
c
a

ll

SAR SIR SAR+SIR SIR+SAR+LR

Comparison of precision

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

Users

A
v

e
r
a

g
e
 P

r
e
c
is

io
n

SAR SIR SAR+SIR SIR+SAR+LR

Comparison of F-score

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

Users

F
-s

c
o

r
e

SAR SIR SAR+SIR SIR+SAR+LR

Figure 4: Evaluation of recall, precision and F-score

Table 1: Specification on dataset of experiments
User Slogs Sitems SLR SSAR SSIR

User1 2314 613 22 1690 250
User2 944 415 13 527 186
User3 2012 792 27 2089 390
User4 3052 915 19 2527 673
User5 802 223 6 539 93

(3)SIR+SAR. It takes the items with SIR or SAR to I ′ as
results. (4)SIR+SAR+LR. It takes the items with SIR or
SAR or LR to I ′ as results.

For each user, we select ten ”representative” documents
from her access logs. ”Representative” means that the se-
lections should not only include ”lightweight” personal doc-
uments, but also contain some ”heavyweight” documents,
which cost users more energy, such as paper drafts, presen-
tation slides and etc. These documents often have more
Context-based References. We deliver the selected docu-
ments to participants and ask them give ”standard answer”
to each document.

To test the effectiveness of our methods for identifying
CR relationship, we take recall and precision to evaluate.
We take each selected document as input, and assume that
each user Ui submits 10 C-Queries. By comparing the re-
sults produced by our algorithms and the right answer given
by users, we can compute the recall and precision of each al-
gorithm. We take traditional F-measure method to compute
F-score of each method and give evaluation of them.

Figure 4 shows the results of our experiments. Figure 4(a)
compares recall of the four methods, Figure 4(b) compares
their precision, and Figure 4(c) compare their F-score based
on F-measures. The results show that the SIR+SAR+LR
method has the best effectiveness. It shows that although we
take a relax method, the average precision still reach 60%,
and the average recall is more than 90%.

6. CONCLUSIONS
In this paper we propose a new semantic relationship

Context-based reference(CR) and present a new type of query
of PDS Context-based Query(C-Query). We also propose
an efficient method to identify CR relationship based on
user operation logs, and present the processing method of
C-Query. This is only a preliminary work on supporting
context-based query in personal dataspace. In the future,
we will try to improve the precision of identifying CR rela-
tionship by considering more user-related information, and
will study the ranking approaches of C-Query results.
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Abstract— With rapid increment of personal data amount,
how to efficiently search Personal DataSpace(PDS) becomes
an interesting and promising research topic. Popular methods
include folder explorer, desktop search tools, and etc. Because
these methods ignore user features, they fail to work well in
some cases. For example, sometimes users expect to relocate a
personal document based on some fuzzy memory clues, such as
its type, access time, and so on. These queries can’t be supported
well by current personal data management tools.

The aim of this paper is to discover effective methods to
help users search Personal DataSpace. We take Semantic Link
Network(SLN) to describe PDS, and divide the semantic links
of PDS into two classes: Objective Semantic Link(OSL) and
Memory-based Semantic Link(MSL). Base on MSL, we propose
a concept Personal CoreSpace(PCS), which is a classification view
of personal resources and is specified as a n-dimensional space
based on Resource Space Model(RSM). Furthermore we design
an ontology of PCS based on user behavior features, and propose
a method to design facet search interfaces for users to explore
PCS efficiently. We validate the effectiveness of our methods by
implementing a prototype system for PCS exploring.

I. INTRODUCTION

With rapid increment of personal data amount, people have
to manage more and more personal data resources in limited
time. Therefore how to efficiently relocate expected items in
Personal DataSpace(PDS) [1], [2], [3] becomes an impor-
tant and interesting research topic. Taking personal desktop
resources management for an example, folder explorer is
the most popular way [4] for users to refind expected files,
but it demands users have knowledge about the path of the
files. It is a challenge for ordinary users to remember the
exact path of the long-time-unvisited files. Desktop search
is another popular tool for relocating expected files, but it
works well only when users can recall exact keywords in the
aimed documents. Neither of these methods works well to the
following queries.

Query 1: Find me the picture I developed for MDM2008
one year ago, which type is jpg or vsd, but I can’t remember
its path and name exactly.

Query 2: Find me a file of ppt type about dataspace I copied
from others, which was stored in D: of my desktop computer,
and I have visited it in the last month.

We often meet the queries like the two examples in everyday
life, and the existing methods can’t help us to finish them
efficiently. These queries have the following characters. First,

users can’t remember the exact values of their attributes, such
as file names, pathes, keywords, and so on. Second, users
can only recall some fuzzy clues for querying. For example,
”which type is jpg or vsd”, ”I have visited it in the last
month”, and etc. So we must discover a method to specify
these features to support exploring personal dataspace based
on these fuzzy clues, which is the focus of this paper.

A. Related work

Related works include Personal DataSpace(PDS), Personal
Information Management(PIM), Resource Space Model, the-
ories of cognitive psychology, and so on.

Franklin et al. [1], [2] introduced the DataSpace Support
Platforms (DSSPs) for next generation data management to
fit the new characteristics of data, such as large scale, het-
erogeneity, evolutionary, and so on. These studies on Personal
DataSpace include data model [3], indexing, querying [5] and
prototype systems, such as iMemex [6], [7], Semex [8] and
so on. In Personal Information Management(PIM) area, there
are also some research works and systems, like Haystack [9],
MyLifeBits[10], and etc. Desktop search engine [11] is also
an important effort to tackle the problem, which allows users
to relocate expected items by keywords. All these works con-
centrate on describing the objective data world, but pay little
attention to the role of user features in improving efficiency
of data operations, thus they fail to work well to the example
queries.

According to cognitive psychology, there are some rules
on user memory, which play an important role in managing
PDS [12], [13], [14], [15]. For example, different from web
search, PDS searches are known-item search, which means the
user knows the existence of the searched items, and only want
to relocate them for reuse. These knowledge can be utilized
to improve the efficiency of searching PDS. Reference[16]
proposes a user-centered framework of personal dataspace
management systems, and presents to take CoreSpace to
describe the set of frequently-accessed personal data items. We
extend this concept in this paper so as to allow users access
PDS more effectively.

There are also some works on modeling semantic as-
sociation of data resources, such as Semantic Link Net-
work(SLN) [17], Resource Space Model(RSM) [18], [19],
[20], which are general methods on data resources specifi-
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cation. In this paper, we focus on utilizing these knowledge
and techniques to produce an effective approach for searching
PDS.

B. Contribution Summary

In this paper, our contributions can be summarized as below:
The first, we propose to take SLN to represent PDS,

and divide the semantic links among PDS into two classes:
Objective Semantic Link(OSL) and subjective Memory-based
Semantic Link(MSL), further we propose a new concept
Personal CoreSpace(PCS), which is a classification view of
personal resources and is specified as a n-dimensional space
based on Resource Space Model(RSM).

The second, we discover several types of MSLs which can
be utilized to help users relocate expected items, and design
an ontology of PCS based on user experiences and memory
rules, and illustrate its axis and coordinates.

The third, we propose a facet-based search interface of
PDS, which can help users perform complex semantic query,
and propose a method to translate the PCS ontology into a
facet-based search interface. We validate the effectiveness of
our methods by implementing a prototype system.

The paper is organized as below, Session II gives an
overview of Personal CoreSpace. Session III introduces the
design of PCS and an ontology of PCS. Session IV introduces
the implementation of our methods. Session V concludes the
paper.

II. PERSONAL CORESPACE OVERVIEW

In this section, we overview CoreSpace from the following
aspects: features of personal data and operation, Resource
Space Model overview and Personal CoreSpace Model.

A. Features of Personal Data

Different from other data management domain, there are
many special features of personal data.

1) Versatile and heterogeneous: Personal data come from
different data sources, such as Web, email systems, desktop
file systems, and so on. All the data items are stored in multi
places(Desktop, web, laptop, cellphone, and etc.). So we need
to take an uniform method to specify the heterogeneous data
sources.

2) Personalization: Because of the differences of position,
knowledge background, and experience of using computer,
persons usually have different habits on organizing personal
data resources, such as the style of naming files, the policies
for classification, and so on.

3) Complex structure: In RDBMS, relations are based on
class(table) level. But in PDS, the relations are based on
entity(tuple) level. Each entity may have relations with others.
for example, a people is both an author of a paper and a sender
of an email. It is a challenge for people to design a completive
schema to describe these entity-based associations. Therefore
PDS demands a more flexible schema.

4) Evolutionary: Traditional data management systems are
business-oriented, and the updates of data is implemented
by manual measures. For example, to a student management
system, users only need to update the records(insert new
records or update existed records) according to the practical
conditions. But in PDS, it is impossible for users to manually
update PDS every time when he makes a modification on his
data resources, thus PDS needs an evolution mechanism to
automatically update PDS with user interactions.

5) Disordered: Although people try their best to classify
personal data items well, it is a challenge for them to make and
maintain a good category of personal data resources because of
limitation of people memory and the random of encountering
new entities. For example, when a user finds a new useful
paper (e.g. indexing dataspace) and want to keep it, it isn’t
easy for him to select a ”right” folder to place it.

B. Features of personal data operation

Because of the data features, there are many differences
about data operations between PDS and traditional DBMS.

1) PayGo Integration: The construction of traditional
database is mostly a manual process, and the data items are
always input by users one by one. In PDS, it should be
an automatic process to lessen user burdens. There should
be a self-learning engine to get the knowledge on what
should be kept and how to keep them efficiently. Thus PDS
construction is a pay-as-you-go process, which means with
user interactions, PDS will become more and more optimized
and provide users more and more efficient services.

2) Known-item relocation: In PDS, the aim that people
keep data items is to reuse them in the future, therefore most
data access in PDS is known-item based relocation, which
means to relocate one or some existing items, and it is different
from Web search and structure-based queries. To web search,
people don’t know if there are expected results. To RDBMS
query, users know the existence of the expected entities, and
know exact clues for relocating it, like product ID, student
name, and etc. In PDS, because of the limitation of people
memory, users often can not remember exact information on
expected data items, like the two query examples given in
section 1.

3) Multi query methods: In traditional RDBMS, because
there are stable data schema, there is always a predesigned
query interface. For example, a student management system
provides query measures based on student ID or student name.
But in PDS, there are many distinct query scenarios, which
demand different query methods. For example, to relocate a
frequently-used items, users may expect a simple browsing
way to refind it; To relocate a file untouched for a long time,
users need to relocate it by keyword search tools. So PDS
systems should provide users multi query methods.

4) Simple interface: The aim of Personal DataSpace Man-
agement Systems(PDSMS) is to help users efficiently manage
personal data resources. Comparing with traditional DBMS,
there is no specific administrator, and the user is both system
manager and end user. Because most ordinary users haven’t
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special knowledge on data management, the interface of
PDSMS should be as simple as possible.

C. Resource Space Model Overview

A fundamental problem of personal dataspace management
is classification, which means how to effectively classify
personal data resources. Thus the first task is to find an
effective method to specify classifications of personal data
resources.

Resource Space Model(RSM) is proposed by Hai
Zhuge [18], [19], [20], which is based on theories of cog-
nitive psychology, focus on specifying, sharing and managing
versatile resources with a universal resource view, and forms
a completed theory systems. RSM is inspired by the fact
that Internet makes web becoming a global data repository,
and how to specify and share these sea-size data become a
challenge problem. The personal data resources have similar
features with web resources, such as versatile, distributed, het-
erogeneous, evolutionary and so on. Based on it, we propose
to take RSM to specify the global view of PDS. Firstly we
give an overview on main concepts of RSM [18], [19], [20].

(1) A resource space is a n-dimensional space where every
point uniquely determines one resource or a set of inter-
related resources, denoted as RS(X1;X2; ...; Xn) or just
by name RS in simple. Xi is the name of an axis. Xi =
(Ci1; Ci2; ...; Cin) represents an axis with its coordinates and
the order between them. C denotes the coordinate name in
form of a noun or a noun phrase. Any name corresponds
to a formal or an informal semantic definition in its domain
ontology.

(2) A coordinate C represents a class of resources, denoted
as R(C), a coordinate C is called independent from another
coordinate C ′ if C is neither the synonym nor the near-
synonym of C ′ in the discussion domain ontology.

(3) Two axes are called the same if their names are the
same and the names of all the corresponding coordinates are
the same in a discussion domain ontology.

(4) If two axes X1 = (C11;C12; ...;C1n) and X2 =
(C21; C22; ...; C2m) have the same axis name but have dif-
ferent coordinates, they can be merged into one: X =
X1

⋃
X2 = (C11; C12; ...; C1n; C21; C22; ...; C2m) whose

order consists with the order of (C11;C12; ...; C1n) and
(C21; C22; ...; C2m).

(5) An axis X can be split into two axes X ′ and X ′′ by
dividing the coordinate set of X into two: the coordinate set
of X ′ and that of X ′′, such that X = X

⋃
X ′′.

Definition 1. Let X = (C1; C2; ...; Cn) be an axis and C ′
i be

a coordinate at another axis X ′, we say that X fine classifies
C ′

i (denoted as C ′
i/X) if and only if:

1. R(C1)
⋂

R(C ′
i) �= NULL,R(C2)

⋂
R(C ′

i) �=
NULL), ..., and R(Cn)

⋂
R(C ′

i) �= NULL;
2. (R(C1)

⋂
R(C ′

i))
⋂

(R(C2)
⋂

R(C ′
i))

⋂
...

⋂
(R(Cn)

⋂
R(C ′

i)) = NULL;
3. (R(C1)

⋂
R(C ′

i))
⋃

(R(C2)
⋂

R(C ′
i))

⋃
...

⋃
(R(Cn)

⋂
R(C ′

i)) = R(C ′
i);

As the result of the fine classification, R(C ′) is clas-
sified into n categories: R(C ′

i/X) = {R(C1)
⋂

R(C ′
i),

R(C2)
⋂

R(C ′
i), ..., R(Cn)

⋂
R(C ′

i)}.
Definition 2. For two axes X = (C1;C2; ...;Cn) and X ′ =

(C ′
1, C

′
2, ..., C

′
m), we say that X fine classifies X ′ (denoted as

X ′/X) if and only if X fine classifies C ′
1; C

′
2; ...; C

′
m.

Definition 3. Two axes X and X ′ are called orthogonal
with each other (denoted as X ⊥ X ′) if X fine classifies X ′

and vice versa, i.e., both X ′/X and X/X ′ hold.
Three normal forms of the resource space are defined for

designing resource space. The first-normal-form of a resource
space is a resource space and there does not exist name
duplication between coordinates at any axis. The second-
normal- form of a resource space is a first-normal-form and
for any axis, any two coordinates are independent each other.
The third-normal-form of a resource space is a second-normal-
form and any two axes of it are orthogonal with each other.

These concepts show that RSM focuses on taking a
coordinate-based method to describe the classification view
of resource space.

D. Personal CoreSpace Model

RSM provides an effective method to specify personal data
resources. but how to decide if a resource belongs to PDS
and how to decide which class it belongs to become two main
problems. In this section, we will analyze the relationships
between users and normal data sources, and propose a user-
centered personal resource classification model CoreSpace.
Firstly we give the following concepts.

An entity is an ”object” in the real world that is distinguish-
able from all other objects. In personal dataspace, an entity
can be an email, a file, a picture, and so on.

An attribute is descriptive properties possessed by an entity,
and an entity is represented as a set of attributes. For example,
a file A is an entity, and file name, access time, size are its
attributes.

The owner is an specific entity of personal dataspace, which
is both the administrator and end user of PDS. Each personal
dataspace only has one owner entity, and we call other entities
of PDS normal entity.

A relationship is an association among PDS entities. For
example, we define a relationship AttachedBy to represent that
a file is attached by an email. Because Owner is a special
entity of PDS, we divide relationships of PDS into two classes:
(1)relationship between PDS owner and normal entities and (2)
relationship among normal entities. There are many owner-
entity relationships, such as a document is written by owner,
an email E is accessed by the owner, etc. We define a basic
owner-entity relationship: knownBy(O, E), which means the
owner O has seen the entity and known some information on
it, which is the precondition of relocation.

A Personal CoreSpace is an ordered collection of personal
known entities. A Personal CoreSpace is a n-dimensional
space where every point uniquely determines one per-
sonal entity or a set of personal entities, we denote it as
PCS(X1; X2; ...; Xn) or just by name PCS in simple. Xi

1
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Fig. 1. An example of personal CoreSpace

is the name of an axis. Xi = (Ci1; Ci2; ...;Cin) represents
an axis with its coordinates and the order between them. C
denotes the coordinate name in form of a noun or a noun
phrase.

PCS has following meanings. The first, it only includes the
personal known entities, which identify a clear boundary of
personal data set. The second, it is not a disordered entity set,
but has a logical structure of n-dimensional space, where each
coordinate can be taken as a classification on the personal data
set. The third, CoreSpace is not a storage physical structure,
but a set of views on personal data classification.

Figure 1 shows an example of PCS, which has two di-
mensions: X1 is entity type, and X2 is storage place, where
X1 = {PDF, DOC}, and X2 = {C :, D :}. We can see X1

and X2 partition the personal resources into four parts. The
part P1 represents a set of personal files of pdf type located
in D : drive. Of course this is only a simple example, the
practical PCS will be complex much more.

III. PERSONAL CORESPACE DESIGN

[18] proposes some principles and methods for designing
RSM, based on which, we design PCS by the following steps:
analyzing features of SLN of PDS; Design a PCS ontology.

A. User-centered Semantic Link Network

Semantic Link Network [17] is an effective method to spec-
ify resources and their associations. We take it to describe the
semantic associations among entities of PCS, and divide the
entity associations into two classes. One is the objective asso-
ciations. For example, the ”referenceOf” relationship between
two papers, the ”authorOf” relationship between a person and a
paper, and etc. The other is the associations between objective
entities and PDS owner, which depend on the people’s memory
features, and we call it subjective associations. For example,
a user remembers he has accessed file F ′ in may, 2009,
or he remembers the type of F ′ is ”doc” or ”txt”. There
are many works on how to improve effectiveness of PDS
query by highlighting objective associations among entities.
For example, we can find ”referenceOf” relationship of two
papers and ”co-author” relationship of two persons by entity
extraction and entity identify techniques in IR area [21], [22].

According to the two associations of PCS listed above, we
divide semantic links of PCS into two classes: Objective Se-
mantic Link(OSL) and Memory-based Semantic Links(MSL),

Objective

Semantic Links

Memory-based

Semantic Links

A
uthoredBy

R
eferredBy

C
oauthor

...

Type

A
ccess

Tim
e

Path

...

Fig. 2. Semantic links of personal CoreSpace

as shown in figure 2. OSL means the objective associations
between two objective entities, which is not focus of this paper.
MSL is a type of semantic link we define for specifying the
associations between objective entities and user memory. For
example, let D′ be a document of user U ′, and U ′ remembers
D′ is a file of doc type, and is developed by U ′ in 2008. So
we think there are three MSLs U ′ α−→ D′ , U ′ β−→ D′ and
U ′ γ−→ D′, where α means ”U ′ rememers D′ is a doc file”,
β means ”D′ is developed by U ′” and γ means
”U ′ has accessed D′ in 2008”.

Comparing with OSL, MSL is a type of subjective se-
mantic links, which depends on memory of PDS owner. The
followings are our selected attributes for MSL according to
people’s everyday experiences or research results of cognitive
psychology.

1) Natural attributes: Natural attributes means the objec-
tive attributes of an entity, which are independent with user
characters, and can be obtained directly. For example, as to
a personal desktop document, its file name, path, size are
natural attributes. According to experiences of persons, the
natural attributes are often used to relocate expected items. For
example, users usually relocate expected items by exploring
folders and ordering the files based on name, access time, type,
and so on.

2) User-based attributes: Besides the natural attributes,
there are also some user-based attributes, which can’t be
gotten directly, but is useful for relocating personal documents.
According to popular experience, people sometimes expect to
refind a document based on some fuzzy clues. For example,
when an user want to recall a document, he only remember
it hasn’t been accessed for a long time, or it is created for a
specific task. These attributes must be discovered by analyzing
personal behaviors.

Figure 3 shows a classification tree derived from analyzing
attributes of personal resources, which is based on classifying
personal desktop files. If more data resources are considered,
such as emails, web pages, and so on, more attributes should
be considered for classification.

B. Personal CoreSpace Ontology

According to the classification of figure 3, we design a PCS
ontology based on RSM, which is a 9-dimensional space. and
the axis includes: name, type, access time, size, path, source,

1
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Known Entities

Fig. 3. A classification structure of Personal CoreSpace

access frequency, access type and related task. After deciding
the axis, we should consider how to decide the coordinates of
each axis. The naive method is to enumerate all possible values
for each axis. This method has the following disadvantages.
The first, there may be a great number of values for a specific
axis, and it will make users inconvenient to explore them. For
example, type is an axis, if we list all possible values of it,
there may be hundreds of types, but most of which haven’t
been used by users and aren’t helpful for relocating expected
items. In fact, an user always prefer to a small number of
values to each axis, and their memory on the values has
certain rules. So we should select coordinates for each axis
based on users’ memory rules. We take the personal desktop
resources for example to design a PCS ontology, of course it
can be extended to more data resources. The axis and their
coordinates is described as below.

Type: We specify it with a 2-level classification structure,
the first level is {Email, Web pages, Picture, Documents}. As
to the second level, picture includes jpg, vsd, gif, etc, and
the documents includes doc, txt, pdf, and so on, we don’t
fine classify email and web pages any more. The concrete
coordinates of each subclasses depend on the owner features,
we construct it based on user access activities. For example,
if the owner is a programmer, the document type values may
include cpp, java and so on; if the owner is a researcher, the
document type values may include pdf, tex, doc, and etc.

Access Time: Each desktop file has three time attributes:
create time, modify time and access time. According to
popular experience, it is a challenge for users to remem-
ber the exact create time or modify time on a file, but
they can remember approximate information on access time.
For example, he possibly remembers ”I haven’t accessed it
in last month”. Based on the rule ”users’ memory on an
entity decreases with time going”, we classify access time
axis as ”Today”,”Yesterday”,”Last week”,”Last month”,”Last
year”,”One year ago”.

Directory: Directory tree is a natural structure for users to
organize personal resources, and path is an important clue for
users to relocate expected files. We take the natural directory
tree as a axis of PCS, and its coordinates are the actual values

of the directory tree.
Size: People seldom remember the exact size of a

document, but they can remember its possible size. For
example, people can remember ”it is only a doc file with
one page and has a small size”. So it is not meaningful
to make a strict classification on file size. Similar to
the search tools of Windows Systems, we classify it as
{(0, 10K], (10K, 100K], (100K, 1M ], (1M, 10M ], (10M,∞)}.

Source: There are many data sources devoted to PCS. A
document of PCS may be downloaded from web, copied from
other people or developed by himself. It isn’t practical to ask
the PDS owner to precisely mark source of each personal
resource. For example, to a file A and B, where A is copied
from a friend, and B is downloaded from a web site, It is
uneasy to automatically distinct them without user interactions.
Here we make a rough classification policy. We divide them
into two classes: self-developed and cloned from other sources.

Access Frequency: It is uneasy for a people to remember
exact times a file has been accessed, but he can remember
”I frequently access this file” or ”I seldom access this file”.
Therefore we make a partition based on the access times
as below: {(1, 5], (6, 10], (11, 15], (15, 20], (20,∞]}, where the
numbers mean access times.

Access Type: A user sometimes wants to explore documents
created or modified by himself. When a person relocates a
document, maybe he can not remember exact access time of
it, but he can recall if he modified it or read it only. Therefore
we classify access type as read-only or modified.

Related tasks: Task is an important factor for people to
query PDS. We define a task as a set of personal documents,
and take each task as a coordinate of this axis. How to
efficiently identify personal tasks and the tasks’ related files
are challenge problems, and we will tackle them by another
work.

Based on the classification as shown in figure 3 and the
coordinates we decide for each axis, we can construct a PCS
ontology. Of course, it is only an initial one based on personal
desktop documents, if more data resources(Email, web pages,
etc) are considered, it will have more dimensions. And with
time going, it will be added new axis and new coordinates
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increasingly.

C. Personal CoreSpace Features

From the definition of PCS, we can see it has three features.
1) User dependency: Different persons may have different

positions, habits and experiences on using computer, therefore
their PCSs are different. The differences are shown by the
following respects: PDS size, complexity of associations,
number of data sources, and so on. So their PCSs should
include different axis and coordinates.

2) Extendability: Both the axis and coordinates of PCS can
be extended easily. With time going, the size of personal data
set will rise increasingly, and a more detailed classification
may be needed, when the new axis and coordinates can be
added easily.

3) Evolutionary: The aim of proposing PCS is to release
burden of users, therefore its aim is to reduce user’s interac-
tions as more as possible. Different from traditional DBMS,
the construction and update of PCS are mostly automatic pro-
cesses. Based on user access activities, new personal entities
will be kept into CoreSpace automatically, and the PCS view
can evolved with time going.

IV. CORESPACE IMPLEMENTATION

To evaluate the effectiveness of PCS model, we develop a
PCS prototype system based on personal desktop resources.
Figure 4 shows the framework of it, which mainly includes
the following parts: User behavior monitor, Item identifier and
Query processer.

A. User Behavior Monitor

User Behavior Monitor(UBM) is responsible for discovering
the changes of personal desktop. When a user reads or mod-
ifies a file, this operation results in changes of its attributes,
UBM is to find these changes in time. If these changes can’t
be found, it will lead to inconsistency of personal resources,
and bring problems to queries.

The monitoring program is developed by us to monitor
desktop changes by scanning the recent folder. According
to our investigation, most users active the ”recent folder”
option, and we can easily find the the latest update of desktop
resources. We can directly get some natural attributes of
accessed file, like name, access time, directory, size, and etc.
But we can’t directly get the attributes of access type, access
frequency and related task. As to access type, we compute it
by comparing its modify time with the original one recorded in
PDS. Access frequency is the access times, and can be easily
gotten. How to identify related task of a personal document is
another interesting topic, and is not the focus of this work.

B. PayGo Evolution of Personal CoreSpace

Personal CoreSpace draws a beautiful picture for us to easily
relocate expected items. But how to efficiently construct and
update PCS are two important problems. As discussed above,
it is impossible to ask people update it manually each time
when there is change in desktop, so we take a pay-as-you-
go method to build PCS and update it efficiently. The related

Fig. 4. CoreSpace Implementation Framework

problems on constructing CoreSpace includes: Identify known
entities among public dataspace; Identify the Coordinates of
each axis of PCS; construct the classification structure.

1) Identify personal known items: There are mainly three
methods. The naive method is to monitor user behaviors to
find new personal resources and keep it into PDS. But this
method can’t build a PCS soon. To tackle the problem, we
propose a method to automatically construct initial PCS, it
mines some user preferences features based on recent-accessed
files and automatically construct a classifier to identify the
known entities among desktop resources. This method is not
focus of this paper, and is not introduced in details.

2) Construct Personal CoreSpace: Let S =
{X1; X2; ...; Xn}, which is the set of personal known
items, where n is the number of known items, and each Xi

includes the following natural attributes: file name, file size,
directory, access time, type, and etc. We construct PCS as
below. The first, we summarize the coordinates for each axis
based on S. For example, based on the type attributes, we
can get the set of file types cared by the user, and take it as
the coordinates of type axis. By this method, we can decide
coordinates for other axis based on natural attributes.

To the attributes that can not be directly obtained by
analyzing the entities themselves, we must got them by an-
alyzing user access activities. For example, access frequency
and personal task must be computed based on user access
activities.

3) PayGo Evolution of Personal CoreSpace: Once built,
the CoreSpace should have the ability to evolve with users’
operations, which means, with people’s interactions(pay) PCS
should be optimized adaptively(go). By the monitor, PCS
system can automatically find the changes of desktop. Once
monitoring a user activity, it will do the following operations.

If the file operated is a new one, it will be added into
PCS and linked into the proper classes of PCS. For example,
if a new file D : \PIM\PIMsurvey.doc is found to be
created, and we assume the current time is 2009-01-20, and
the size of it is 5K, then it will be linked to the following
coordinates: Type\Documents\Doc, Path\D : \ PIM ,
Time\2009−01−20, Size\ (0, 10K], AccessFrequency\1,
AccessType\Modify, Task\{PIM, Surveye}, etc.

If UMB finds the operated file is an existing one, the
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attributes of it will be updated, such as access time, access
frequency, related task, and so on.

Through monitoring users behavior, PCS can be automat-
ically updated. We also call it pay-as-you-go integration of
personal data resources.

C. From CoreSpace to Facet Search

PCS is a tree structure, and based on it we can easily design
a facet-based hierarchical structure. The method is simple, we
take each coordinate Xi as a facet Fi, and take its coordinates
as the options of facet Fi. Based on the hierarchical structure
of PCS, we can easily construct a facet-based search interface.

Facet-based search interface provides users a simple and
easy method for relocation. Keyword search and structured
query language are two popular query methods. The former
can’t support semantic query, and the latter can’t be used easily
by average users because its complexity. In PDS, users need
a lightweight search method and a friendly search interface,
which doesn’t only support semantic query, but also is as
simple as possible. We leverage it and make a good tradeoff
based on facet search. We propose a simple and visualized
method to represent simple conditional expression.

Let X and X ′ are two selected nodes of facet tree, and they
can be regarded as two conditional expressions. For example,
if X means node ”Type\Doc” , which represents expression
x.type =′ Doc′. Based on it, we define the following query
algebra: If X is brother of X ′, it means X∨X ′; else it means
X ∧ X ′.

Figure 5 shows an example of facet query. The nodes
marked with star represent the options selected by user,
according to the query algebra we defined above, we can
get the following logical expression: R = {Xi|(Xi.type =
JPG ∨ Xi.type = V SD) ∧ Xi.place = ”D : \Picture”}.
It means the user want to relocate some personal data items,
which lie in ”D : \Picture” and have type of vsd or jpg.

To fit users expectations, we design a combined query in-
terface, which support keyword search, facet-based CoreSpace
explorer and folder explorer.

D. CoreSpace Search Implementation

To evaluate the effectiveness of our PCS model, we develop
a prototype system CoreSpace. Figure 6 is the query interface

of it. The left of it is an area where users input query
conditions, the right part is for displaying query results, and
the bottom of right area is the input form for keyword search.
The system has the following features.

1) CoreSpace Explorer: In the default case, the right area
displays the files of PCS, which support users rehandle them
more. Users can rank them based on access time, type, name
and so on.

2) Facet-based Filter: Because the result set is often large
in the default cases, users can refine the results by filtering
them based on facet search interface. We can input simple
semantic expression. For example, if we can remember the
expected item is a pdf or text file, we can filter all doc and
text files of PCS by selecting the ”type \ pdf” option and the
”type \ txt” option, which make it easier for users to relocate
what are expected.

3) Combined Search: A friendly search interface should
support multi query requirements. As shown in figure 6, we de-
sign a search interface which combines multi query methods,
instead of single CoreSpace explorer. Through the interface,
a user can combine keyword search and PCS explorer for
relocating more effectively.

E. Illustration of PCS query

In this section, we utilize the two query examples given in
section 1 to illustrate the query process based on our prototype
system.

Query 1: Find me the picture I developed for MDM2008
one year ago, which type is jpg or vsd, but I can’t remember
its path and name exactly.

The user can finish it by the following steps. Firstly he
searches it by inputting keyword ”MDM”, there may be a lot
of files returned. Then he can filter the results by selecting
”type\jpg” and ”type\vsd”. If there are still too many
items returned, he can further filter the results by selecting
”Operation\ Have modified” and ”Lastaccess\one −
year−ago” in facet search window. Therefore he can relocate
it more easily.

Query 2: Find me a file of ppt type about Dataspace I
copied from others, which was stored in D: of my desktop
computer, and I have visited it in the last month.

To perform this query, the user firstly select ”type\ppt”,
then he can select ”Location\D: ”, and select the
”Last Access\Last month”. Then he can relocate it by
exploring the files according to the conditions. If the results
size is still large, he can refine it by inputing keyword
”Dataspace”.

V. CONCLUSIONS

By utilizing Resource Space Model(RSM) in personal datas-
pace management area, we propose a personal resource space
model: Personal CoreSpace, which is a n-dimensional space
of personal resources based on memory rules of people. We
define nine axis and their coordinates, and based on it we
propose a PCS ontology. Further we present a framework of
PCS systems and introduce a prototype system implemented

122



Fig. 6. CoreSpace Search Interface

based on PCS framework, which validates the effectiveness of
our idea about exploring PDS based on RSM.

This work highlights some interesting research topics. In
the future, we plan to do the following works. The first,
in PCS, the coordinates of some axis(such as personal task,
and etc.)are not a partition of personal resource set, but a
coverage of it, therefore we will try to extend RSM to make
it fit the characters of PCS better. The second, we will try to
find more rules on user activities to make the PCS ontology
more completed. In addition, we will take more personal
resources(Email, web pages, and etc.) into consideration in
the PDS ontology and our methods and systems.
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ViDE: A Vision-Based Approach for
Deep Web Data Extraction

Wei Liu, Xiaofeng Meng, Member, IEEE, and Weiyi Meng, Member, IEEE

Abstract—Deep Web contents are accessed by queries submitted to Web databases and the returned data records are enwrapped in

dynamically generated Web pages (they will be called deep Web pages in this paper). Extracting structured data from deep Web pages

is a challenging problem due to the underlying intricate structures of such pages. Until now, a large number of techniques have been

proposed to address this problem, but all of them have inherent limitations because they are Web-page-programming-language-

dependent. As the popular two-dimensional media, the contents on Web pages are always displayed regularly for users to browse.

This motivates us to seek a different way for deep Web data extraction to overcome the limitations of previous works by utilizing some

interesting common visual features on the deep Web pages. In this paper, a novel vision-based approach that is Web-page-

programming-language-independent is proposed. This approach primarily utilizes the visual features on the deep Web pages to

implement deep Web data extraction, including data record extraction and data item extraction. We also propose a new evaluation

measure revision to capture the amount of human effort needed to produce perfect extraction. Our experiments on a large set of Web

databases show that the proposed vision-based approach is highly effective for deep Web data extraction.

Index Terms—Web mining, Web data extraction, visual features of deep Web pages, wrapper generation.

Ç

1 INTRODUCTION

THE World Wide Web has more and more online Web
databases which can be searched through their Web

query interfaces. The number of Web databases has
reached 25 millions according to a recent survey [21].
All the Web databases make up the deep Web (hidden
Web or invisible Web). Often the retrieved information
(query results) is enwrapped in Web pages in the form of
data records. These special Web pages are generated
dynamically and are hard to index by traditional crawler-
based search engines, such as Google and Yahoo. In this
paper, we call this kind of special Web pages deep Web
pages. Each data record on the deep Web pages corre-
sponds to an object. For instance, Fig. 1 shows a typical
deep Web page from Amazon.com. On this page, the
books are presented in the form of data records, and each
data record contains some data items such as title, author,
etc. In order to ease the consumption by human users,
most Web databases display data records and data items
regularly on Web browsers.

However, to make the data records and data items in
them machine processable, which is needed in many
applications such as deepWeb crawling and metasearching,
the structured data need to be extracted from the deep Web
pages. In this paper, we study the problem of automatically

extracting the structured data, including data records and
data items, from the deep Web pages.

The problem of Web data extraction has received a lot of
attention in recent years and most of the proposed solutions
are based on analyzing the HTML source code or the tag
trees of the Web pages (see Section 2 for a review of these
works). These solutions have the following main limita-
tions: First, they are Web-page-programming-language-
dependent, or more precisely, HTML-dependent. As most
Web pages are written in HTML, it is not surprising that all
previous solutions are based on analyzing the HTML source
code of Web pages. However, HTML itself is still evolving
(from version 2.0 to the current version 4.01, and version 5.0
is being drafted [14]) and when new versions or new tags
are introduced, the previous works will have to be
amended repeatedly to adapt to new versions or new tags.
Furthermore, HTML is no longer the exclusive Web page
programming language, and other languages have been
introduced, such as XHTML and XML (combined with
XSLT and CSS). The previous solutions now face the
following dilemma: should they be significantly revised or
even abandoned? Or should other approaches be proposed
to accommodate the new languages? Second, they are
incapable of handling the ever-increasing complexity of
HTML source code of Web pages. Most previous works
have not considered the scripts, such as JavaScript and CSS,
in the HTML files. In order to make Web pages vivid and
colorful, Web page designers are using more and more
complex JavaScript and CSS. Based on our observation from
a large number of real Web pages, especially deep Web
pages, the underlying structure of current Web pages is
more complicated than ever and is far different from their
layouts on Web browsers. This makes it more difficult for
existing solutions to infer the regularity of the structure of
Web pages by only analyzing the tag structures.

Meanwhile, to ease human users’ consumption of the
information retrieved from search engines, good template
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designers of deep Web pages always arrange the data
records and the data items with visual regularity to meet
the reading habits of human beings. For example, all the
data records in Fig. 1 are clearly separated, and the data
items of the same semantic in different data records are
similar on layout and font.

In this paper, we explore the visual regularity of the data
records and data items on deep Web pages and propose a
novel vision-based approach, Vision-based Data Extractor
(ViDE), to extract structured results from deep Web pages
automatically. ViDE is primarily based on the visual features
human users can capture on the deep Web pages while also
utilizing some simple nonvisual information such as data
types and frequent symbols to make the solution more
robust. ViDE consists of two main components, Vision-
based Data Record extractor (ViDRE) and Vision-based Data
Item extractor (ViDIE). By using visual features for data
extraction, ViDE avoids the limitations of those solutions
that need to analyze complex Web page source files.

Our approach employs a four-step strategy. First, given a
sample deep Web page from a Web database, obtain its
visual representation and transform it into a Visual Block
tree which will be introduced later; second, extract data
records from the Visual Block tree; third, partition extracted
data records into data items and align the data items of the
same semantic together; and fourth, generate visual
wrappers (a set of visual extraction rules) for the Web
database based on sample deep Web pages such that both
data record extraction and data item extraction for new
deep Web pages that are from the same Web database can
be carried out more efficiently using the visual wrappers.

To our best knowledge, although there are already some
works [3], [4], [23], [26], [28] that pay attention to the visual
information on Web pages, our work is the first to perform
deep Web data extraction using primarily visual features.
Our approach is independent of any specific Web page
programming language. Although our current implementa-
tion uses the VIPS algorithm [4] to obtain a deep Web
page’s Visual Block tree and VIPS needs to analyze the
HTML source code of the page, our solution is independent
of any specific method used to obtain the Visual Block tree

in the sense that any tool that can segment the Web pages
into a tree structure based on the visual information, not
HTML source code, can be used to replace VIPS in the
implementation of ViDE.

In this paper, we also propose a new measure, revision, to
evaluate the performance of Web data extraction tools. It is
the percentage of the Web databases whose data records or
data items cannot be perfectly extracted (i.e., at least one of
the precision and recall is not 100 percent). For these Web
databases, manual revision of the extraction rules is needed
to achieve perfect extraction.

In summary, this paper has the following contributions:
1) A novel technique is proposed to perform data extraction
from deep Web pages using primarily visual features. We
open a promising research direction where the visual
features are utilized to extract deep Web data automatically.
2) A new performance measure, revision, is proposed to
evaluate Web data extraction tools. This measure reflects
how likely a tool will fail to generate a perfect wrapper for a
site. 3) A large data set consisting of 1,000 Web databases
across 42 domains is used in our experimental study. In
contrast, the data sets used in previous works seldom had
more than 100 Web databases. Our experimental results
indicate that our approach is very effective.

The rest of the paper is organized as follows: Related
works are reviewed in Section 2. Visual representation of
deep Web pages and visual features on deep Web pages are
introduced in Section 3. Our solutions to data record
extraction anddata itemextraction aredescribed in Sections 4
and 5, respectively. Wrapper generation is discussed in
Section 6. Experimental results are reported in Section 7.
Finally, concluding remarks are given in Section 8.

2 RELATED WORK

A number of approaches have been reported in the literature
for extracting information from Web pages. Good surveys
about previous works on Web data extraction can be found
in [16] and [5]. In this section, we briefly review previous
works based on the degree of automation in Web data
extraction, and compare our approach with fully automated
solutions since our approach belongs to this category.

2.1 Manual Approaches

The earliest approaches are the manual approaches in which
languages were designed to assist programmer in construct-
ing wrappers to identify and extract all the desired data
items/fields. Someof the best known tools that adoptmanual
approaches are Minerva [7], TSIMMIS [11], and Web-OQL
[1]. Obviously, they have low efficiency and are not scalable.

2.2 Semiautomatic Approaches

Semiautomatic techniques can be classified into sequence-
based and tree-based. The former, such as WIEN [15], Soft-
Mealy [12], and Stalker [22], represents documents as
sequences of tokens or characters, and generates delimiter-
based extraction rules through a set of training examples.
The latter, such as W4F [24] and XWrap [19], parses the
document into a hierarchical tree (DOM tree), based on
which they perform the extraction process. These ap-
proaches require manual efforts, for example, labeling some
sample pages, which is labor-intensive and time-consuming.

Fig. 1. An example deep Web page from Amazon.com.
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2.3 Automatic Approaches

In order to improve the efficiency and reducemanual efforts,
most recent researches focus on automatic approaches
instead of manual or semiautomatic ones. Some representa-
tive automatic approaches are Omini [2], RoadRunner [8],
IEPAD [6], MDR [17], DEPTA [29], and the method in [9].
Some of these approaches perform only data record
extraction but not data item extraction, such as Omini and
the method in [9]. RoadRunner, IEPAD, MDR, DEPTA,
Omini, and the method in [9] do not generate wrappers, i.e.,
they identify patterns and perform extraction for each Web
page directly without using previously derived extraction
rules. The techniques of these works have been discussed
and compared in [5], andwe do not discuss them any further
here. Note that all of them mainly depend on analyzing the
source code of Web pages. As a result, they cannot avoid the
inherent limitations described in Section 1. In addition, there
are several works (DeLa [27], DEPTA, and the method in
[20]) on data item extraction, which is a preparation step for
holistic data annotation, i.e., assigning meaningful labels to
data items. DeLa utilizes HTML tag information to construct
regular expression wrapper and extract data items into a
table. Similar to DeLa, DEPTA also operates on HTML tag
tree structures to first align data items in a pair of data
records that can be matched with certainty. The remaining
data items are then incrementally added. However, both
data alignment techniques are mainly based on HTML tag
tree structures, not visual information. The automatic data
alignment method in [20] proposes a clustering approach to
perform alignment based on five features of data items,
including font of text. However, this approach is primarily
text-based and tag-structure-based, while our method is
primarily visual-information-based.

The only works that we are aware of that utilize some
visual information to extract Web data are ViNTS [30],
ViPERS [25], HCRF [32], and VENTex [10]. ViNTs use the
visual content features on the query result pages to capture
content regularities denoted as Content Lines, and then,
utilize the HTML tag structures to combine them. ViPER
also incorporates visual information on a Web page for data
records extraction with the help of a global multiple
sequence alignment technique. However, in the two
approaches, tag structures are still the primary information
utilized, while visual information plays a small role. In
addition, both of them only focus on data record extraction,
without considering data item extraction. HCRF is a
probabilistic model for both data record extraction and
attribute labeling. Compared to our solution, it also uses
VIPS algorithm [4] to represent Web pages, but the tag
information is still an important feature in HCRF. And
furthermore, it is implemented under an ideal assumption
that every record corresponds to one block in the Visual
Block tree, but this assumption is not always correct
according to our observation to the real Web pages (about
20 percent of deep Web pages do not meet this assump-
tion). VENTex implements the information extraction from
Web tables based on a variation of the CSS2 visual box
model. So, it can be regarded as the only related work using
pure visual features. The main difference between our
approach and VENTex is their objectives. VENTex aims to

extract various forms of tables that are embedded in
common pages, whereas our approach focuses on extract-
ing regularly arranged data records and data items from
deep Web pages.

3 VISUAL BLOCK TREE AND VISUAL FEATURES

Before the main techniques of our approach are presented,
we describe the basic concepts and visual features that our
approach needs.

3.1 Visual Information of Web Pages

The information on Web pages consists of both texts and
images (static pictures, flash, video, etc.). The visual
information of Web pages used in this paper includes
mostly information related to Web page layout (location and
size) and font.

3.1.1 Web Page Layout

A coordinate system can be built for every Web page. The
origin locates at the top left corner of the Web page. The
X-axis is horizontal left-right, and the Y-axis is vertical top-
down. Suppose each text/image is contained in a minimum
bounding rectangle with sides parallel to the axes. Then, a
text/image can have an exact coordinate (x, y) on the Web
page. Here, x refers to the horizontal distance between the
origin and the left side of its corresponding rectangle, while
y refers to the vertical distance between the origin and the
upper side of its corresponding box. The size of a text/
image is its height and width.

The coordinates and sizes of texts/images on the Web
page make up the Web page layout.

3.1.2 Font

The fonts of the texts on a Web page are also very useful
visual information, which are determined by many attri-
butes as shown in Table 1. Two fonts are considered to be the
same only if they have the same value under each attribute.

3.2 Deep Web Page Representation

The visual information of Web pages, which has been
introduced above, can be obtained through the program-
ming interface provided by Web browsers (i.e., IE). In this
paper, we employ the VIPS algorithm [4] to transform a deep
Web page into a Visual Block tree and extract the visual
information. AVisual Block tree is actually a segmentation of
a Web page. The root block represents the whole page, and
each block in the tree corresponds to a rectangular region on
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the Web page. The leaf blocks are the blocks that cannot be
segmented further, and they represent the minimum
semantic units, such as continuous texts or images. Fig. 2a
shows a popular presentation structure of deep Web pages
and Fig. 2b gives its corresponding Visual Block tree. The
technical details of building Visual Block trees can be found
in [4]. An actual Visual Block tree of a deep Web page may
contain hundreds even thousands of blocks.

Visual Block tree has three interesting properties. First,
block a contains block b if a is an ancestor of b. Second, a
and b do not overlap if they do not satisfy property one.
Third, the blocks with the same parent are arranged in the
tree according to the order of the corresponding nodes
appearing on the page. These three properties are
illustrated by the example in Fig. 2. The formal represen-
tations for internal blocks and leaf blocks in our approach
are given below. Each internal block a is represented as
a ¼ ðCS; P ; S; FS; ISÞ, where CS is the set containing its
child blocks (note that the order of blocks is also kept), P
is the position of a (its coordinates on the Web page), S is
its size (height and width), FS is the set of the fonts
appearing in a, and IS is the number of images in a. Each
leaf block b is represented as b ¼ ðP; S; F ; L; I; CÞ, where
the meanings of P and S are the same as those of an inner
block, F is the font it uses, L denotes whether it is a
hyperlink text, I denotes whether it is an image, and C is
its content if it is a text.

3.3 Visual Features of Deep Web Pages

Web pages are used to publish information to users, similar
to other kinds of media, such as newspaper and TV. The
designers often associate different types of information with
distinct visual characteristics (such as font, position, etc.) to
make the information on Web pages easy to understand. As
a result, visual features are important for identifying special

information on Web pages. Deep Web pages are special
Web pages that contain data records retrieved from Web
databases, and we hypothesize that there are some distinct
visual features for data records and data items. Our
observation based on a large number of deep Web pages
is consistent with this hypothesis. We describe the main
visual features in this section and show the statistics about
the accuracy of these features at the end of this Section 3.3.

Position features (PF s). These features indicate the
location of the data region on a deep Web page.

. PF1: Data regions are always centered horizontally.

. PF2: The size of the data region is usually large
relative to the area size of the whole page.

Since the data records are the contents in focus on deep
Web pages, Web page designers always have the region
containing the data records centrally and conspicuously
placed on pages to capture the user’s attention. By investigat-
ing a large number of deep Web pages, we found two
interesting facts. First, data regions are always located in the
middle section horizontally on deep Web pages. Second, the
size of a data region is usually large when there are enough
data records in the data region. The actual size of a data
region may change greatly because it is not only influenced
by the number of data records retrieved, but also by what
information is included in each data record. Therefore, our
approachuses the ratio of the size of thedata region to the size
of whole deep Web page instead of the actual size. In our
experiments in Section 7, the threshold of the ratio is set at 0.4,
that is, if the ratio of the horizontally centered region is
greater than or equal to 0.4, then the region is recognized as
the data region.

Layout features (LF s). These features indicate how the
data records in the data region are typically arranged.

. LF1: The data records are usually aligned flush left
in the data region.

. LF2: All data records are adjoining.

. LF3: Adjoining data records do not overlap, and the
space between any two adjoining records is the
same.

Data records are usually presented in one of the
two layout models shown in Fig. 3. In Model 1, the data
records are arranged in a single column evenly, though they
may be different in width and height. LF1 implies that the
data records have the same distance to the left boundary of
the data region. In Model 2, data records are arranged in

Fig. 2. (a) The presentation structure and (b) its Visual Block tree.

Fig. 3. Layout models of data records on deep Web pages.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. X, XXXXXXX 2010

127



multiple columns, and the data records in the same column
have the same distance to the left boundary of the data
region. Because most deepWeb pages follow the first model,
we only focus on the first model in this paper, and the second
model can be addressed with minor implementation expan-
sion to our current approach. In addition, data records do not
overlap, which means that the regions of different data
records can be separated.

Appearance features (AF s). These features capture the
visual features within data records.

. AF1: Data records are very similar in their appear-
ances, and the similarity includes the sizes of the
images they contain and the fonts they use.

. AF2: The data items of the same semantic in
different data records have similar presentations
with respect to position, size (image data item), and
font (text data item).

. AF3: The neighboring text data items of different
semantics often (not always) use distinguishable
fonts.

AF1 describes the visual similarity at the data record
level. Generally, there are three types of data contents in data
records, i.e., images, plain texts (the texts without hyper-
links), and link texts (the texts with hyperlinks). Table 2
shows the information on the three aspects for the data
records in Fig. 1. We can see that these five data records are
very close on the three aspects. AF2 and AF3 describe the
visual similarity at the data item level. The text data items of
the same semantic always use the same font, and the image
data items of the same semantic are often similar in size. The
positions of data items in their respective data records can be
classified into two kinds: absolute position and relative position.
The former means that the positions of the data items of
certain semantic are fixed in the line they belong to, while the
latter refers to the position of a data item relative to the data
item ahead of it. Furthermore, the items of the same semantic
from different data records share the same kind of position.
AF3 indicates that the neighboring text data items of
different semantics often use distinguishable fonts. How-
ever, AF3 is not a robust feature because some neighboring
data items may use the same font. Neighboring data items
with the same font are treated as a composite data item.
Composite data items have very simple string patterns and
the real data items in them can often be separated by a
limited number of symbols, such as “,”, “/,” etc. In addition,

the composite data items of the same semantics share the
same string pattern. Hence, it’s easy to break composite data
items into real data items using some predefined separating
symbols. For example, in Fig. 4, four data items, such as
publisher, publishing date, edition, and ISBN, form a
composite data item, and they are separated by commas.
According to our observation to deep Web pages, the
granularity of the data items extracted is not larger than
what HTML tags can separate, because a composite data
item is always included in one leaf node in the tag tree.

Content feature (CF ). These features hint the regularity
of the contents in data records.

. CF1: The first data item in each data record is
always of a mandatory type.

. CF2: The presentation of data items in data records
follows a fixed order.

. CF3: There are often some fixed static texts in data
records, which are not from the underlying Web
database.

The data records correspond to the entities in real world,
and they consist of data items with different semantics that
describe the attribute values of the entities. The data items
can be classified into two kinds: mandatory and optional.
Mandatory data items appear in all data records. For
example, if every data record must have a title, then titles
are mandatory data items. In contrast, optional items may
be missing in some data records. For example, “discounted
price” for products is likely an optional unit. The order of
different types of data items from the same Web database is
always fixed in data records. For example, the order of
attributes of data records from Bookpool.com in Fig. 4 is
“title,” “author,” “publisher,” “publish time,” “edition,”
“ISBN,” “discount price,” “save money,” “availability,” etc.
Fixed static texts refer to the texts that appear in every data
record. Most of them are meaningful labels that can help
users understand the semantics of data items, such as “Buy
new” in Fig. 4. We call these static texts static items, which
are part of the record template.

Our deep Web data extraction solution is developed
mainly based on the above four types of visual features. PF
is used to locate the region containing all the data records
on a deep Web page; LF and AF are combined together to
extract the data records and data items.

Statistics on the visual features. To verify the robust-
ness of these visual features we observed, we examined
these features on 1,000 deep Web pages of different Web
databases from the General Data Set (GDS) used in our

LIU ET AL.: VIDE: A VISION-BASED APPROACH FOR DEEP WEB DATA EXTRACTION
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experiments (see Section 7 for more information about
GDS). The results are shown in Table 3. For most features
(except AF3 and CF3), their corresponding statistics are
the percentages of the deep Web pages that satisfy them.
For example, the statistics of 99.9 percent for PF1 means
that for 99.9 percent of the deep Web pages, PF1 feature
“data regions are always centered horizontally” is true.
From the statistics, we can conclude that these visual
features are very robust and can be reliably applied to
general deep Web pages. For AF3, 92.8 percent is the
percentage of the data items that have different font from
their following data items. For CF3, 6.5 percent is the
percentage of the static data items over all data items.

We should point out that when a feature is not satisfied
by a page, it does not mean that ViDE will fail to process
this page. For example, our experiments using the data sets
to be described in Section 7 show that among the pages that
violate LF3, 71.4 percent can still be processed successfully
by ViDE, and among the pages that violate AF1, 80 percent
can still be correctly processed.

3.4 Special Supplementary Information

Several types of simple nonvisual information are also used
in our approach in this paper. They are same text, frequent
symbol, and data type, as explained in Table 4.

Obviously, the above information is very useful to
determine whether the data items in different data records
from the same Web database belong to the same semantic.
The above information can be captured easily from the
Web pages using some simple heuristic rules without the
need to analyze the HTML source code or the tag trees of

the Web pages. Furthermore, they are specific language
(i.e., English, French, etc.) independent.

4 DATA RECORDS EXTRACTION

Data record extraction aims to discover the boundary of
data records and extract them from the deep Web pages. An
ideal record extractor should achieve the following: 1) all
data records in the data region are extracted and 2) for each
extracted data record, no data item is missed and no
incorrect data item is included.

Instead of extracting data records from the deep Web
page directly, we first locate the data region, and then,
extract data records from the data region. PF1 and PF2
indicate that the data records are the primary content on the
deep Web pages and the data region is centrally located on
these pages. The data region corresponds to a block in the
Visual Block tree. We locate the data region by finding the
block that satisfies the two position features. Each feature can
be considered as a rule or a requirement. The first rule can be
applied directly, while the second rule can be represented by
ðareab=areapageÞ > Tregion, where areab is the area of block b,
areapage is the area of the whole deepWeb page, and Tregion is
a threshold. The threshold is trained from sample deep Web
pages. If more than one block satisfies both rules, we select
the block with the smallest area. Though very simple, this
method can find the data region in the Visual Block tree
accurately and efficiently.

Each data record corresponds to one or more subtrees in
the Visual Block tree, which are just the child blocks of the
data region, as Fig. 5 shows. So, we only need to focus on
the child blocks of the data region. In order to extract data

TABLE 3
The Statistics on the Visual Features

TABLE 4
Nonvisual Information Used

Fig. 5. A general case of data region.
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records from the data region accurately, two facts must be
considered. First, there may be blocks that do not belong to
any data record, such as the statistical information (e.g.,
about 2,038 matching results for java) and annotation about
data records (e.g., 1, 2, 3, 4, 5 (Next)). These blocks are called
noise blocks in this paper. Noise blocks may appear in the
data region because they are often close to the data records.
According to LF2, noise blocks cannot appear between data
records. They always appear at the top or the bottom of the
data region. Second, one data record may correspond to one
or more blocks in the Visual Block tree, and the total
number of blocks in which one data record contains is not
fixed. In Fig. 5, block b1 (statistical information) and b9
(annotation) are noise blocks; there are three data records
(b2 and b3 form data record 1; b4, b5, and b6 form data
record 2; b7 and b8 form data record 3), and the dashed
boxes are the boundaries of data records.

Data record extraction is to discover the boundary of
data records based on the LF and AF features. That is, we
attempt to determine which blocks belong to the same data
record. We achieve this in the following three phases:

1. Phase 1: Filter out some noise blocks.
2. Phase 2: Cluster the remaining blocks by computing

their appearance similarity.
3. Phase 3: Discover data record boundary by regroup-

ing blocks.

4.1 Phase 1: Noise Blocks Filtering

Because noise blocks are always at the top or bottom, we
check the blocks located at the two positions according to
LF1. If a block at these positions is not aligned flush left, it
will be removed as a noise block. This step does not
guarantee the removal of all noise blocks. For example, in
Fig. 5, block b9 can be removed in this step, while block b1
cannot be removed.

4.2 Phase 2: Blocks Clustering

The remaining blocks in the data region are clustered based
on their appearance similarity. Since there may be three
kinds of information in data records, i.e., images, plain text,
and link text, the appearance similarity between blocks is
computed from the three aspects. For images, we care about
the size; for plain text and link text, we care about the
shared fonts. Intuitively, if two blocks are more similar on
image size and font, they should be more similar in
appearance. The formula for computing the appearance
similarity between two blocks b1 and b2 is given below:

simðb1; b2Þ ¼ wi � simIMGðb1; b2Þ þ wpt � simPT ðb1; b2Þ
þ wlt � simLT ðb1; b2Þ;

ð1Þ
where simIMGðb1; b2Þ, simIMGðb1; b2Þ, and simLT ðb1; b2Þ
are the similarities based on image size, plain text font,
and link text font, respectively. And wi, wpt, and wlt are
the weights of these similarities, respectively. Table 5
gives the formulas to compute the component similarities
and the weights in different cases. The weight of one type
of contents is proportional to their total size relative to the
total size of the two blocks.

A simple one-pass clustering algorithm is applied. First,
starting from an arbitrary order of all the input blocks, take

the first block from the list and use it to form a cluster. Next,
for each of the remaining blocks, say b, compute its
similarity with each existing cluster. Let C be the cluster
that has the largest similarity with A. If simðb; CÞ > Tas for
some threshold Tas, which is to be trained by sample pages
(generally, Tas is set to 0.8), then add b to C; otherwise, form
a new cluster based on b. Function simðb; CÞ is defined to be
the average of the similarities between b and all blocks in C
computed using (1). As an example, by applying this
method to the blocks in Fig. 1, the blocks containing the
titles of the data records are clustered together, so are the
blocks containing the prices and so on.

4.3 Phase 3: Blocks Regrouping

The clusters obtained in the previous step do not
correspond to data records. On the contrary, the blocks in
the same cluster all come from different data records.
According to AF2, the blocks in the same cluster have the
same type of contents of the data records.

The blocks need to be regrouped such that the blocks
belonging to the same data record form a group. Our basic
idea of blocks regrouping is as follows: According to CF1,
the first data item in each data record is always mandatory.
Clearly, the cluster that contains the blocks for the first
items has the maximum number of blocks possible; let n be
this maximum number. It is easy to see that if a cluster
contains n blocks, these blocks contain mandatory data
items. Our regrouping method first selects a cluster with
n blocks and uses these blocks as seeds to form data
records. Next, given a block b, we determine which record b
belongs to according to CF2. For example, suppose we
know that title is ahead of author in each record and they
belong to different blocks (say an author block and a title
block). Each author block should relate to the nearest title
block that is ahead of it. In order to determine the order of
different semantic blocks, a minimum bounding rectangle is
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formed for each cluster on the page. By comparing the
positions of these rectangles on the page, we can infer the
order of the semantics. For example, if the rectangle
enclosing all title blocks is higher than the rectangle
enclosing the author blocks, then title must be ahead of its
corresponding author. Based on this idea, the algorithm of
block regrouping is developed as shown in Fig. 6.

This algorithm consists of three steps. Step 1 rearranges
the blocks in each cluster based on their appearance order
on the Web page, i.e., from left to right and from top to
bottom (lines 1-7). In addition, a minimum bounding
rectangle is formed for each cluster on the page (line 8).
In Step 2, n groups are initialized with a seed block in each
group as discussed earlier, where n is the number of blocks
in a maximum cluster, denoted as Cmax. According to CF1,
we always choose the cluster that contains the first
mandatory data item of each record as Cmax. Let bmax;k

denote the seed block in each initial group Gk. Step 3
determines to which group each block belongs. If block bi;j
(in Ci, Ci is not Cmax) and block bmax;k (in Cmax) are in the
same data record, then bi;j should be put into the same
group bmax;k belongs to. According to LF3, no two adjoining
data records overlap. So, for bmax;k in Cmax, the blocks that
belong to the same data record with bmax;k must be below
bmax;k�1 and above bmax;kþ1. For each Ci, if data record Ri is
ahead of Rmax, then the block on top of Ri is ahead of
(behind) the block on top of Rmax. Here, “ahead of” means
“on the left of” or “above,” and “behind” means “on the
right of” or “below.” According to CF2, bi;j is ahead of

bmax;k if they belong to the same data record. So, we can
conclude that if bmax;k is the nearest block behind bi;j, then
bi;j should be put into the group bmax;k belongs to.
Obviously, the complexity of this algorithm is Oðn2Þ, where
n is the number of data records in the sample page.

Example for data record extraction. Fig. 7 illustrates the
case in Fig. 5. First, b9 is removed according to LF1. Then,
the blocks on the left in Fig. 7b are clustered using (1).

Altogether, four clusters are formed and the blocks in them
are also rearranged: C1fb1g, C2fb2; b4; b7g, C3fb3; b6; b8g, and
C4fb5g. Next, C2 is Cmax, and b2, b4, and b7 form three initial
groups G1; G2, and G3, respectively. Since R3 and R4

overlap with R2 and R3 is below R2, we group b3, b6, and b8
with b2, b4, and b7 (the nearest block above it in C2),
respectively. At last, G1 is {b2; b3}, G2 is {b4; b5; b6}, and G3 is
{b7; b8}. Each group forms a complete data record.

5 DATA ITEM EXTRACTION

A data record can be regarded as the description of its
corresponding object, which consists of a group of data
items and some static template texts. In real applications,
these extracted structured data records are stored (often in
relational tables) at data item level and the data items of the
same semantic must be placed under the same column.
When introducing CF , we mentioned that there are three
types of data items in data records: mandatory data items,
optional data items, and static data items. We extract all
three types of data items. Note that static data items are
often annotations to data and are useful for future
applications, such as Web data annotation. Below, we focus
on the problems of segmenting the data records into a
sequence of data items and aligning the data items of the
same semantics together.

Note that data item extraction is different from data
record extraction; the former focuses on the leaf nodes of
the Visual Block tree, while the latter focuses on the child
blocks of the data region in the Visual Block tree.

5.1 Data Record Segmentation

AF3 indicates that composite data items cannot be segmen-
ted any more in the Visual Block tree. So, given a data
record, we can collect its leaf nodes in the Visual Block tree
in left to right order to carry out data record segmentation.
Each composite data item also corresponds to a leaf node.
We can treat it as a regular data item initially, and then,
segment it into the real data items with the heuristic rules
mentioned in AF3 after the initial data item alignment.

Fig. 6. The algorithm of blocks regrouping.

Fig. 7. An illustration of data record extraction.
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5.2 Data Item Alignment

CF1 indicates that we cannot align data items directly due to
the existence of optional data items. It is natural for data
records to miss some data items in some domains. For
example, somebooks havediscount price,while somedonot.

Every data record has been turned into a sequence of
data items through data record segmentation. Data item
alignment focuses on the problem of how to align the data
items of the same semantic together and also keep the order
of the data items in each data record. In the following, we
first define visual matching of data items, and then, propose
an algorithm for data item alignment.

5.2.1 Visual Matching of Data Items

AF2 indicates that if two data items from different data
records belong to the same semantic, they must have
consistent font and position, including both absolute
position and relative position. In Fig. 8, a simple algorithm
to match two visually similar data items from different data
records is described.

The first four lines of the algorithm say that two data
items are matched only if they have the same absolute
position in addition to having the same font. Here, absolute
position is the distance between the left side of the data
region and the left side of a data item. When two data items
do not have the same absolute position, they can still be
matched if they have the same relative position. For match
on relative position, the data items immediately before the
two input data items should be matched (from line 5 to
line 6). As an example, for the two records in Fig. 4, the titles
can be matched based on the absolute positions and the
authors on the relative positions.

Because two data items of different semantics can also be
visually similar, AF2 cannot really determine whether two
data items belong to the same semantic. But the fixed order
of the data items in the same data record (CF2) can help us
remedy this limitation. So, we further propose an effective
algorithm for data item alignment that utilizes both CF2
and AF2.

5.2.2 Algorithm for Data Item Alignment

CF2 says that the order of data items in data records is
fixed. Thus, each data record can be treated as a sequence of
data items. We can utilize this feature to align data items.
Our goal is to place the data items of the same semantic in

the same column. If an optional data item does not appear
in a data record, we will fill the vacant position with a
predefined blank item. Based on this insight, we propose a
multialignment algorithm that can process all extracted
data records holistically step by step. The basic idea of this
algorithm is described as follows: Initially, all the data items
are unaligned. We align data items by the order in their
corresponding data records. When we encounter optional
data items that do not appear in some data records, these
vacant positions will be filled with the predefined blank
item. This ensures that all data records are aligned and have
the same number of data items at the end. Our data item
alignment algorithm is shown in Fig. 9.

The input is n data records {r1; r2; . . . ; rn}, and each
data record ri is denoted as a sequence of data items
{item1

i ; item
2
i ; . . . ; item

m
i }. Any data item has a unique

position in its corresponding sequence according to the
semantic order. In each iteration, we only process the
next unaligned data item of every data record and decide
which ones should be ahead of all others. The complexity
of this algorithm is Oðn2 �mÞ, where n is the number of
data records in the sample page and m is the average
number of data items per data record.

Example for data item alignment. The example shown
in Fig. 10 explains the process of data item alignment.
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Fig. 8. The algorithm of data item matching.

Fig. 9. The algorithm of data item alignment.
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Suppose there are three data records fr1; r2; r3g and each
row is a data record. We use simple geometric shapes
(rectangle, circle, triangle, etc.) to denote the data items. The
data items represented by the same shape are visually
matched data items. We also use itemj

i to denote the
jth data item of the ith data record. Initially (Fig. 10a), all
current unaligned data items fitem1

1; item
1
2; item

1
3g of the

input data records are placed into one cluster, i.e., they are
aligned as the first column. Next (Fig. 10b), the current
unaligned data items item2

1; item
2
2; item

2
3 are matched into

two clusters C1 ¼ fitem2
1; item

2
3g and C2 ¼ fitem2

2g (line 5 in
Fig. 9). Thus, we need to further decide which cluster
should form the next column. The data items in C1 can
match item4

2, and the position value 2 is logged (lines 6-12),
which means that item4

2 is the third of the unaligned data
items of r2. The data items in C2 can match item3

1 and item3
3,

and the position value 1 is logged (lines 6-12). Because 1 is
smaller than 2 (line 16), the data items in C1 should be
ahead of the data items in C2 and form the next column by
inserting the blank item into other records at the current
positions (lines 21-22). The remaining data items can be
aligned in the same way (Figs. 10c and 10d).

6 VISUAL WRAPPER GENERATION

ViDE has two components: ViDRE and ViDIE. There are
two problems with them. First, the complex extraction
processes are too slow in supporting real-time applications.
Second, the extraction processes would fail if there is only
one data record on the page. Since all deep Web pages from
the same Web database share the same visual template,
once the data records and data items on a deep Web page
have been extracted, we can use these extracted data
records and data items to generate the extraction wrapper
for the Web database so that new deep Web pages from the
same Web database can be processed using the wrappers
quickly without reapplying the entire extraction process.

Our wrappers include data record wrapper and data
item wrapper. They are the programs that do data record
extraction and data item extraction with a set of parameter
obtained from sample pages. For each Web database, we
use a normal deep Web page containing the maximum
number of data records to generate the wrappers. The
wrappers of previous works mainly depend on the
structures or the locations of the data records and data
items in the tag tree, such as tag path. In contrast, we mainly
use the visual information to generate our wrappers. Note

that some other kinds of information are also utilized to
enhance the performances of the wrappers, such as the data
types of the data items and the frequent symbols appearing
in the data items. But they are easy to obtain from the Web
pages. We describe the basic ideas of our wrappers below.

6.1 Vision-Based Data Record Wrapper

Given a deep Web page, vision-based data record wrapper
first locates the data region in the Visual Block tree, and
then, extracts the data records from the child blocks of the
data region.

Data region location. After the data region R on a
sample deep Web page P from site S is located by ViDRE,
we save five parameters values (x; y; w; h; l), where (x; y)
form the coordinate of R on P , w and h are the width and
height of R, and l is the level of R in the Visual Block tree.

Given a new deep Web page P � from S, we first check
the blocks at level l in the Visual Block tree for P �. The data
region on P � should be the block with the largest area
overlap with R on P �. The overlap area can be computed
using the coordinates and width/height information.

Data record extraction. For each record, our visual data
record wrapper aims to find the first block of each record
and the last block of the last data record (denoted as blast).

To achieve this goal, we save the visual information (the
same as the information used in (1)) of the first block of each
data record extracted from the sample page and the distance
(denoted as d) between two data records. For the child
blocks of the data region in a new page, we find the first
block of each data record by the visual similarity with the
saved visual information. Next, blast on the new page needs
to be located. Based on our observation, in order to help the
users differentiate data records easily, the vertical distance
between any two neighboring blocks in one data record is
always smaller than d and the vertical distance between blast
and its next block is not smaller than d. Therefore, we
recognize the first block whose distance with its next block
is larger than d as blast.

6.2 Vision-Based Data Item Wrapper

The data alignment algorithm groups data items from
different data records into columns or attributes such that
data items under the same column have the same semantic.
Table 6 lists useful information about each attribute
obtained from the sample page that can help determine
which attribute a data item belongs to.

The basic idea of our vision-based data item wrapper is
described as follows: Given a sequence of attributes

Fig. 10. An example of data item alignment.

TABLE 6
Explanation for (f; l; d)
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fa1; a2; . . . ; ang obtained from the sample page and a
sequence of data items fitem1; item2; . . . ; itemmg obtained
from a new data record, the wrapper processes the data
items in order to decide which attribute the current data
item can be matched to. For itemi and aj, if they are the
same on f , l, and d, their match is recognized. The wrapper
then judges whether itemiþ1 and ajþ1 are matched next, and
if not, it judges itemi and ajþ1. Repeat this process until all
data items are matched to their right attributes.

Note that if an attribute on a new page did not appear on
the sample page, the data item of the attribute cannot be
matched to any attribute. To avoid such a problem, several
sample pages may be used to generate the wrapper. This
can increase the chance that every attribute appears on at
least one of these sample pages.

This process is much faster than the process of wrap-per
generation. The complexity of data records extraction with
the wrapper is OðnÞ, where n is the number of data records
in the page. The complexity of data items extraction with
the wrapper is Oðn �mÞ, where n is the number of data
records in the test page andm is the average number of data
items per data record.

7 EXPERIMENTS

We have implemented an operational deep Web data
extraction system for ViDE based on the techniques we
proposed. Our experiments are done on a Pentium 4
1.9 GH, 512 MB PC. In this section, we first describe the
data sets used in our experiments, and then, introduce the
performance measures used. At last, we evaluate both
ViDRE and ViDIE. We also choose MDR [17] and DEPTA
[29] to compare with ViDRE and ViDIE, respectively. MDR
and DEPTA are the recent works on Web data record
extraction and data item extraction, and they are both
HTML-based approaches.

7.1 Data Sets

Most performance studies of previous works used small
data sets, which are inadequate in assuring the impartiality
of the experimental results. In our work, we use a large data
set to carry out the experiments.

GDS. This data set is collected from CompletePlanet
(www.completeplanet.com), which is currently the largest
deep Web repository with more than 70,000 entries of Web
databases. These Web databases are classified into 42 cate-
gories covering most domains in the real world. GDS
contains 1,000 available Web databases. For each Web
database, we submit five queries and gather five deep Web
pages with each containing at least three data records.

Special data set (SDS). During the process of obtaining
GDS, we noticed that the data records from two-thirds of
the Web databases have less than five data items on
average. To test the robustness of our approaches, we select
100 Web databases whose data records contain more than
10 data items from GDS as SDS.

Note that the deep Web pages collected in the testbed are
the ones that can be correctly displayed by the Web browser
we used. An example where a page is not correctly
displayed is when some images are displayed as small
red crosses. This will cause the positions of the texts on the
result page to shift.

7.2 Performance Measures

All previous works use precision and recall to evaluate their
experimental results (some also include F-measure, which is
the weighted harmonic mean of precision and recall). These
measures are also used in our evaluation.

In this paper, we propose a new metric, revision, to
measure the performance of an automated extraction
algorithm. It is defined to be the percentage of the Web
databases whose data records or data items are not perfectly
extracted, i.e., either precision or recall is not 100 percent.
This measure indicates the percentage of Web databases the
automated solution fails to achieve perfect extraction, and
manual revision of the solution is needed to fix this. An
example is used to illustrate the significance of this
measure. Suppose there are three approaches (A1, A2,
and A3) which can extract structured data records from
deep Web pages, and they use the same data set (five Web
databases and 10 data records in each Web database). A1
extracts nine records for each site and they are all correct.
So, the average precision and recall of A1 are 100 and
90 percent, respectively. A2 extracts 11 records for each site
and 10 are correct. So, the average precision and recall of A2
are 90.9 and 100 percent, respectively. A3 extracts 10 records
for four of the five databases and they are all correct. For the
fifth site, A3 extracts no records. So, the average precision
and recall of A3 are both 80 percent. Based on average
precision and recall, A1 and A2 are better than A3. But in real
applications, A3 may be the best choice. To make precision
and recall 100 percent, all wrappers generated by A1 and A2
have to be manually tuned/adjusted, while only one
wrapper generated by A3 needs to be manually tuned. In
other words, A3 needs the minimum manual intervention.

Because our experiments include data record extraction
and data item extraction, we define precision, recall, and
revision for them separately.

In Table 7, DRc is the total number of correctly extracted
data records, DRr is the total number of data records, DRe

is the total number of data records extracted, DIc is the total
number of correctly extracted data items, DIr is the total
number of data items, and DIe is the total number of data
items extracted; WDBc is the total number of Web
databases whose precision and recall are both 100 percent
and WDBt is the total number of Web databases processed.

7.3 Experimental Results on ViDRE

In this part, we evaluate ViDRE and also compare it with
MDR. MDR has a similarity threshold, which is set at the
default value (60 percent) in our test, based on the
suggestion of the authors of MDR. Our ViDRE also has a
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similarity threshold, which is set at 0.8. In this experiment,
the input to ViDRE and MDR contains the deep Web pages
and the output contains data records extracted. For ViDRE,
one sample result page containing the most data records is
used to generate the data record wrapper for each Web
database. Table 8 shows the experimental results on both
GDS and SDS. Based on our experiment, it takes approxi-
mately 1 second to generate the data record wrapper for
each page and less than half second to use the wrapper for
data record extraction.

From Table 8, we can make the following three
observations. First, ViDRE performs significantly better
than MDR on both GDS and SDS. Second, ViDRE is far
better than MDR on revision. ViDRE needs only to revise
slightly over 10 percent of the wrappers, while MDR has to
revise almost five times more wrappers than ViDRE. Third,
the precision and recall of ViDRE are steady on both SDS
and GDS, but for MDR, they drop noticeably for SDS. Our
analysis indicates that: for precision of ViDRE, most errors
are caused by failing to exclude noise blocks that are very
similar to the correct ones in appearance; for recall of
ViDRE, most errors are caused by mistaking some top or
bottom data records as the noise blocks; for MDR, its
performance is inversely proportional to the complexity of
the data records, especially data records with many
optional data items.

7.4 Experimental Results on ViDIE

In this part, we evaluate ViDIE and compare it with
DEPTA. DEPTA can be considered as the follow-up work
for MDR, and its authors also called it MDRII. Only correct
data records from ViDRE are used to evaluate ViDIE and
DEPTA. For ViDIE, two sample result pages are used to
generate the data item wrapper for each Web database.
Table 9 shows the experimental results of ViDIE and
DEPTA on both GDS and SDS. Our experiments indicate
that it takes between 0.5 and 1.5 seconds to generate the
data item wrapper for each page and less than half second
to use the wrapper for data item extraction.

FromTable 9, we can see that the observationswemade in
comparing the results of ViDRE and MDR remain basically
valid for comparing ViDIE and DEPTA. In addition, we also
found that DEPTA often misaligns two data items of
different semantics if they are close in the tag tree and have
the same tag path, and this leads to the misalignment of all
the data items in the same data record that follow the
misaligned data items. In contrast, ViDIE can easily
distinguish them due to their different fonts or positions.

We also tried to use one sample page and three sample
pages to generate the data item wrapper for each Web
database. When one page is used, the performance is much
lower; for example, for SDS, the precision, recall, and
revision are 91.7, 95, and 32.3 percent, respectively. This is
caused by the absence of some optional data items from all
the data records in the sample page used. When more
sample pages are used, the likelihood that this will happen
is significantly reduced. When three pages are used, the
results are essentially the same as shown in Table 9, where
two sample pages are used. This suggests that using two
sample pages to generate the data item wrapper for each
Web database is sufficient.

We also conducted experiments based on the data sets
used in [30] and provided by [13], and the results are
similar to those shown in Tables 8 and 9. These results are
not shown in this paper due to space consideration.

8 CONCLUSIONS AND FUTURE WORKS

With the flourish of the deep Web, users have a great
opportunity to benefit from such abundant information in
it. In general, the desired information is embedded in the
deep Web pages in the form of data records returned by
Web databases when they respond to users’ queries.
Therefore, it is an important task to extract the structured
data from the deep Web pages for later processing. In this
paper, we focused on the structured Web data extraction
problem, including data record extraction and data item
extraction. First, we surveyed previous works on Web data
extraction and investigated their inherent limitations.
Meanwhile, we found that the visual information of Web
pages can help us implement Web data extraction. Based on
our observations of a large number of deep Web pages, we
identified a set of interesting common visual features that
are useful for deep Web data extraction. Based on these
visual features, we proposed a novel vision-based approach
to extract structured data from deep Web pages, which can
avoid the limitations of previous works. The main trait of
this vision-based approach is that it primarily utilizes the
visual features of deep Web pages.

Our approach consists of four primary steps: Visual
Block tree building, data record extraction, data item
extraction, and visual wrapper generation. Visual Block
tree building is to build the Visual Block tree for a given
sample deep page using the VIPS algorithm. With the
Visual Block tree, data record extraction and data item
extraction are carried out based on our proposed visual
features. Visual wrapper generation is to generate the

TABLE 8
Comparison Results between ViDRE and MDR

TABLE 9
Comparison Results between ViDIE and DEPTA
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wrappers that can improve the efficiency of both data
record extraction and data item extraction. Highly accurate
experimental results provide strong evidence that rich
visual features on deep Web pages can be used as the basis
to design highly effective data extraction algorithms.

However, there are still some remaining issues and we
plan to address them in the future. First, ViDE can only
process deep Web pages containing one data region, while
there is significant number of multidata-region deep Web
pages. Though Zhao et al. [31] have attempted to address
this problem, their solution is HTML-dependent and its
performance has a large room for improvement. We intend
to propose a vision-based approach to tackle this problem.
Second, the efficiency of ViDE can be improved. In the
current ViDE, the visual information of Web pages is
obtained by calling the programming APIs of IE, which is a
time-consuming process. To address this problem, we
intend to develop a set of new APIs to obtain the visual
information directly from the Web pages.
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Abstract. In Deep Web data integration, some Web database interfaces
express exclusive predicates of the form Qe = Pi(Pi ∈ P1, P2, . . . , Pm),
which permits only one predicate to be selected at a time. Accurately and
efficiently estimating the selectivity of each Qe is of critical importance
to optimal query translation. In this paper, we mainly focus on the selec-
tivity estimation on infinite-value attribute which is more difficult than
that on key attribute and categorical attribute. Firstly, we compute the
attribute correlation and retrieve approximate random attribute-level
samples through submitting queries on the least correlative attribute
to the actual Web database. Then we estimate Zipf equation based on
the word rank of the sample and the actual selectivity of several words
from the actual Web database. Finally, the selectivity of any word on
the infinite-value attribute can be derived by the Zipf equation. An ex-
perimental evaluation of the proposed selectivity estimation method is
provided and experimental results are highly accurate.

1 Introduction

The Deep Web continues to grow rapidly [1], which makes exploiting useful
information a remarkable challenge. Metaquerier, which provides a uniform in-
tegrated interface to the users and can query multiple databases simultaneously,
is becoming the main trend for Deep Web data integration.

Query translation plays an important role in a metaquerier. However, due
to the large-scale, heterogeneity and autonomy of the Web databases, auto-
matic query translation is challenging. One of the important aspects is that
Web database interfaces may express different predicate logics. The integrated
query interface and many Web database interfaces express conjunctive predicates
of the form Qc = P1 ∧ P2 ∧ . . . ∧ Pm, where Pi is a simple predicate on single
attribute. While some Web database interfaces express exclusive predicates of
the form Qe = Pi(Pi ∈ P1, P2, . . . , Pm), which means any given query can only
include one of these predicates. Exclusive attributes are often represented on a
Web database interface as a selection list of attribute names or a group of radio
buttons each of which is an attribute. A very interesting problem is, among all
the Qes on an interface, which one has the lowest selectivity? It is of critical
importance to optimal query translation. In this paper, we mainly focus on the
selectivity estimation of infinite-value attribute for exclusive query translation.
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Before we carry out our study, we have two important observations: 1) there
exist different correlations between different attribute pairs, and 2) the word
frequency of the values on an infinite-value attribute usually has a Zipf-like dis-
tribution. Based on these observations, we propose a correlation-based sampling
approach to obtain the approximate random attribute-level sample and a Zipf-
based approach that can estimate the selectivity of any word by Zipf equation.

The rest of paper is organized as follows. Section 2 gives the overview of
query selectivity estimation. Section 3 proposes the correlation-based sampling
approach. Section 4 proposes a Zipf-based selectivity estimation approach. Sec-
tion 5 reports the results of experiments. Section 6 introduces the related work.
Section 7 concludes the paper.

2 An Overview of Query Selectivity Estimation

The overall flow chart of our approach is given in Fig.1.

Attribute correlation calculation for a domain. For any given domain
(e.g., Books), we first calculate attribute correlation for each pair of attributes
(Attribute Correlation calculation) and identify the least correlative at-
tribute Attri for each specific attribute Attru. Because attribute correlation of
each attribute pair in a domain is usually independent of the Web databases, the
attribute correlation can be used for all the Web databases in the same domain.

Selectivity estimation for a Web database. Given an infinite-value at-
tribute Attru and a specific Web database, we use a series of query probes on
Attri in the Web database interface to obtain an approximate random attribute-
level sample on Attru (Correlation-based sampling). The word rank on Attru

can be calculated from the sample, which is viewed as the actual word rank on
Attru of the Web database due to the randomness of the sample. Then several
words on Attru are used to probe the actual Web database and the frequencies
of these words are returned (Word frequency probing). Zipf equation can
be estimated using the word ranks and the actual frequencies of several words
(Zipf equation calculation). Finally, for any word on Attru, we can estimate
its frequency by the Zipf equation and its rank (Selectivity estimation).

Attribute

Correlation

calculation

Word

rank

Word

frequency

probing

Selectivity

estimation

The least 

correlative

attribute

Correlation-

based

sampling

Domain
Web Database

Zifp equation

calculation

Several word 

frequency

Zifp

equation

User query

Selectivity

order of Qe

Fig. 1. The processing flow of our approach.
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3 Correlation-based Sampling for Word Rank

In this paper, we use Attribute Word Distribution of different attributes to define
the concept of attribute correlation.

Definition 1 Attribute Word Distribution (AWD). Given all the words
w1, w2, . . ., wm of the values of attribute A in a database D, the Attribute Word
Distribution for A is a vector −→v (v1, v2, . . . , vm), each component of which vi is
the frequency of the word wi. Under the assumption that no word appears more
than once in an attribute value, the frequency of the word wi is the number of
tuples returned by the query σA=wi

D.

Definition 2 Attribute Correlation. Attribute Correlation is the dependence
between any attribute pair(Attru, Attrv) and is measured by the difference of the
Attribute Word Distributions of the returned results on an attribute (Attru).

A measure of the distribution difference is Kullback-Leibler(KL) divergence.
If we submit different queries Q1, Q2, . . ., Qs on Attrv, we will gain the cor-
responding result sets S1, S2, . . ., Ss on Attru. Suppose that S is the union
of S1, S2, . . ., Ss and S consists of a set of words w1, w2, . . ., wk. Then the
KL-divergence of Attru from S to Sj is:

DKL(S||Sj) =
k∑

l=1

prob(Attru = wl|S)log
prob(Attru = wl|S)
prob(Attru = wl|Sj)

where prob(Attru =wl| S) refers to the probability that Attru=wl in S and
prob(Attru=wl| Sj) refers to the probability that Attru=wl in Sj .

Attribute correlation is the average of the KL divergence of Attru from S to
Sj :

Correlation(Attru, Attrv) =
1
s

s∑
j=1

DKL(S||Sj)

After discovering the least correlative attribute Attri, we submit some query
probes on Attri to the Web databases and collect the returned results on at-
tribute Attru as the attribute-level sample of Attru, which is the approximate
random sample. Then we order the words of the sample by their frequencies and
the word rank can be viewed as the actual one due to the randomness of the
sample.

4 Zipf-based Selectivity Estimation

It is well known that English words of a general corpus satisfy the Zipf distribu-
tion. However, it is not clear if the words of text attributes in different domains
also follow this distribution. Our experiments indicate that they do.

Zipf distribution can be represented by N = P (r + p)−E [9], where N rep-
resents the frequency of the word, r represents the rank of the word and P, p
and E are the positive parameters. As Fig.2 shows, we submit word i, word j to
the Web database and obtain their frequencies Fwi(i.e., Ni) and Fwj(i.e., Nj),
respectively. And we know the ranks of these two words (i.e., ri and rj) from the
sample obtained in section 3. Then, we can estimate the parameters P, p and E
as follows.

140



– Equation Transformation: After the logarithm transformation, the Zipf equa-
tion is changed to ln(N) = lnP − Eln(r + p). Because the parameter p
(0 < p < 1) is usually much smaller than word rank r(i.e., some applications
even assume p = 0), the parameter E is approximately viewed as the slope
of the line ln(N) = lnP − Eln(r) as shown in Fig.3.

– Parameter E: E can be calculate by the equation E ≈ ln(Ni)−ln(Nj)
ln(rj)−ln(ri)

.
– Parameter p: When E is estimated, parameter p can be derived from the

equation Ni

Nj
= P∗(ri+p)−E

P∗(rj+p)−E . So we have p ≈ rj−ri∗em

em−1 (m = 1
E *ln Ni

Nj
).

– Parameter P : Finally, the parameter P is derived. P ≈ Nj ∗ (rj + p)E .

wi wx wj wy

wi

wj

wy

wx

Fig. 2. Zipf-based Selectivity Estimation.
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Consequently, we can use the Zipf equation and the word ranks to compute
the selectivity of any word on the attribute.

It is worth noticing that the parameters P , p and E are not unique. We
study the relationships among the precision, word ranks and rank distances.
The results show that the precision will go down when the rank increases and
to keep the precision stable, the distance of two word ranks should be increased
with the increase of the word ranks.

5 Experiments

We evaluate our approach with the precision measure which is defined as follows.

Precision =
1
N

∑
n

∣∣∣∣Nr − Es

Nr

∣∣∣∣
where Nr is the number of results when submitting the word on the attribute

to the actual Web database, Es is the selectivity of the word on the same at-
tribute estimated by our approach, and n is the number of the words that we
test in the experiments.

We select the top 100 words on Title, Conference attribute of Libra, Title,
Director attribute of IMDb and submit them to actual Web databases. Mean-
while, we estimate the selectivity of these words using our approach. Overall, as
we can see from Fig.4, the precision of our approach is generally good.

However, there is still some deviation on estimation values. The reasons are
that any two attributes are somehow correlative with each other and the words
on some infinite-value attributes do not satisfy Zipf distribution perfectly.

141



Given that our approach can cope with selectivity estimation of all the
infinite-value attributes and it is domain independent, it is generally feasible
to be applied in query translation for exclusive query interface.

70

80

90

100

0-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100

Word Rank

P
re

ci
si

o
n

(%
)

Title of Libra Title of IMDb Conference of Libra Director of IMDB

82

84

86

88

90

92

94

96

T
itl

e 
of

 L
ib

ra

T
itl

e 
of

IM
D
b

C
on

fe
re
nc

e 
of

 L
ib

ra

D
ir
ec

to
r 
of

 IM
D

b

A
v
e

ra
g
e

 P
re

c
is

io
n
(%

).

The precision of selectivity estimation

Fig. 4. The precision of selectivity estimation.

6 Related Works

The problem of selectivity estimation through uniform random sampling has re-
ceived considerable attention [2, 6]. [2] cannot be applied as we do not have full
access to the Web databases. [6] proposes a random walk approach to sampling
the hidden databases, which is a database-level sampling and relatively complex
compared with our attribute-level sampling. [3] focuses on the selectivity estima-
tion of the text type attribute with several constraints (e.g., any, all or exactly,
etc.) in Web database interfaces.

7 Conclusions

In this paper, we study the query translation problem of the exclusive query in-
terface and present a novel Zipf-based selectivity estimation approach for infinite-
value attribute. Experimental results on several large-scale Web databases indi-
cate that our approach can achieve high precision on selectivity estimation of
infinite-value attribute for exclusive query translation.
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Abstract: How to identify and evaluate information credibility ranking has become an increasing important problem. To 
address the issue, an effective credibility evaluation method called C-Rank to compute trust values of records in Deep 
Web databases is proposed, which constructs an S-R Credibility Graph for each record. The graph contains 2 types of 
vertices and 3 types of edges. Firstly, each vertex’s local trust value is computed by using out-degrees based on the idea 
of trust propagation. Then, the weight of Record vertex is computed by using its in-degree and adjacent Site vertices’ 
local trust values. Lastly the global trust value of the S-R Credibility Graph is computed, which denotes the record's 
credibility in the whole Web. Experiment results show C-Rank can evaluate credibility rankings of records appropriately 
and discriminate false information effectively. This method is generally applicable to all domains of Deep Web. 
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ABSTRACT 

We study the problem of approximate membership extraction 
(AME), i.e., how to efficiently extract substrings in a text 
document that approximately match some strings in a given 
dictionary. This problem is important in a variety of applications 
such as named entity recognition and data cleaning. We solve this 
problem in two steps. In the first step, for each substring in the text, 
we filter away the strings in the dictionary that are very different 
from the substring. In the second step, each candidate string is 
verified to decide whether the substring should be extracted. We 
develop an incremental algorithm using signature-based inverted 
lists to minimize the duplicate list-scan operations of overlapping 
windows in the text. Our experimental study of the proposed 
algorithms on real and synthetic datasets showed that our solutions 
significantly outperform existing methods in the literature.  

Categories and Subject Descriptors 
H.2.4 [Database Management]: Systems – Textual Databases 

General Terms 
Algorithms 

Keywords 
Approximate Member Extraction, Filtration-verification, 
Approximate string matching, Incremental Computation 

1. INTRODUCTION 
In this paper we study the problem of finding substrings in a 

text document M that approximately match (e.g. having similarity 
scores above a given threshold ) some strings in a given 
dictionary R of strings. This problem, called AME (short for 
Approximate Member Extraction), arises in many applications, as 
illustrated by the following examples. 
Named Entity Recognition: With a given document, we want to 
locate pre-defined entities such as person names, conference 
names, and company names. We want this extraction to be appro- 
ximate, i.e., we allow slight mismatches in the substrings. For 
instance, as shown in Figure 1, suppose we have a collection of 
conference names, such as “ACM SIGMOD” and “CIKM 
Conference.”  

 
  Figure 1. Approximate member extraction 

We want to extract all conference names from a given document. 
We want to find matches such as “CIKM 2009 Conference” and 
“CIKM International Conference”, even though they do not match 
the string “CIKM Conference” in the dictionary exactly. 
Data Cleaning: Documents in many applications could be “dirty” 
when it contains inconsistencies. Often we need to clean the 
inconsistencies. We need to perform data cleaning and integration 
by identifying the dirty words based on an existing dictionary. 

One naive way to solve the AME problem is to enumerate 
each substring m of M and check if m matches strings in R 
approximately. Several algorithms have been proposed for doing 
the checking efficiently using two steps. In the first step, we filter 
the dictionary strings that are very different from m. In the second 
step, we compute the similarity between the remaining candidate 
strings and the string m to verify its approximate membership.  

There are two methods to do the filtration in the first step. One 
is based on an inverted index on the dictionary R. In this method, 
strings are regarded as collections of tokens. For each token, the 
index stores the ids of the strings that include this token. For a 
given string m, we can find candidate similar strings in the 
dictionary by accessing the lists of the tokens in m and finding 
those string ids that have enough occurrences on the lists. The 
second method is based on signatures generation [1, 4]. This 
method focuses on exploring signature schemes that convert a 
string to a set of hash codes and filtering irrelevant strings using 
their signatures. 

Recently, researchers have been trying to combine these two 
methods. For instance, Wang et al. propose a method called NGPP 
[13] to solve the AME problem by assuming the edit-distance 
similarity function. They shift and extend the partitions of 
dictionary strings to obtain an inverted index on all the partition 
variations (an implicit signature). Then by generating the 
neighborhood of partitions of document substrings and probing the 
index, the algorithm filters most irrelevant strings and performs 
verifications for the remaining strings. Chakrabarti et al. [2] 
studied how to solve the AME problem with other similarity score 
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functions such as Jaccard coefficient using a method called ISH 
(Inverted Signature-based Hashtable), which encodes a string and 
its signatures into a 0-1 matrix. After generating a 0-1 matrix by 
computing the “bitwise-or” of all small matrices encoded with 
dictionary strings, ISH converts the problem of searching possible 
evidence into finding a certain 0-1 submatrix in the big matrix. 

Our work in this paper is motivated by the following 
observations: (1) The ISH method generates signatures for strings 
and prune strings that share signatures with a total weight under a 
certain lower bound (see Para 8, Page 4 of [2]). Unfortunately, the 
lower bound may be too high, causing false negatives (see 
Example 1 for a counter-example). (2) The filtration processing of 
ISH involves an NP-Complete problem requiring finding solid 
submatrix (containing only 1) from a given 0-1 matrix under 
certain constraints. We give the reduction proof in this paper from 
an NP-Complete problem: Balanced Complete Bipartite Subgraph
(see Appendix). Due to the intrinsic complexity, [2] solves this 
problem by a simple heuristics, which significantly increases the 
number of false positives, and thus incurs numerous I/Os in the 
verification phase and deteriorates overall performance. But our 
research in this paper shows that we can avoid the NP-complete 
complexity to efficiently solve AME problem by adopting a novel 
index structure, which effectively controls the number of false 
positives and consequently improves the overall performance. (3) 
NGPP[13] and ISH[2] both require that is provided when 
preprocessing the data and generating an index for the filter. Once 
the threshold is fixed, these filters no longer support queries with 
thresholds other than unless the index is re-generated. 

EXAMPLE 1. (Example to illustrate the false negative in [2]) 
Under Jaccard similarity measurement, with weight assignment 
{(a, 6), (b, 3.52), (c, 3.51), (d, 3.49), (e, 3.48), (f, 1)}, string 
r=”bcde” matches m=“abef” under the similarity threshold 
=1/3. But from the following table we see that [2] incorrectly 
determines that m and r are impossible to match under the 
threshold 1/3, though their real similarity is 1/3. 

String
Signatures

(k=3) 
value Shared

Signatures

Lower Bound 
Required by 
ISH Filter 

r=“bcde” {b,c,d} 1.187

m=”abef” {a,b,e} 3.67
{(b, 3.52)} 3.67

We summarize our contributions as follows: 
We adopt the prefix filtering technique [4], and propose new 
theorems which are all strictly proved and well applied as 
filtering conditions in our method. These theorems convert 
approximate matching to prefix signatures sharing, and give a 
tighter bound. More importantly, this filtering technique 
brings no false negatives.  
We utilize an inverted-list-based filtering index SIL and 
propose corresponding algorithm called EvSCAN. By 
performing inverted list scanning instead of introducing 
matrix-based combinatorial problem, EvSCAN naturally 
avoids solving NP-Complete problem. We also apply 
incremental optimizations on EvSCAN and propose EvITER, 
which effectively reduces the duplicate list-scanning 
operations when the substring window shifts over a large 
document M. Compared with prior solutions, our method 
produces far less false evidences, thus achieves better 

filtration-verification balance and consequently improves the 
overall performance significantly. 
We modify our SIL to answer queries with dynamic similarity 
thresholds. Specifically, once initialized with a lower bound 

0, our filter works for any query with a threshold 0.
However previous filters only allow static similarity threshold 
and need to be re-initialized (i.e., the indices in filter has to be 
generated again) once the query threshold is changed. 
We provide detailed and accurate experimental results to 
support our argument. We show that SIL is significantly 
efficient than ISH, both in filtering power and overall running 
time, and explain the intrinsic reason by analyzing their 
runtime statistics in details. We also compare EvSCAN and 
EvITER under various situations, and show that our 
incremental optimization is effective. 
The following sections are organized as follows: 
Section 2 formally defines AME and gives some preliminaries. 

Section 3 complements the theory of prefix filtering and applies 
them to build the SIL structure and EvSCAN algorithm. Section 4 
introduces the EvITER incremental algorithm. Section 5 shows 
how to support dynamic thresholds. Section 6 reports our 
experimental results. Section 7 discusses related work. Section 8 is 
the conclusion of our study. 

2. PRELIMINARIES AND PROBLEM 
STATEMENT
2.1 Some Notations and Problem Statement 

In this paper, we use the letter “t” to denote a token, and the 
other lower-case letters are used for strings. We regard strings as 
sets of tokens. For any token t, we denote wt(t) as the weight of t 
(e.g. IDF weight), and for any string s, we define wt(s) 
as

st
twt )( , i.e. the sum of weights of all tokens in s. Based on 

the above notations we define Jaccard similarity of any strings s1
and s2 as: 

)(
)(),(

21

21
21 sswt

sswtssJ .

EXAMPLE 2. (Reusing the string and weight configuration of 
Example 1)Under weighted Jaccard similarity, the two strings 
m=“abef”, r=”bcde” have a similarity of wt({b, e})/wt({a, b, c, d, 
e, f})=(3.52+3.48)/(6+3.52+3.51+3.49+3.48+1)=1/3. 

With all notations introduced, we present the formal 
description of AME as follow: 

Sometimes we are only interested in substrings whose length 
is up to a length threshold L, so we may as well require that |m| 
L. Here any extracted m is called approximate member of R, and 
corresponding evidence for r in R. Note that our algorithms we 
present later can handle any similarity function that satisfies the 
following properties: 

Sim(m,r) is symmetric, i.e., Sim(m,r) = Sim(r,m).

Problem Statement 
Given a dictionary R of strings and a similarity threshold
[0,1], then a query M is submitted. Here M represents a 

relatively long string (e.g. a text file). The task of AME is to 
extract all M’s substrings m, such that there exists some r R
satisfying Sim(m,r) .
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)(),(

mwt
rmwtrmSim .

   (Symmetrically we have
)(

)(),(
rwt

rmwtrmSim .)

The first property is natural, and the second is also shared by 
many similarity functions [2]. For example, for any m and r, we 

have
)(

)(
)(
)(),(

mwt
rmwt

rmwt
rmwtrmJ  because wt(m r)

wt(m), so the Jaccard similarity is capable of serving as a 
similarity function in our discussion. 

2.2 The Filtration-Verification Framework 
To efficiently solve AME and other related problems, 

researchers have been designing methods following two phases of 
filtration and verification [1, 2, 4, 7, 13]. In the AME problem, 
employing this framework usually requires building an indexing 
structure for the dictionary R. Recall that for each approximate 
member m extracted, we define the string r in R that is similar 
enough with m to be m’s evidence. Thus, the task of extracting all 
approximate members from M can be simply reduced to 
determining whether there exists any evidence for each substring 
of M, and filtration-verification is actually referred to as evidence 
filtration and evidence verification. 

Generally, our foundation of filtration is based on some 
necessary condition (denoted as NC) of our matching criterion 
Sim , that is, if some candidate evidence is real evidence, it 
must satisfy NC. With the dictionary R given offline, we build an 
index that quickly recommends for a query m ALL potential 
evidence that meets NC, so that true evidence is never missed. 
Then the evidence is verified against the actual matching criterion 
to determine whether the string m is a true approximate member. 

Note that NC plays a key role in our whole framework. It 
ensures the correctness of the whole algorithm. Moreover, it 
determines how balanced our framework is. We can evaluate it 
through:  

How powerful is it? That is, does it eliminate as much false 
evidence as possible? 
Is it easy-going? That is, can we build a quick index to test it 
at low cost? 
There is a tradeoff in the cost between two phases of 

filtration-verification. For example, with all dictionary strings 
being potentially possible evidence, the most easy-going filtration 
approach for them is obviously “no filtration”, which leads to a 
brute-force method of scanning the whole dictionary. On the other 
hand, if we try to make our filtration the most powerful, i.e., it 
produces no false positive and achieves the smallest verification 
time; it will be expensive to perform such filtering. As a matter of 
fact, we need to obtain a beneficial compromise between two 
phases. In the following sections, we will intentionally highlight 
this issue through our theoretical and experimental analysis.  

2.3 The K-Signature Scheme 
The k-signature scheme is first demonstrated by Chakrabarti et 

al. in [2]. It is an extension of the prefix signature idea [1]. Here 
we briefly introduce some key definitions as follows: 

DEFINITION 1. For a given string s and similarity threshold
, we sort all its tokens by their weight in descending order (if 

two tokens appear with the same weight, we sort them 
lexicographically), and choose the first few tokens to get a subset 
Sig(s), such that (s)=wt(Sig(s))-(1- )wt(s) 0. We call Sig(s) a 
prefix signature set of string s. For convenience we call it 
signature set from now on. 

EXAMPLE 3. (Reusing the string and weight configuration of 
Example 1) Let =0.6, then {a,b} is a signature set of m because

(m)= wt({a,b})-(1-0.6)*wt({a,b,e,f})=9.52-5.6=3.92 0.
Based on its definition, the following is some facts about 

prefix signature set: 
For any string s, Sig(s) always exists because we can let 
Sig(s)=s, thus making (s)=wt(s)-(1- )wt(s)= wt(s) 0,
i.e., we choose itself to be its signature set. 
A string may have more than one signature set with different 
sizes. For instance in Example 3, we see that m has another 
different signature set {a,b} besides itself. 
One way to ensure the uniqueness of signature set is to use a 

parameter k to determine which set we choose for a string s, where 
k is a positive integer. We call this unique signature set 
k-signature set, denoted as Sigk(s). When k is fixed, we select 
Sigk(s) among all available signature sets as follows: 

If all signature sets’ sizes are bigger than k, choose the 
smallest one. 
Else if there is any signature set whose size is exactly k, 
choose it. 
Else, choose the largest one, i.e. the string itself. 
In some special case, when we set k=1, we call the derived 

signature scheme as min-signature scheme. When k is set to be ,
we will get the string itself to be its signature set. 

EXAMPLE 4. (Following the configurations of Example 3) We 
list the different Sig(m) under different k settings as below:

K 1 2 3 4 5 
Sigk(m) {a} {a,b} {a,b,e} {a,b,e,f} {a,b,e,f} 

Table 1. Signature sets controlled by K 
Note that parameter k has nothing to do with the requirement 

of signature set, so we may randomly set k for our filter, and even 
choose different k for different strings. As a matter of fact, if we 
regard signature set as a compression of information in strings, 
then k is the parameter for global compression rate tuning. That is, 
k only influences the performance of our filter. We will further 
discuss its role in Section 3.3. 

With the above description, we find that for any string s, the 
signature set is actually controlled by and k, thus should be 
written as Sigk(s, ). In fact, the parameter k is fixed to SIL and 
before Section 5 we also consider that is static, so when the 
context is clear, we still use Sig(s) to denote the signature set of s. 
In Section 5, we use Sig(s, ) because we start discussing how to 
support dynamic during query processing. 

3. FILTRATION VIA SIGNATURE-BASED 
INVERTED LISTS 

In this subsection, we show some nice properties about the 
signature set which will be used in our algorithms. For instance, if 
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String m and r meet the matching condition Sim(m,r) , m must 
contain at least one of r’s signatures. This is apparently a 
necessary condition for matching and can be utilized to build a 
filter. In the following discussion, we’ll further explore the 
property of signature sets and show that there are better filtering 
conditions. 

3.1 The Property of Signature Sets 
LEMMA 1. For any string s and its selected signatures, we use 

minsigwt(s) = )}({min )( twtssigt  to denote the smallest weight of 

all s’s signature tokens. Then for any string s: 

A token t Sig(s) if t s and wt(t) minsigwt(s). 
This is apparent because the selected signature tokens must 

have larger weight than unselected tokens. 
LEMMA 2. (PROPERTY OF PREFIX SIGNATURES). For any 

string m and r, if minsigwt(m)  minsigwt(r), then 
wt(Sig(m) Sig(r))  wt(Sig(m))- wt(m-r). Here m-r refers to the 
minus set of m and r. 
Proof: We transform it to an equivalent form as wt(m-r) 
wt(Sig(m)-Sig(r)), and prove this by showing that Sig(m)-Sig(r) is 
a subset of m-r .For any t Sig(m)-Sig(r) , we have t Sig(m) , so 
t m .

Now we prove that t r. 

Suppose that t r. because t Sig(m), we know that wt(t) 
minsigwt(m)  minsigwt(r) . From t r , wt(t) minsigwt(r) and 

Lemma 1, we conclude that t Sig(r). This is inconsistent with the 
fact that t Sig(m)-Sig(r) . So t r . 

From t r and t m , it’s obvious t m-r. So Sig(m)-Sig(r) is a 
subset of m-r , easily leading to the result that wt(m-r) 
wt(Sig(m)-Sig(r)) .

In Lemma 2, we illustrate the signature set overlapping 
relationship between matching strings. Intuitively this inequality 
condition is tighter than other conditions proposed in [1], and we 
believe this property is also useful in other researches involving 
prefix signatures. However, the set minus operator seems costly to 
handle, so we need to make this condition more easy-going. We 
solve this by introducing Theorem 1 as follow: 

THEOREM 1 (FILTERING CONDITION). For any m and r that 
satisfy Sim(m,r) , wt(Sig(m) Sig(r))  min{ (m), (r) }. 
Proof: If minsigwt(m))  minsigwt(r), according to Lemma 2, we 
have wt(Sig(m) Sig(r))  wt(Sig(m))- wt(m-m r)= wt(Sig(m))- 
wt(m)+wt(m r) wt(Sig(m))- wt(m)+ *wt(m r) wt(Sig(m))- 
wt(m)+ *wt(m)= wt(Sig(m))-(1- )wt(m)= (m)  min{ (m),

(r) }. 
If minsigwt(m)  minsigwt(r), based on the symmetry of Sim() 

we have the same result. So in conclusion we have wt(Sig(m)
Sig(r))  min{ (m), (r) }.                 

EXAMPLE 5. (Following the configurations of Example 3) 
Suppose k=2, we have Sig(m)={a,b}, (m)= 3.92 and Sig(r) 
={b,c}, (r)=(3.52+3.51)-0.4*14=1.43. So wt(Sig(m) Sig(r))= 
wt({b})=3.52  min{ (m), (r) } = min{3.92, 1.43}=1.43. 

We obtain the foundation of filtration phase of SIL so far. It’s 
easy to discover that when the threshold (r) is computed offline, 
this filtering condition only involves the signature set of all strings, 

indicating the fact that the time and space requirement of our filter 
is tightly related to the average signature set size of all strings in 
the dictionary R, which is controlled by the parameter k. Moreover, 
different k provides different filtering conditions. Among them we 
need to decide which one to choose. 

3.2 Filtration via SIL 
Since for any matched m and r, their signature sets overlaps, 

it’s easy to come up with the idea of building an inverted index 
structure for the dictionary R, and filtering by merging inverted 
lists and accumulating weights. After this index is built up offline, 
by visiting list[t], we can quickly retrieve for any token t a list of 
rid of all r in R, who contains token t as a signature. Due to the 
fact that these lists only involves signatures of all strings in R, we 
call this index SIL in short for signature-based inverted lists, and 
Algorithm 1 below shows the method to generate an SIL index. 
EXAMPLE 6. Suppose we have a dictionary R={r[1]=“SIL’s 
filtering power”, r[2]=”the power of filtering by SIL”}, the 
weight of each tokens are {<SIL’s, 5>, <filtering, 4>, <power,   
3.5>, <SIL, 3>, <by 2>, <the, 1>, <of, 1>}. We set k=1 and 
=0.55, then we have each strings’ signature set in Table 2 and the 
SIL built as Figure 2. 
rid String Signature Set 
1 “SIL’s filtering power” {“SIL’s”,”filtering”} 
2 ”the power of filtering by SIL” {“filtering”,”power”} 

Table 2. Signature sets of R’s strings 
Signature String rids  rid wt(r) (r)

“SIL’s”  (1)  1 12.5 3.375 

“filtering”  (1), (2)  2 14.5 0.975 

“power”  (2)     

Figure 2. SIL and additional information for dictionary R 
When a string m’s membership needs to be checked, we 

simply compute the signature set of m, denoted as {t1,t2…tn}.
Then we scan all n lists that is indexed by list[t1], list[t2]…list[tn], 
while aggregating the weight of ti to all rid whose record contains 
ti as one of its signature. To record the aggregated weight, we may 
use an array Sum[] for convenience or a hash table to save 
memory space. With all lists scanned, the aggregated weight of 
any rid is exactly the value of wt(Sig(m) Sig(r)). In fact, if any 
rid appears satisfying the filtering condition of Theorem 1, i.e. 
with an aggregated weight larger than min{ (m), (r)}, we can 
store it for later verification to determine whether it is the one that 
makes m a true member. 

ALGORITHM 1: BuildSIL( R, , k) 

1 for each r R do 

2  Sig GenSig(r, , k); 

 /*The function GenSig(r, , k) generates signature 
 for r under k-signature scheme.  */ 

3 for each t Sig do

4         list[t]=list[t] {rid(r)};//insert rid of r into list 

5 return list;
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Note that (r) and wt(r) for any dictionary string r is computed in 
the signature generating step of Algorithm 1 and they are stored in 
the main memory for the later use of our algorithms (See Figure 
2).

3.3 Additional Discussion 
In the above discussion, one may notice that we didn’t involve 

the parameter k. This again proves the fact that with any assigned 
k, our algorithm will run correctly. Since the signature set is a 
compression of information in a string, we will certainly get more 
information if we choose a relatively large k, through which we 
can target potential matching evidences to a smaller scope, thus 
reducing the cost of verifying these evidences.  

However, larger k causes longer inverted list length, i.e. more 
cost on targeting possible evidences. For instance, if we set k = ,
that is, for all strings s, we set Sig(s) to be s itself, and (s)=
*wt(s), we interestingly find that our method degrades into a 
common inverted-list based solution. Chakrabarti [2] first 
analyzed this problem and showed that k=3 is good on average 
situation, which is also proved in our experimental study. 

4. OPTIMIZATION BY PROGRESSIVE 
COMPUTATION 
4.1 Reducing Duplicate Computations 

Although EvSCAN algorithm efficiently checks the 
approximate membership of each single substring m in a 
document M, it ignores the overlapping between shifting substring 
windows and consequently takes a lot of time on duplicate 
computations. Another way to solve AME is to reduce this 
problem to set similarity join, which is already well studied by 
researchers [1, 4, 6]. In set similarity join, we are given SA and SB 
- two columns of sets, a similarity function Sim, and a threshold 

. The task of set similarity join is to join the two columns, where 
the joining condition is Sim(SA, SB) . In AME, if we set 
SA=R, SB={all substrings of M}, run set similarity join between 

SA and SB and project the result set along SB, we will get the 
result of AME. Though the problem of set similarity join is 
explored and optimized in many papers, this method still doesn’t 
notice the fact that the records in SB are quite similar with each 
other – they are substrings of a long text. 

In this section, based on the above observations, we believe 
that the unique property of AME should be exploited separately, 
and optimized method could be designed accordingly. So we study 
the incremental property of Theorem 1, and demonstrate Theorem 
2, in purpose of decreasing the duplicate list-scanning when 
examining all substrings of M. 

4.2 Optimization by Progressive Computation 
Assume m t denoting the string which we get by 

concatenating token t to the tail of string m. Consider the process 
of checking m and m t: we compute the signature set of m and 
verify the condition in Theorem 1, then we do the same job for 
m t. Intuitively the signature set of m and m t are much alike. 
We observe that: if some r cannot match m and does not contain t, 
it is not likely to match m t. Before we formalize our intuition 
into new theorem and algorithm, we introduce Evidence Superset
by the lemma and definition below: 

LEMMA 3. For any m and r that satisfy Sim(m,r) ,
wt(m Sig(r)) min{ *wt(m), (r)}}. 

This lemma is an inference of Theorem 1. Recall that in 
previous sections we mention that Theorem 1 remains correct even 
if we set different k for different strings, Lemma 3 is in fact 
obtained by setting k=  for m in Theorem 1 (so Sig(m) is 
replaced by m and (m) by *wt(m)). With Lemma 3 we define 
Evidence Superset for any query substring m as follow: 

DEFINITION 2. Suppose  and k are fixed, for any string m, let 
ES(m)= {r R| wt(m Sig(r)) min{ *wt(m), (r)}}, we call 
ES(m) an Evidence Superset of m. Based on Lemma 3 it’s obvious 
that any true evidence for m must be contained in ES(m). 

From its definition, we see that ES(m) is useful since any 
evidence matching m will be included in ES(m). If we can 
efficiently compute ES(m) for any substring m, we can further 
filter elements in ES(m) to pick out all true evidences and check 
m’s approximate membership. Our intuition is formalized below. 

LEMMA 4. For any string m and token t, if a dictionary 
r ES(m) and t Sig(r), then  r ES(m t). 

Proof: We prove r ES(m t) by showing that wt((m t)
Sig(r)) <min{ *wt(m t), (r)}: wt((m t) Sig(r))=wt(m
Sig(r)) (Because t Sig(r)) <min{ *wt(m), (r)}(because 
r ES(m))< min{ *wt(m t), (r)}.                 

This lemma states a fact that if a dictionary string is far from 
being evidence of current substring m and it is not a signature of 
the coming token t, then it cannot be evidence when the substring 
window moves to m t. However this lemma still cannot serve as 
a method for efficiently computing ES(m), we further generalize  

Lemma 4 to obtain Theorem 2 to demonstrate the incremental 
property of ES(m). 

ALGORITHM 2: EvSCAN( M, , k, L) 

1 ResultSet ;// for storing approximate members 

2 for each m of M’s substrings (|m|  L) do

3  Sig GenSig(m, , k); 

4 Initialize Sum[];//for weight aggregating 

5  CandSet ;// for storing candidate evidence 

6  for each t Sig do

7      for each rid list[t] do
8     Sum[rid]+=wt(rid);//aggregating weight 

9     if Sum[rid]>=min{ (m), (rid)} then

10        CandSet CandSet {rid};

11  for each rid CandSet do//verification 

12      if Sim(m, r(rid)) then//true evidence found 

13     ResultSet ResultSet {m};

14     break; 
15 return ResultSet;
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THEOREM 2. (INCREMENTAL PROPERTY). Suppose , k are 
fixed, it holds for any string m and token t that  ES(m t)
ES(m) list[t]. 

Notice that the approach we build SIL determines that t
Sig(r) means r list[t], so Theorem 2 is obviously based on 
Lemma 4. This theorem indicates an efficient iterative approach of 
maintaining ES() for the varying substring when the right 
boundary of the substring windows moves by a token. That is, we 
check all elements in ES(m) list[t] and pick out proper ones into 
ES(m t). Note that this process requires maintaining another 
field recording wt(m Sig(r)) in the summing table sum[], so it 
can be combined with the process of filtering by SIL. 

Now we get a new algorithm of incrementally checking all 
substrings, that is, we fix the left boundary of the substring 
window and shift the other boundary to the right. While the 
substring varies we iteratively maintain corresponding ES() to 
filter and verify all evidence in it. Figure 3 shows this iteration 
process, with an instance of M=t1 t2. For convenience, we 
denote this incremental filtering algorithm as EvITER (Evidence 
Iterating), while EcSCAN in Section 3.2 is short for Evidence 
Scanning.

4.3 Combining Other Filtering Conditions 
In Algorithm 1 and 2, we use “VerifyAllCandidate()” to 

denote the process of verification, by which one determine if m is 
really a true member. Since not all r’s in CandSet are the ones that 
make m a true member, we may as well make 
“VerifyAllCandidate()” a small filter-verification process, via 
introducing some other simple yet effective filtering conditions. 
The following is exactly one of such conditions we want: 

If Sim(m,r) , then wt(m) * wt(r)  wt(m)/ .
Intuitively, under the non-weighted situation, this condition 

states that if any two strings have too much difference in length, 
they are not likely to match each other. To apply this filtering 
condition, we need only store in memory the weight value of all 
strings in R. By checking this condition for all r in CandSet, we 
can quickly narrow our scope to fewer possible r, thus avoiding 
more disk accessing and making computation more efficient.  

4.4 Algorithm Analysis 
 In this section we analyze the time and memory cost of our 

algorithms, and demonstrate the advantages of EvITER over 
EvSCAN. The notations to be used are listed in Table 3. 

|M| The length of text used as the input of AME 

|R| Dictionary size 

Lr Average length of dictionary strings 

Lm Average substring length 

Llist Average length of inverted lists 

Similarity threshold 

E Total number of evidence that passes the filter 

Cv Time cost of verifying an evidence (including disk 
accessing and similarity score computing) 

Table 3. Some notations in cost analysis 
In addition to the above notations, we make two assumptions 

in order to simplify our discussion: (1) the length of all strings is 
longer than k. (2) all tokens have the same weight (e.g. 1). 
Therefore, we obtain an upper bound for the signature set size of 
any string. 

LEMMA 5. Suppose k and are fixed, then for any string m with 
length L, |Sig(m)|  max{k,(1- )L}.

Proof: Because for any string m, |Sig(m)|=wt(Sig(m)) (1- )
*wt(m)= (1- )L, the smallest signature set size is (1- )L. 

If (1- )L  k, from the definition of k-signature set we choose 
the first k tokens as signatures, so |Sig(m)|=k, else we choose the 
smallest signature set of size (1- )L. Therefore we have |Sig(m)| 

 max{k,(1- )L}.                         

ALGORITHM 3: EvITER( M={t[1],t[2],…,t[n]}, , k, L) 

1 ResultSet ;// for storing approximate members 

2 for i =1 to n do
3   Initialize Sum[]; 

  /*Sum[rid].s1 records wt(Sig(m) Sig(r(rid))) and  
Sum[rid].s2 for wt(m Sig(r(rid))) */ 

4   LastES ;//for iterating ES 

5   for j=i to min{n,i+L-1} do   //current m= t[i]…t[j] 

6     ES ;

7     CandSet ;// for storing candidate evidence 

8 update Sig(m) and maintain sum[];
    /*because m and Sig(m) changes      */ 

9 for each rid list[t] LastES do

10 if Sum[rid].s2 min{ *wt(m), (r(rid))} then

11         ES ES {rid};

12 if Sum[rid].s1 min{ (m), (rid)} then   
       CandSet CandSet {rid};

13     VerifyAllCandidate();    //verification 

14     LastES ES;   //iteration for the next window 

15 return ResultSet; 

ES(t1 t2)

Figure 3. Flow of dictionary strings in EvITER 

Evidence
of t1

Evidence
of t1 t2

list[t2], checkES(t1)list[t1], check

Filtering
by SIL 

Filtering
by SIL 
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With above assumptions and lemmas, the memory cost of our 
SIL can be expressed as 

MEMCOST=|R|max{k, (1- )Lr}.
 This equation is correct since every string in R produces 

max{k, (1- )Lr} nodes at most in the inverted lists. To estimate 
the time cost of our algorithms, we introduce another lemma as 
below:

LEMMA 6. For each substring m, the number of inverted lists that 
EvSCAN and EvITER scan are respectively |Sig(m)| and 2. 
Proof (Outline): It’s obvious for EvSCAN and we only give proof 
for EvITER. Consider the moment we finish checking m and 
prepare for m t, we have to scan list[t] once to iterate ES(m) 
into ES(m t). Moreover, it’s possible that t replace some 
signature token t’ to be a new signature, so we must scan list[t’] to 
maintain the summing table sum[] for next iteration.         

Therefore, the filtration cost of EvSCAN and EvITER are 
respectively |M|LmLlistmax{k, (1- )Lm} and 2|M|LmLlist. The 
verification cost of EvSCAN can be estimated as ECv, while that 
of EvITER is E (1+Cv) because of the O(1) evidence iteration cost 
for every evidence. In summary we have 

TIMECOST(EvSCAN)= |M|LmLlist max{k, (1- )Lm}+ ECv,
TIMECOST(EvITER)= 2|M|LmLlist + E(1+Cv). 

Here we see that EvITER avoids scanning some lists by 
introducing the cost of evidence iteration, so it may have some 
advantage when k is large or E is small, which will be 
demonstrated by our experimental results later. 

5. SUPPORTING DYNAMIC SIMILARITY 
THRESHOLDS
5.1 The Static Threshold Problem 

In the above discussion we talk about how to perform AME 
with a static similarity threshold, where the filter can be denoted 
as F(R, 0), given a dictionary R and a fixed threshold 0,
meaning that the threshold 0 is undesirably static. If users want 
to submit a query with other thresholds, the filter has to be 
re-initialized. This apparently leads to much inconvenience in 
practice. In this section we will focus on this issue and show that 
with a little modification, our SIL can handle this problem well. 
Note that in this section, the notation Sig(s) is replaced by Sig(s, )
to add a dynamic threshold .

5.2 Solution and Analysis 
In our SIL algorithm, we observe that the problem of static 

threshold is caused by the definition of prefix signatures. Recall 
that the prefix signatures Sig(s) for string s is a prefix subset of s 
that satisfies wt(Sig(s)) (1- wt(s). Therefore, with different
we need different number of signatures to build various filters. 

Another observation is that, under min-signature schema, for 
any string s, if a token t is selected as a signature under some 
threshold, it will also be in the signature set of s when the 
threshold gets lower. That is, if we initialize the filter at a 
relatively low threshold , when a query comes with a higher 
threshold , those rids whose string contains t as a signature 
should be included in some nodes on list[t] of the current filter. 
For simplicity we call these nodes active nodes. All we need is to 
discriminate active nodes, and use them to perform filtration. 

We propose Theorem 3 to provide a way to discriminate active 
nodes as follow: 
THEOREM 3 (SUFFICIENT AND NECESSARY CONDITION OF
MIN-SIGNATURE). Under min-signature schema, for any string 
s={t1,t2…tn}, where wt(t1) wt(t2) … wt(tn), let Ui=1-(wt(t1)+
wt(t2)+…+ wt(ti))/wt(s) for any i 1 and U0=0. We have the 
following conclusion: 

ti Sig(s, ) if and only if [0,Ui-1). 
Because Ui-1 can be computed in the filter-constructing phase, 

in every node of all inverted lists, we add a field to record Ui-1 in 
order to test the condition [0,Ui-1) to decide whether this is an 
active node. Moreover, we can sort all nodes in a list in 
descending order of corresponding Ui-1. In this way, for any 
threshold , all active node in a list must form a prefix of the list. 
Therefore, we may stop our scan once an inactive node is found, 
by which we avoid scanning the whole list and enhance the 
performance.

Note that this modification should only be applied under the 
min-signature scheme. In fact, in Section 6 we will show that 
under most cases, min-signature schema is enough to serve as a 
good choice. 

EXAMPLE 8. (adopting the configuration in Example 6) 
Suppose we initialize the modified filter with min-signature 
schema (k=1) and 0=0.55 as Figure 4. We have a query with 

=0.7, then all nodes in Figure 4 that is circled out become 
active nodes and should be scanned. 

Signature String rids and U 
“SIL’s”  (1, 1.0)  

“filtering”  (2, 1.0), (1, 0.6) 

“power”  (2, 0.725)  

Figure 4. Active nodes when =0.7 
Comparing with the origin SIL, we see that applying this 

modification only requires a little more space and additional 
sorting in the filter-building phase. For queries with various 
similarity thresholds, the modified SIL successfully solves the 
static threshold problem, without visiting any additional list nodes 
or trading query performance. 

6. EXPERIMENTAL STUDY 
6.1 Experimental Settings 

The following filters and algorithms are evaluated in this 
section:

ISH (abbreviated from Inverted Signature-based Hashtable)
is a filter proposed in [2], whose idea is to optimize the query 
range of length filtering. In our experiment, we set the inverted 
hashtable length b to be 11 (8 is enough according to [2]). 

EvSCAN on SIL is our proposed algorithm, which filters by 
scanning the Signature-based Inverted Lists. EvITER is an 
optimized version of EvSCAN, which aims at reducing 
unnecessary list scanning. 
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Figure 5. Comparison between ISH and SIL (k=3, |R|=1000, L=10)
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Figure 6. Some Statistics for ISH   (k=3, L=10, =0.85)
We ran our experiments on the following two datasets: 
DBLP: It includes paper titles downloaded from the DBLP 

site. We extracted 274,788 paper titles with a total size 17.8MB as 
the dictionary. The query text to this dictionary is 40 web pages 
from CiteSeer, each containing the title, abstract, citation, etc. of a 
random paper. Tokens are separated by spaces and punctuations. 

URL: The dictionary includes the first 1,838,973 URLs from 
an URL dataset. The query text is 40 text files, each containing 50 
random URLs from the rest of the dataset. Tokens are separated 
by slashes. 

On both datasets, standard IDF weight [14] is applied, and all 
tests were conducted under the weighted Jaccard similarity 
measurement. We mainly judge the performance of all filters via 
analyzing the filtering power and overall running time of them. 
We evaluate the power of filters by the candidate evidence they 
produce since the size of candidate evidences has a great influence 
on overall performance. 

6.2 Comparing with ISH 
We compared our approach EvSCAN on SIL with ISH in this 

section. We first performed experiments on DBLP data (dictionary 
size: 274,788 records), and our results show that ISH produced a 
large amount of candidate evidences and disk-accessing, thus 
spending much time on verification and could not terminate in one 
hour. Therefore, we had to reduce the size of dictionary using the 
first 1000 records in DBLP. 

We explain this result through reviewing the filtering approach 
of ISH: for every query substring m, ISH optimizes the existing 
length filtering condition mentioned in Section 4.3, and uses a new 
range (denoted as [a,b], a = *wt(m), b  wt(m)/ ) as the SQL 
querying condition at evidence record retrieving phase. 

In Figure 6, we show the record distribution of two datasets 
across the weight axis (see sub-figure (a) and (b)), where all 
records distribute densely, with at most 50k and on average 10k in 
a unit length of weight range (DBLP dataset). This implies that it’s 
unwise to retrieve all evidence whose weight is in certain range, 
unless we can make our query range desirably small or far from 
those regions with crowded records. 

In Figure 6(c), we sampled the weight range [a,b] (each 
represented by a characteristic point (mid-point, length) or 

( (a+b)/2, b-a) ) from 2,608 SQL queries ISH launches when 
processing a random webpage. We also flagged some areas as 
“desirable area”, where “desirable queries” appear (queries 
possessing small [a,b] ranges or avoiding the most frequent weight 
of all records, i.e. x-coordinate of the peak in Figure 6(a) and (b) ). 

We see in this figure that the mid-points of all sampled ranges 
vary averagely from 0 to 70, which include the most frequent 
weight in both datasets (15 for Figure 6(a) and 20 for (b)). 
Moreover, though ISH sometimes successfully confirms of no 
matching (denoted by ranges with negative length in Figure 6(c) ), 
the range length in many queries is not desirably short. Therefore, 
there exist too many queries, whose characteristic point is located 
far from our “desirable area”. These insufficiently optimized 
queries lead to tons of I/Os and verification computations, thus 
deteriorating the overall performance of ISH. 

6.3 Effects of parameters on SIL 
Based on our analysis in the above sections, the performance 

of SIL is mainly influenced by the following aspects: the 
“compressing rate” parameter k, dictionary size, query text length, 
similarity threshold, and substring length threshold. We run 
EvITER on different parameter settings and record the results, 
from which we have the following observations: 

The parameter k is tightly related to every aspect of the filter. 
Larger k means stronger filtering power (Figure 7(a)), less 
verification time, and larger filter size. However, on average 
situation when =0.85 and L=10, the result shows that the 
most competitive k value is among 1, 2, and 3 (see Figure 
7(b)), which makes the two phases of filtration and 
verification more balanced. This supports our discussion about 
compromising between the two phases. 
Though the performance of SIL depends much on the inherent 
property of the dataset (e.g. query texts about chemical science 
certainly run quickly on our URL dictionary because the 
number of word matching is expected to be small), it still 
exhibits a linear increase in running time under different 
dictionary size and query text length, which is expected in our 
cost analysis in Section 4.4. 
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6.4 Comparison between EvSCAN & EvITER 
Besides the experimental analysis on ISH and SIL, we also 

performed a comparison between the two algorithms we propose: 
EvSCAN and EvITER. Instead of dictionary size and query length, 
in this subsection we mainly focus on the two varying threshold 
parameters: similarity threshold and substring length threshold. 

Through the comparison we found that: 
The similarity threshold significantly affects the time 
consumed by our two algorithms. When decreases from 0.95 
to 0.7, both algorithms requires 4 times more running time. 
This is easily explained by our filtering condition: when
decreases, the signature sets of most strings get larger to make 
the chance of signature overlapping increase, while (.) for 
most strings leaves almost unchanged. Thus, it’s easier for 
evidence to pass the filter. 

When L=10, k=3 and =0.85, EvITER shows a performance 
increase of about 25% over EvSCAN, this is because EvITER 
reduces the operation of scanning an inverted list, by iterating 
from one evidence set to another. When the similarity 
threshold is high and the candidate evidence set is small, the 
advantage of EvITER will be more obvious. 
To our surprise, when L is above 15, EvITER is gradually 
outperformed by EvSCAN. This result is not expected by us. 
We carefully studied this issue and find the reason: because 
the candidate set ES(m) we maintain (recall in Section 4.2) 
tends to get bigger when m is longer, therefore EvITER will 
spends more time iterating it as larger L allows longer m to be 
checked. 

7. RELATED WORK 
In the literature "approximate string matching" refers to the 

problem of finding a pattern string approximately in a text. There 
have been many studies on this problem. See [9] for an excellent 
survey. The problem of AME is different: searching in a long text 
to approximately match a string from a dictionary. In addition, 
AME is also different to the problem of text document indexing 
(finding dictionary documents approximately containing a query 
string) and string similarity joins (identifying approximate 
matching string pairs, each from one of two columns of strings). 

To measure the similarity of a pair of strings, generally all 
similarity functions can be categorized as token-based and 
character-based, depending on what they regard strings as: sets of 
tokens, or sequences of characters. 

The token-based AME problem, as discussed in this paper, can 
be straightforwardly reduced to set similarity join [1, 4, 6, 10]. 
Paper [4] discussed the framework and implements of a primitive 
operator SSJoin for performing similarity joins, on which a variety 
of similarity functions can be applied. Paper [1] solved the 
similarity join problem by converting set-based similarity distance 
into hamming distance between binary vectors, and studying the 
number of shared segments of two divided vectors. In [2], 
Chakrabarti et al. proposed a 0-1 matrix-based AME filter. In this 
paper we showed that their approach touches upon a NPC decision 
problem, whose intractability we briefly prove in the Appendix. 

As a complement to the token-based approach, the 
character-based approximate string-matching problem has been 
well studied by researchers [9]. Early methods handling the edit 
distance constraints mostly work on the relationship of edit 
distance and gram sharing [12]. Due to the dilemma in choosing 
gram length, [8] proposes VGRAM, namely variable-length gram 
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to address the problem. For non-gram-based approaches, Wang et 
al. uses inverted lists to index the neighborhood of dictionary 
strings, and enhances previous neighborhood generation methods 
by reducing the upper bound of the neighborhood size [13].  

Another line of related work is on inverted list merging, 
because the filtration phase needs inverted list processing. In [7], 
this problem is formalized into T-occurrence problem, and three 
efficient algorithms are proposed. T-occurrence problem requires 
that the threshold T should be independent from any list nodes, 
which is not satisfied by our method (our threshold min{ (m), (r)}
varies with the rid information in list nodes), the list processing 
technique in [7] is orthogonal to our solution here, and can be used 
(by some modification) on SIL index in a complementary manner. 

8. CONCLUSION 
In this paper, we studied the AME problem (Approximate 

Member Extraction). Under the framework of 
filtration-verification, we analyzed the issue of trading between 
the two phases, and proposed a new filtering condition and 
corresponding filter called SIL. Then we designed two algorithms 
for SIL: EvSCAN and its incrementally optimized version 
EvITER, which saves the cost of scanning some inverted lists by 
progressively maintaining a candidate evidence set of the current 
substrings. We also addressed the static threshold problem of 
previous filters, and gave a solution for it on our SIL. Finally we 
reported the performance of our filtering algorithms through 
theoretical and experimental analysis. 

9. APPENDIX 
Theorem 1 in [2] provides a method of filtering by converting 

it to a decision problem about 0-1 matrices. Here, we give the 
proof about its intractability. For convenience we call it 
Constrained Solid Submatrix problem and describe it as below: 

(Constrained Solid Submatrix problem) Given a 0-1 matrix A, 
whose size is p*q and two weight functions w1(i) (1  i  p) and 
w2(j) (1  j  q), we need to determine if there exsits a subset 
I={ i1, i2, …, ir } from the rows and a subset J={ j1, j2, …, jc } from 
the columns such that for any i’ I and j’ J, A[i’][j’]=1, and 
w1(i1)+ w1(i2)+…+ w1(ir) , w2(j1)+ w2(j2)+…+ w2(jc) (
and  are two given thresholds) 

THEOREM 4 (intractability of Constrained Solid Submatrix 
problem) Constrained Solid Submatrix problem is NP-Complete. 
Proof Outline: We prove by reducing to Balanced Complete 
Bipartite Subgraph problem, which requires finding a K*K 
complete bipartite subgraph in a given bipartite B=<V1 V2, E>. 
It is already proven to be NP-Complete (see page 196 in [5]). 

For any instance of the Balanced Complete Bipartite 
Subgraph problem, let w1(i)=1,w2(j)=1, = = K, and construct 
a |V1|*|V2| 0-1 matrix, whose elements are assigned as follow: 

    1   If the i-th vertex in V1 and j-th 
A[i][j]=  in V2 are adjacent. 
    0   Otherwise. 

Then we can show that A has a constrained solid submatrix if 
and only if the corresponding Balanced Complete Bipartite 
Subgraph problem has a solution. This concludes the reduction.
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Abstract— Answering approximate queries on string collec-
tions is important in applications such as data cleaning, query
relaxation, and spell checking, where inconsistencies and errors
exist in user queries as well as data. Many existing algorithms use
gram-based inverted-list indexing structures to answer approxi-
mate string queries. These indexing structures are “notoriously”
large compared to the size of their original string collection.
In this paper, we study how to reduce the size of such an
indexing structure to a given amount of space, while retaining
efficient query processing. We first study how to adopt existing
inverted-list compression techniques to solve our problem. Then,
we propose two novel approaches for achieving the goal: one is
based on discarding gram lists, and one is based on combining
correlated lists. They are both orthogonal to existing compression
techniques, exploit a unique property of our setting, and offer
new opportunities for improving query performance. For each
approach we analyze its effect on query performance and develop
algorithms for wisely choosing lists to discard or combine.
Our extensive experiments on real data sets show that our
approaches provide applications the flexibility in deciding the
tradeoff between query performance and indexing size, and can
outperform existing compression techniques. An interesting and
surprising finding is that while we can reduce the index size
significantly (up to 60% reduction) with tolerable performance
penalties, for 20-40% reductions we can even improve query
performance compared to original indexes.

I. INTRODUCTION

Many information systems need to support approximate
string queries: given a collection of textual strings, such as
person names, telephone numbers, and addresses, find the
strings in the collection that are similar to a given query string.
The following are a few applications. In record linkage, we
often need to find from a table those records that are similar to
a given query string that could represent the same real-world
entity, even though they have slightly different representations,
such as spielberg versus spielburg. In Web search, many
search engines provide the “Did you mean” feature, which
can benefit from the capability of finding keywords similar to
a keyword in a search query. Other information systems such
as Oracle and Lucene also support approximate string queries
on relational tables or documents.

Various functions can be used to measure the similarity
between strings, such as edit distance (a.k.a. Levenshtein
distance), Jaccard similarity, and cosine similarity. Many algo-
rithms are developed using the idea of “grams” of strings. A
q-gram of a string is a substring of length q that can be used
as a signature for the string. For example, the 2-grams of the

string bingo are bi, in, ng, and go. These algorithms rely on
an index of inverted lists of grams for a collection of strings to
support queries on this collection. Intuitively, we decompose
each string in the collection to grams, and build an inverted
list for each gram, which contains the id of the strings with
this gram. For instance, Fig. 1 shows a collection of 5 strings
and the corresponding inverted lists of their 2-grams.

id string 
1 bingo 

2 bitingin 

3 biting 

4 boing 

5 going 

 (a) Strings.

 
gram  string ids 
bi  1, 2, 3 
bo  4 
gi  2 
go  1, 5 
in  1, 2, 3, 4, 5 
it  2, 3 
ng  1, 2, 3, 4, 5 
oi  4, 5 
ti  2, 3 

 
(b) Inverted lists.

Fig. 1. Strings and their inverted lists of 2-grams.

The algorithms answer a query using the following obser-
vation: if a string r in the collection is similar enough to the
query string, then r should share a certain number of common
grams with the query string. Therefore, we decompose the
query string to grams, and locate the corresponding inverted
lists in the index. We find those string ids that appear at least
a certain number of times on these lists, and these candidates
are post-processed to remove the false positives.

Motivation: These gram-based inverted-list indexing struc-
tures are “notorious” for their large size relative to the size
of their original string data. This large index size causes
problems for applications. For example, many systems require
a very high real-time performance to answer a query. This
requirement is especially important for those applications
adopting a Web-based service model. Consider online spell
checkers used by email services such as Gmail, Hotmail,
and Yahoo! Mail, which have millions of online users. They
need to process many user queries each second. There is a
big difference between a 10ms response time versus a 20ms
response time, since the former means a throughput of 50
queries per second (QPS), while the latter means 20 QPS. Such
a high-performance requirement can be met only if the index
is in memory. In another scenario, consider the case where
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these algorithms are implemented inside a database system,
which can only allocate a limited amount of memory for the
inverted-list index, since there can be many other tasks in the
database system that also need memory. In both scenarios, it
is very critical to reduce the index size as much as we can to
meet a given space constraint.

Contributions: In this paper we study how to reduce the size
of such index structures, while still maintaining a high query
performance. In Section III we study how to adopt existing
inverted-list compression techniques to our setting [31]. That
is, we partition an inverted list into fixed-size segments and
compress each segment with a word-aligned integer coding
scheme. To support fast random access to the compressed lists,
we can use synchronization points [24] at each segment, and
cache decompressed segments to improve query performance.
Most of these compression techniques were proposed in the
context of information retrieval, in which conjunctive keyword
queries are prevalent. In order to ensure correctness, lossless
compression techniques are usually required in this setting.

The setting of approximate string search is unique in that
a candidate result needs to occur at least a certain number of
times among all the inverted lists, and not necessarily on all the
inverted lists. We exploit this unique property to develop two
novel approaches for achieving the goal. The first approach
is based on the idea of discarding some of the lists. We
study several technical challenges that arise naturally in this
approach (Section IV). One issue is how to compute a new
lower bound on the number of common grams (whose lists
are not discarded) shared by two similar strings, the formula
of which becomes technically interesting. Another question is
how to decide lists to discard by considering their effects on
query performance. In developing a cost-based algorithm for
selecting lists to discard, we need to solve several interesting
problems related to estimating the different pieces of time
in answering a query. For instance, one of the problems
is to estimate the number of candidates that share certain
number of common grams with the query. We develop a novel
algorithm for efficiently and accurately estimating this number.
We also develop several optimization techniques to improve
the performance of this algorithm for selecting lists to discard.

The second approach is combining some of the correlated
lists (Section V). This approach is based on two observations.
First, the string ids on some lists can be correlated. For
example, many English words that include the gram “tio” also
include the gram “ion”. Therefore, we could combine these
two lists to save index space. Each of the two grams shares the
union list. Notice that we could even combine this union list
with another list if there is a strong correlation between them.
Second, recent algorithms such as [20], [11] can efficiently
handle long lists to answer approximate string queries. As a
consequence, even if we combine some lists into longer lists,
such an algorithm can still achieve a high performance. We
study several technical problems in this approach, and analyze
the effect of combining lists on a query. Also, we exploit a
new opportunity to improve the performance of existing list-

merging algorithms. Based on our analysis we develop a cost-
based algorithm for finding lists to combine.

We have conducted extensive experiments on real datasets
for the list-compression techniques mentioned above (Sec-
tion VI). While existing inverted-list compression techniques
can achieve compression ratios up to 60%, they considerably
increase the average query running time due to the online de-
compression cost. The two novel approaches are orthogonal to
existing inverted-list-compression techniques, and offer unique
optimization opportunities for improving query performance.
Note that using our novel approaches we can still compute the
exact results for an approximate query without missing any
true answers. The experimental results show that (1) the novel
techniques can outperform existing compression techniques,
and (2) the new techniques provide applications the flexibility
in deciding the tradeoff between query performance and index-
ing size. An interesting and surprising finding is that while we
can reduce the index size significantly (up to a 60% reduction)
with tolerable performance penalties, for 20-40% reductions
we can even improve the query performance compared to
the original index. Our techniques work for commonly used
functions such as edit distance, Jaccard, and cosine. We mainly
focus on edit distance as an example for simplicity.

Due to space limitations, we leave more results in the 18-
page full version of this paper [4].

A. Related Work

In the literature the term approximate string query also
means the problem of finding within a long text string those
substrings that are similar to a given query pattern. See [25]
for an excellent survey. In this paper, we use this term to refer
to the problem of finding from a collection of strings those
similar to a given query string.

In the field of list compression, many algorithms [23], [30],
[7], [9] are developed to compress a list of integers using
encoding schemes such as LZW, Huffman codes, and bloom
filters. In Section III we discuss in more detail how to adopt
these existing compression techniques to our setting. One
observation is that these techniques often need to pay a high
cost of increasing query time, due to the online decompression
operation, while our two new methods could even reduce
the query time. In addition, the new approaches and existing
techniques can be integrated to further reduce the index size,
as verified by our initial experiments.

Many algorithms have been developed for the problem of
approximate string joins based on various similarity func-
tions [2], [3], [5], [6], [10], [27], [28], especially in the context
of record linkage. Some of them are proposed in the context
of relational DBMS systems. Several recent papers focused
on approximate selection (or search) queries [11], [20]. The
techniques presented in this paper can reduce index sizes,
which should also benefit join queries, and the corresponding
cost-based analysis for join queries needs future research. Hore
et al. [13] proposed a gram-selection technique for indexing
text data under space constraints, mainly considering SQL
LIKE queries. Other related studies include [17], [26]. There
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are recent studies on the problem of estimating the selectivity
of SQL LIKE substring queries [15], [18], and approximate
string queries [22], [16], [19], [12].

Recently a new technique called VGRAM [21], [29]
was proposed to use variable-length grams to improve
approximate-string query performance and reduce the index
size. This technique, as it is, can only support edit distance,
while the techniques presented in this paper support a variety
of similarity functions. Our techniques can also provide the
user the flexibility to choose the tradeoff between index size
and query performance, which is not provided by VGRAM.
Our experiments show that our new techniques can outperform
VGRAM, and potentially they can be integrated with VGRAM
to further reduce the index size (Section VI-E).

II. PRELIMINARIES

Let S be a collection of strings. An approximate string
search query includes a string s and a threshold k. It asks
for all r ∈ S such that the distance between r and s is
within the threshold k. Various distance functions can be used,
such as edit distance, Jaccard similarity and cosine similarity.
Take edit distance as an example. Formally, the edit distance
(a.k.a. Levenshtein distance) between two strings s1 and s2

is the minimum number of edit operations of single charac-
ters that are needed to transform s1 to s2. Edit operations
include insertion, deletion, and substitution. We denote the
edit distance between two strings s1 and s2 as ed(s1, s2). For
example, ed(“Levenshtein”, “Levnshtain”) = 2. Using
this function, an approximate string search with a query string
q and threshold k is finding all s ∈ S such that ed(s, q) ≤ k.

Let Σ be an alphabet. For a string s of the characters in
Σ, we use “|s|” to denote the length of s. We introduce two
characters α and β not in Σ. Given a string s and a positive
integer q, we extend s to a new string s′ by prefixing q − 1
copies of α and suffixing q − 1 copies of β. (The results in
the paper extend naturally to the case where we do not extend
a string to produce grams.) A positional q-gram of s is a pair
(i, g), where g is the substring of length q starting at the i-th
character of s′. The set of positional q-grams of s, denoted
by G(s, q), or simply G(s) when the q value is clear in the
context, is obtained by sliding a window of length q over the
characters of s′. For instance, suppose α =#, β = $, q = 3,
and s = irvine. We have: G(s, q) = {(1, ##i), (2, #ir),
(3, irv), (4, rvi), (5, vin), (6, ine), (7, ne$), (8, e$$)}. The
number of positional q-grams of the string s is |s|+q−1. For
simplicity, in our notations we omit positional information,
which is assumed implicitly to be attached to each gram.

We construct an index as follows. For each gram g of the
strings in S, we have a list lg of the ids of the strings that
include this gram (possibly with the corresponding positional
information). It is observed in [27] that an approximate query
with a string s can be answered by solving the following
generalized problem:

T -occurrence Problem: Find the string ids that ap-
pear at least T times on the inverted lists of the
grams in G(s, q), where T is a constant related to

the similarity function, the threshold in the query,
and the gram length q.

Take edit distance as an example. For a string r ∈ S that
satisfies the condition ed(r, s) ≤ k, it should share at least the
following number of q-grams with s:

Ted = (|s| + q − 1) − k × q. (1)

Several existing algorithms [20], [27] are proposed for an-
swering approximate string queries efficiently. They first solve
the T -occurrence problem to get a set of string candidates, and
then check their real distance to the query string to remove
false positives. Note that if the threshold T ≤ 0, then the entire
data collection needs to be scanned to compute the results.
We call it a panic case. One way to reduce this scan time
is to apply filtering techniques [10], [20]. To summarize, the
following are the pieces of time needed to answer a query:
• If the lower bound T (called “merging threshold”) is

positive, the time includes the time to traverse the lists
of the query grams to find candidates (called “merging
time”) and the time to remove the false positives (called
“post-processing time”).

• If the lower bound T is zero or negative, we need to spend
the time (called “scan time”) to scan the entire data set,
possibly using filtering techniques.

In the following sections we adopt existing techniques
and develop new techniques to reduce this index size. For
simplicity, we mainly focus on the edit distance function, and
the results are extended for other functions as well.

III. ADOPTING EXISTING COMPRESSION TECHNIQUES

There are many techniques [31], [7], [9] on list compression,
which mainly study the problem of representing integers on
inverted lists efficiently to save storage space. In this section
we study how to adopt these techniques to solve our problem
and discuss their limitations.

Most of these techniques exploit the fact that ids on an in-
verted list are monotonically increasing integers. For example,
suppose we have a list l = (id1, id2, . . . , idn), idi < idi+1 for
1 ≤ i < n. If we take the differences of adjacent integers to
construct a new list l′ = (id1, id2 − id1, id3 − id2, . . . , idn −
idn−1) (called the gapped list of l), the new integers tend
to be smaller than the original ids. Many integer-compression
techniques such as gamma codes, delta codes [7], and Golomb
codes [9] can efficiently encode the gapped lists by using
shorter representations for small integers. As an example,
we study how to adopt one of the recent techniques called
Carryover-12 [1].

An issue arises when using the encoded, gapped represen-
tation of a list. Many efficient list-merging algorithms in our
setting [20] rely heavily on binary search on the inverted
lists. Since decoding is usually achieved in a sequential
way, a sequential scan on the list might not be affected too
much. However, random accesses could become expensive.
Even if the compression technique allows us to decode the
desired integer directly, the gapped representation still requires
restoring of all preceding integers. This problem can be solved
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by segmenting the list and introducing synchronization points
[24]. Each segment is associated with a synchronization point.
Decoding can start from any synchronization point, so that
only one segment needs to be decompressed in order to read
a specific integer. We can make each segment contain the
same number of integers. Since different encoded segments
could have different sizes, we can index the starting offset of
each encoded segment, so that they can be quickly located
and decompressed. Figure 2 illustrates the idea of segmenting
inverted lists and indexing compressed segments.

Uncompressed List

Compressed List

Segment Index

Segment0 Segment1 Segment2 Segment3

Fig. 2. Inverted-list compression with segmenting and indexing

One way to access elements is by decoding the corre-
sponding segment for each random access. If multiple integers
within the same segment are requested, the segment might
be decompressed multiple times. The repeated efforts can be
alleviated using caching. We allocate a global cache pool for
all inverted lists. Once a segment is decoded, it will remain in
the cache for a while. All integer accesses to that segment will
be answered using the cache without decoding the segment.

Limitations: Most of these existing techniques were initially
designed for compressing disk-based inverted indexes. Using
a compressed representation, we can not only save disk space,
but also decrease the number of disk I/Os. Even with the
decompression overhead, these techniques can still improve
query performance since disk I/Os are usually the major
cost. When the inverted lists are in memory, these techniques
require additional decompression operations, compared to non-
compressed indexes. Thus, the query performance can only
decrease. These approaches have limited flexibility in trading
query performance with space savings. Next we propose two
novel methods that do not have these limitations.

IV. DISCARDING INVERTED LISTS

In this section we study how to reduce the size of an
inverted-list index by discarding some of its lists. That is, for
all the grams from the strings in S, we only keep inverted
lists for some of the grams, while we do not store those of the
other grams. A gram whose inverted list has been discarded
is called a hole gram, and the corresponding discarded list is
called its hole list. Notice that a hole gram is different from
a gram that has an empty inverted list. The former means the
ids of the strings with this gram are not stored in the index,
while the latter means no string in the data set has this gram.

We study the effect of hole grams on query answering. In
Section IV-A we analyze how they affect the merging thresh-
old, the list merging and post-processing, and discuss how the

new running time of a single query can be estimated. Based
on our analysis, we propose an algorithm to wisely choose
grams to discard in the presence of space constraints, while
retaining efficient processing. We develop various optimization
techniques to improve the performance (Section IV-B).

A. Effects of Hole Grams on a Query

1) Merging Threshold: Consider a string r in collection
S such that ed(r, s) ≤ k. For the case without hole grams, r
needs to share at least T = (|s|+q−1)−k×q common grams
in G(s) (Equation 1). To find such an r, in the corresponding
T -occurrence problem, we need to find string ids that appear
on at least T lists of the grams in G(s). If G(s) does have
hole grams, the id of r could have appeared on some of the
hole lists. But we do not know on how many hole lists r could
appear, since these lists have been discarded. We can only rely
on the lists of those nonhole grams to find candidates. Thus
the problem becomes deciding a lower bound on the number
of occurrences of string r on the nonhole gram lists.

One simple way to compute a new lower bound is the
following. Let H be the number of hole grams in G(s), where
|G(s)| = |s| + q − 1. Thus, the number of nonhole grams for
s is |G(s)| − H . In the worst case, every edit operation can
destroy at most q nonhole grams, and k edit operations could
destroy at most k×q nonhole grams of s. Therefore, r should
share at least the following number of nonhole grams with s:

T ′ = |G(s)| − H − k × q. (2)

We can use this new lower bound T ′ in the T -occurrence
problem to find all strings that appear at least T ′ times on the
nonhole gram lists as candidates.

The following example shows that this simple way to
compute a new lower bound is pessimistic, and the real lower
bound could be tighter. Consider a query string s = irvine
with an edit-distance threshold k = 2. Suppose q = 3. Thus
the total number of grams in G(s) is 8. There are two hole
grams irv and ine as shown in Figure 3. Using the formula
above, an answer string should share at least 0 nonhole grams
with string s, meaning the query can only be answered by
a scan. This formula assumes that a single edit operation
could potentially destroy 3 grams, and two operations could
potentially destroy 6 grams. However, a closer look at the
positions of the hole grams tells us that a single edit operation
can destroy at most 2 nonhole grams, and two operations
can destroy at most 4 nonhole grams. Figure 3 shows two
deletion operations that can destroy the largest number of
nonhole grams, namely 4. Thus, a tighter lower bound is
2 and we can avoid the panic case. This example shows
that we can exploit the positions of hole grams in the query
string to compute a tighter threshold. We develop a dynamic
programming algorithm to compute a tight lower bound on the
number of common nonhole grams in G(s) an answer string
needs to share with the query string s with an edit-distance
threshold k (a similar idea is also adopted in an algorithm
in [29] in the context of the VGRAM technique [21]). Our
experiments have shown that this algorithm can increase query
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Fig. 3. A query string irvine with two hole grams. A solid horizontal line
denotes a nonhole gram, and a dashed line denotes a hole gram. The arrows
denote character deletions.

performance by tightening the bound. More details about the
algorithm and experiments are in [4].

2) List-Merging Time: The running time of some merging
algorithms (e.g. HeapMerge, ScanCount [20]) is insensitive
to the merging threshold T and mainly depends on the total
number of elements in all inverted lists. Therefore, their
running time can only decrease by discarding some lists.
Other merging algorithms (e.g., MergeOpt, DivideSkip [20])
separate the inverted lists into a group of long lists and a group
of short lists, and process them separately. The performance
of these algorithms depends on how the two groups are
formed, which is related to T . Thus their performance is
sensitive to changes in T . Another class of algorithms such
MergeSkip and DivideSkip [20] utilize T to skip irrelevant
elements on the lists. Decreasing T by discarding some lists
might negatively affect their performance. Meanwhile, we
might have fewer lists to process, possibly resulting in an
improvement of the query performance.

3) Post-Processing Time: For a given query, introducing
hole grams may only increase the number of candidates to
post-process if we use Equation 2. Surprisingly, if we use
the dynamic programming algorithm to derive a tighter T ′,
then the number of candidates for post-processing might even
decrease [4]. Take the example given in Fig. 3. Suppose the
edit-distance threshold k = 2. Say that some string id i only
appears on the inverted lists of irv and ine. Since T = 2,
it is a candidate result. If we choose to discard the grams
irv and ine as shown in Fig. 3, as discussed earlier, the new
threshold T ′ = 2. After discarding the lists, the string i is not
a candidate anymore, since all the lists containing it have been
discarded. Thus we can reduce the post-processing cost. Note
that any string id which appears only on irv and ine cannot
be an answer to the query and would have been removed from
the results during post-processing.

4) Estimating Time Effects on a Query: Since we are
evaluating whether it is a wise choice to discard a specific list
li, we want to know, by discarding list li, how the performance
of a single query Q will be affected using the indexing
structure. We now quantify these effects discussed above by
estimating the running time of a query with hole grams. In [4]
we discuss how to estimate the merging time and scan time.
We focus on estimating the post-processing time.

For each candidate from the T -occurrence problem, we need
to compute the corresponding distance to the query to remove
the false positives. This time can be estimated as the number
of candidates multiplied by the average edit-distance time.
Therefore, the main problem becomes how to estimate the

number of candidates after solving the T -occurrence problem.
This problem has been studied in the literature recently [22],
[16], [19]. While these techniques could be used in our
context, they have two limitations. First, their estimation is
not 100% accurate, and an inaccurate result could greatly
affect the accuracy of the estimated post-processing time, thus
affecting the quality of the selected nonhole lists. Second, this
estimation may need to be done repeatedly when choosing
lists to discard, and therefore needs to be very efficient.

We develop an efficient, incremental algorithm that can
compute a very accurate number of candidates for query Q
if list li is discarded. The algorithm is called ISC, which
stands for “Incremental-Scan-Count.” Its idea comes from an
algorithm called ScanCount developed in [20]. Although the
original ScanCount is not the most efficient one for the T -
occurrence problem, it has the nice property that it can be
run incrementally. Figure 4 shows the intuition behind this
ISC algorithm. First, we analyze the query Q on the original
indexing structure without any lists discarded. For each string
id in the collection, we remember how many times it occurs on
all the inverted lists of the grams in the query and store them
in an array C. Now we want to know if a list is discarded,
how it affects the number of occurrences of each string id.
For each string id r on list l belonging to gram g to be
discarded, we decrease the corresponding value C[r] in the
array by the number of occurrences of g in the query string,
since this string r will no longer have g as a nonhole gram.
After discarding this list for gram g, we first compute the new
merging threshold T ′. We find the new candidates by scanning
the array C and recording those positions (corresponding to
string ids) whose value is at least T ′.

Fig. 4. Intuition behind the Incremental-Scan-Count (ISC) algorithm.

For instance, in Fig. 5, the hole list includes string ids 0,
2, 5, and 9. For each of them, we decrease the corresponding
value in the array by 1 (assuming the hole gram occurs once
in the query). Suppose the new threshold T ′ is 3. We scan the
new array to find those string ids whose occurrence among
all non-hole lists is at least 3. These strings, which are 0, 1,
and 9 (in bold face in the figure), are candidates for the query
using the new threshold after this list is discarded.

B. Choosing Inverted-Lists to Discard

We now study how to wisely choose lists to discard in
order to satisfy a given space constraint. The following are
several simple approaches: choosing the longest lists to discard
(LongList), choosing the shortest lists to discard (ShortList),
or choosing random lists to discard (RandomList). These
naive approaches blindly discard lists without considering the
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Fig. 5. Running the ISC algorithm (T ′ = 3).

effects on query performance. Clearly, a good choice of lists
to discard depends on the query workload. Based on our
previous analysis, we present a cost-based algorithm called
DiscardLists, as shown in Figure 6. Given the initial set of
inverted lists, the algorithm iteratively selects lists to discard,
based on the size of a list and its effect on the average query
performance for a query workload Q if it is discarded. The
algorithm keeps selecting lists to discard until the total size of
the remaining lists meets the given space constraint (line 2).

Algorithm: DiscardLists
Input: Inverted lists L = {l1, . . . , ln}

Constraint B on the total list size
Query workload Q = {Q1, . . . , Qm}

Output: A set D of lists in L that are discarded
Method:
1. D = ∅;
2. WHILE (B < (total list size of L)) {
3. FOR (each list li ∈ L) {
4. Compute size reduction Δi

size if discarding li
5. Compute difference of average query time Δi

time

for queries in Q if discarding li
}

6. Use Δi
size’s and Δi

time’s of the lists to decide what
lists to discard

7. Add discarded lists to D
8. Remove the discarded lists from L

}
9. RETURN D

Fig. 6. Cost-based algorithm for choosing inverted lists to discard.

In each iteration (lines 3-8), the algorithm needs to evaluate
the quality of each remaining list li, based on the expected
effect of discarding this list. The effect includes the reduction
Δi

size on the total index size, which is the length of this list.
It also includes the change Δi

time on the average query time
for the workload Q after discarding this list. (Surprisingly,
Δi

time can be both positive and negative, since in some cases
discarding lists can even reduce the average running time for
the queries.) In each iteration (line 6), we need to use the
Δi

size’s and Δi
time’s of the lists to decide what lists should

be really discarded. There are many different ways to make
this decision. One way is to choose a list with the smallest
Δi

time value (notice that it could be negative). Another way
is to choose a list with the smallest Δi

time/Δi
space ratio.

There are several ways to reduce the computation time of
the estimation: (1) When discarding the list li, those queries
whose strings do not have the gram of li will not be affected,

since they will still have the same set of nonhole grams as
before. Therefore, we only need to re-evaluate the performance
of the queries whose strings have this gram of li. In order to
find these strings efficiently, we build an inverted-list index
structure for the queries, similar to the way we construct
inverted lists for the strings in the collection. When discarding
the list li, we can just consider those queries on the query
inverted list of the gram for li. (2) We run the algorithm on
a random subset of the strings. As a consequence, (i) we can
make sure the entire inverted lists of these sample strings can
fit into a given amount of memory. (ii) We can reduce the
array size in the ISC algorithm, as well as its scan time to find
candidates. (iii) We can reduce the number of lists to consider
initially since some infrequent grams may not appear in the
sample strings. (3) We run the algorithm on a random subset
of the queries in the workload Q, assuming this subset has
the same distribution as the workload. As a consequence, we
can reduce the computation to estimate the scan time, merging
time, and post-processing time (using the ISC algorithm). (4)
We do not discard those very short lists, thus we can reduce
the number of lists to consider initially. (5) In each iteration
of the algorithm, we choose multiple lists to discard based on
the effect on the index size and overall query performance.
In addition, for those lists that have very poor time effects
(i.e., they affect the overall performance too negatively), we
do not consider them in future iterations, i.e., we have decided
to keep them in the index structure. In this way we can reduce
the number of iterations significantly.

V. COMBINING INVERTED LISTS

In this section, we study how to reduce the size of an
inverted-list index by combining some of the lists. Intuitively,
when the lists of two grams are similar to each other, using a
single inverted list to store the union of the original two lists
for both grams could save some space. One subtlety in this
approach is that the string ids on a list are treated as a set
of ordered elements (without duplicates), instead of a bag of
elements. By combining two lists we mean taking the union
of the two lists so that space can be saved. Notice that the
T lower bound in the T -occurrence problem is derived from
the perspective of the grams in the query. (See Equation 1
in Section II as an example.) Therefore, if a gram appears
multiple times in a data string in the collection (with different
positions), on the corresponding list of this gram the string id
appears only once. If we want to use the positional filtering
technique (mainly for the edit distance function) described
in [10], [20], for each string id on the list of a gram, we
can keep a range of the positions of this gram in the string, so
that we can utilize this range to do filtering. When taking the
union of two lists, we need to accordingly update the position
range for each string id.

We will first discuss the data structure and the algorithm for
efficiently combining lists in Section V-A, and then analyze the
effects of combining lists on query performance in Section V-
B. We also show that an index with combined inverted
lists gives us a new opportunity to improve the performance
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of list-merging algorithms (Section V-B.1). We propose an
algorithm for choosing lists to combine in the presence of
space constraints (Section V-C).

A. Data Structures for Combining Lists

In the original inverted-list structure, different grams have
different lists. Combining two lists l1 and l2 will produce a
new list lnew = l1 ∪ l2. The size reduction of combining two
lists l1 and l2 can be computed as

Δ(1,2)
size = |l1| + |l2| − |l1 ∪ l2| = |l1 ∩ l2|.

All grams that shared l1 and l2 (there could be several grams
due to earlier combining operations) will now share list lnew.
In this fashion we can support combining more than two lists
iteratively. We use a data structure called Disjoint-Set with
the algorithm Union-Find [8] to efficiently combine more than
two lists, as illustrated in Figure 7. More details are in [4].

g1g3

g2

1 23

g1

g2

1 2 3

g3
After the 

combination

Fig. 7. Combining list of g2 with list of g3 using Union-Find

B. Effects of Combining Lists on Query Performance

We study how combining lists affects query performance.
For a similarity query with a string s, if the lists of the grams in
G(s) are combined (possibly with lists of grams not in G(s)),
then the performance of this query can be affected in the
following ways. (1) Different from the approach of discarding
lists, the lower bound T in the T -occurrence problem remains
the same, since an answer still needs to appear at least this
number of times on the lists. Therefore, if a query was not in
a panic case before, then it will not be in a panic case after
combining inverted lists. (2) The lists will become longer. As
a consequence, it will take more time to traverse these lists to
find candidates during list merging, and more false positives
may be produced to be post-processed.

1) List-Merging Time: As inverted lists get combined, some
of them will become longer. In this sense it appears that
combining lists can only increase the list-merging time in
query answering. However, the following observation opens up
opportunities for us to further decrease the list-merging time,
given an index structure with combined lists. We notice that a
gram could appear in the query string s multiple times (with
different positions), thus these grams share common lists. In
the presence of combined lists, it becomes possible for even
different grams in G(s) to share lists. This sharing suggests
a way to improve the performance of existing list-merging
algorithms for solving the T -occurrence problem [27], [20].
A simple way to use one of these algorithms is to pass
it a list for each gram in G(s). Thus we pass |G(s)| lists
to the algorithm to find string ids that appear at least T

times on these (possibly shared) lists. We can improve the
performance of the algorithm as follows. We first identify the
shared lists for the grams in G(s). For each distinct list li, we
also pass to the algorithm the number of grams sharing this
list, denoted by wi. Correspondingly, the algorithm needs to
consider these wi values when counting string occurrences. In
particular, if a string id appears on the list li, the number
of occurrences should increase by wi, instead of “1” in
the traditional setting. Thus we can reduce the number of
lists passed to the algorithm, thus possibly even reducing its
running time. The algorithms in [27] already consider different
list weights, and the algorithms in [20] can be modified slightly
to consider these weights.1

2) Post-processing Time: We want to compute the number
of candidates generated from the list-merging algorithm. Be-
fore combining any lists, the candidate set generated from a
list-merging algorithm contains all correct answers and some
false positives. We are particularly interested to know how
many new false positives will be generated by combining two
lists l1 and l2. The ISC algorithm described in Section IV-A.4
can be modified to adapt to this setting.

In the algorithm, a ScanCount vector is maintained for a
query Q to store the number of grams Q shares with each
string id in the collection. The strings whose corresponding
values in the ScanCount vector are at least T will be candidate
answers. By combining two lists l1 and l2, the lists of those
grams that are mapped to l1 or l2 will be conceptually
extended. Every gram previously mapped to l1 or l2 will now
be mapped to l1∪l2. The extended part of l1 is ext(l1) = l2\l1.
Let w(Q, l1) denote the number of times grams of Q reference
l1. The ScanCount value of each string id in ext(l1) will be
increased by w(Q, l1). Since for each reference, all string ids
in ext(l1) should have their ScanCount value increased by one,
the total incrementation will be w(Q, l1) (not w(Q, l2)). The
same operation needs to be done for ext(l2) symmetrically.
It is easy to see the ScanCount values are monotonically
increasing as lists are combined. The strings whose ScanCount
values increase from below T to at least T become new false
positives after l1 and l2 are combined.

Figure 8 shows an example, in which l1 = {0, 2, 8, 9},
l2 = {0, 2, 3, 5, 8}. Before combining l1 and l2, two grams
of Q are mapped to l1 and three grams are mapped to l2.
Therefore, w(Q, l1) = 2 and w(Q, l2) = 3. For every string
id in ext(l1) = {3, 5}, their corresponding values in the
ScanCount vector will be increased by w(Q, l1). Let C denote
the ScanCount vector. C[3] will be increased from 6 to 8, while
C[5] will be increased from 4 to 6. Given the threshold T = 6,
the change on C[5] indicates that string 5 will become a new
false positive. The same operation is carried out on ext(l2).

C. Choosing Lists to Combine

We use two steps to combine lists: discovering candidate
gram pairs, and selecting some of them to combine.

1Interestingly, our experiments showed that, even for the case we do not
combine lists, this optimization can already reduce the running time of existing
list-merging algorithms by up to 20%.
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Fig. 8. Example of ISC for computing new false positives after combining
lists l1 and l2.

Step 1: Discovering Candidate Gram Pairs: We are only
interested in combining correlated lists. We can use Jaccard
similarity to measure the correlation of two lists, defined
as jaccard(l1, l2) = |l1∩l2|

|l1∪l2| . Two lists are considered to be
combined only if their correlation is greater than a threshold.
Clearly it is computationally prohibitive to consider all pairs
of grams. There are different ways for generating such pairs.
One way is using adjacent grams. We only consider pairs of
adjacent grams in the strings. If we use q-grams to construct
the inverted lists, we can just consider those (q + 1)-grams.
Each such gram corresponds to a pair of q-grams. For instance,
if q = 3, then the 4-gram tion corresponds to the pair
(tio, ion). For each such adjacent pair, we treat it as a
candidate pair if the Jaccard similarity of their corresponding
lists is greater than a predefined threshold. One limitation
of this approach is that it cannot find strongly correlated
grams that are not adjacent in strings. In the literature there
are efficient techniques for finding strongly correlated pairs
of lists. One of them is called Locality-Sensitive Hashing
(LSH) [14]. Using a small number of so-called MinHash
signatures for each list, we can use LSH to find those gram
pairs whose lists satisfy the above correlation condition with
a high probability.

Step 2: Selecting Candidate Pairs to Combine: The
second step is selecting candidate pairs to combine. One
basic algorithm is the following. We iteratively pick gram
pairs and combine their lists if their correlation satisfies the
threshold. Notice that each time we process a new candidate
gram pair, since the list of each of them could have been
combined with other lists, we still need to verify their (possibly
new) correlation before deciding whether we should combine
them. After processing all these pairs, we check if the index
size meets a given space constraint. If so, the process stops.
Otherwise, we decrease the correlation threshold and repeat
the process above, until the new index size meets the given
space constraint.

This basic algorithm does not consider the effect of combin-
ing two lists on the overall query performance. We propose a
cost-based algorithm to wisely choose lists to combine in the
second step. Figure 9 shows the cost-based algorithm which
takes the estimated cost of a query workload into consideration

when choosing lists to combine. It iteratively selects pairs
to combine, based on the space saving and the impact on
the average query performance of a query workload Q. The
algorithm keeps selecting pairs to combine until the total size
of the inverted lists meets a given space constraint B. For each
gram pair (gi, gj), we need to get their current corresponding
lists, since their lists could have been combined with other
lists (lines 3 and 4). We check whether these two lists are
the same list as reference (line 5), and also whether their
correlation is above the threshold (line 6). Then we compute
the size reduction (line 8) and estimate the average query time
difference and the ISC algorithm (line 9), based on which we
decide the next list pair to combine (lines 10 and 11).

Algorithm: CombineLists
Input: Candidate gram pairs P = {(gi, gj)}

Constraint B on the total list size
Query workload Q = {Q1, . . . , Qm}

Output: Combined lists.
Method:
1. WHILE ((expected total index size) > B ) {
2. FOR (each gram pair (gi, gj) ∈ P ) {
3. li = current list of gi

4. lj = current list of gj

5. if (li and lj are the same list as reference
6. or corr(li, lj) < δ)
7. remove (gi, gj) from P and continue

8. Compute size reduction Δ
(li,lj)

size if combining li, lj

9. Compute difference of average query time Δ
(li,lj)

time

for queries in Q if combining li, lj
}

10. Use Δ
(li,lj)

size ’s and Δ
(li,lj)

time ’s of the gram pairs to decide
which pair to combine

11. Combine the two lists li and lj based on the decision
12. Remove the combined gram pair from P

}
Fig. 9. Cost-based algorithm to select gram pairs to combine.

We can use similar optimization techniques as described in
Section IV to improve the performance of CombineLists.

VI. EXPERIMENTS

We used three real data sets. (1) IMDB Actor Names:
It consists of the actor names downloaded from the IMDB
website (http://www.imdb.com). There were 1,199,299 names.
The average string-length was 17 characters. (2) WEB Corpus
Word Grams: This data set (http://www.ldc.upenn.edu/Catalog,
number LDC2006T13) contained word grams and their ob-
served frequency counts on the Web. We randomly chose 2
million records with a size of 48.3MB. The number of words
of a string varied from 3 to 5. The average string-length was
24. (3) DBLP Paper Titles: It includes paper titles downloaded
from the DBLP Bibliography site (http://www.informatik.uni-
trier.de/∼ley/db). It had 274,788 paper titles. The average
string-length was 65.

For all experiments the gram length q was 3, and we applied
length filtering [10]. The inverted-list index was held in main
memory. Also, for the cost-based DiscardLists and Com-
bineLists approaches, by doing sampling we guaranteed that
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the index structures of sample strings fit into memory. We used
the DivideSkip algorithm described in [20] to solve the T -
occurrence problem due to its high efficiency. From each data
set we used 1 million strings to construct the inverted-list index
(unless specified otherwise). We tested query workloads using
different distributions, e.g., a Zipfian distribution or a uniform
distribution. To do so, we randomly selected 1,000 strings from
each data set and generated a workload of 10,000 queries
according to some distribution. We conducted experiments
using edit distance, Jaccard similarity, and cosine similarity.
We mainly focused on the results of edit distance (with a
threshold 2). We report additional results of other functions
in Section VI-D. All the algorithms were implemented using
GNU C++ and run on a Dell PC with 2GB main memory, and
a 3.4GHz Dual Core CPU running the Ubuntu OS.

A. Evaluating the Carryover-12 Compression Technique

We adopted the Carryover-12 compression technique as
discussed in Section III into our problem setting. We varied
the segment size to achieve different index-size reduction
ratios. We measured the corresponding query performance.
Figure 10(a) shows the results for the IMDB and Web Corpus
datasets as the reduction ratio increased. (Notice that the two
data sets used different reduction ratios because of the limita-
tion of the technique.) Consider the Web Corpus dataset. The
original average query running time (without compression)
was about 1.6ms. After compressing the index, the query time
increased significantly. For example, when the reduction ratio
was about 41%, the query time increased to 5.7ms. The time
kept increasing as we compressed the index further.

Figure 10(b) shows how the query time was affected as we
increased the cache size. (The cache size was significantly
smaller than the compressed index size.) On the WebCorpus
data set, when we used no cache, the average query time
was 64.4ms, which is more than 8 times the average query
time with a cache of 5000 slots. Since the whole purpose of
compressing inverted list is to save space, it is contradictory to
improve query performance by increasing the cache size too
much. As we allocated more cache to the compressed index,
the query time did decrease. Notice that if we allocate enough
cache for the entire compressed index, the performance can
become almost the same as that of the original index (without
considering the cache lookup overhead). As the cache size
is typically much smaller than the original index size, the
performance should always be worse than the original case
due to the online decompression cost.

B. Evaluating the DiscardLists Algorithm

In this section we evaluate the performance of the Dis-
cardLists algorithm for choosing inverted-lists to discard. In
addition to the three basic methods to choose lists to discard
(LongList, ShortList, RandomList), we also implemented
the following cost-based methods. (1) PanicCost: In each
iteration we discard the list with the smallest ratio between
the list size and the number of additional panic cases. Another
similar approach, called PanicCost+, discards the list with the
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Fig. 10. Carryover-12 compression.

smallest number of additional panic cases, disregarding the
list length. (2) TimeCost: It is similar to PanicCost, except
that we use the ratio between the list size and the total time
effect of discarding a list (instead of the number of additional
panics). Similarly, an approach called TimeCost+ discards the
list with the smallest time effect.

The index-construction time consisted of two major parts:
selecting lists to discard and generating the final inverted-list
structure. The time for generating samples was negligible. For
the LongList, ShortList, and RandomList approaches, the
time for selecting lists to discard was small, whereas in the
cost-based approaches the list-selection time was prevalent. In
general, increasing the size-reduction ratio also increased the
list-selection time. For instance, for the IMDB dataset, at a
70% reduction ratio, the total index-construction time for the
simple methods was about half a minute. The construction
time for PanicCost and PanicCost+ was similar. The more
complex TimeCost and TimeCost+ methods needed 108s
and 353s, respectively.
Different Methods to Choose Lists to Discard: We first con-
sidered the three simple methods, namely LongList, Short-
List, RandomList. Experiments [4] showed that in most cases,
the LongList method gave us the best query performance,
while the RandomList method was the best for high reduction
ratios. The ShortList was always the worst.

For those cost-based approaches, we used a sampling ratio
of 0.1% for the data strings and a ratio of 25% for the
queries. Figure 11(b) shows the benefits of employing the cost-
based methods to select lists to discard. Most noteworthy of
which is the TimeCost+ method, which consistently delivered
good query performance. As shown in Fig. 11(b), the method
achieved a 70% reduction ratio while increasing the query
processing time from the original 5.8ms to 7.4ms only. All
the other methods increased the time up to at least 96ms for
that reduction ratio. Notice that TimeCost+ ignored the list
size when selecting a list to discard. TimeCost+ over-topped
all the other methods because it can balance the merging time,
post-processing time, and scan time.
Surprising Improvement on Performance: Figs. 12(a) shows
more details when the reduction ratio was smaller (less than
40%). A surprising finding is that, for low to moderate
reduction ratios, discarding lists could even improve the query
performance! All the methods reduced the average query time
from the original 5.8ms to 3.5ms for a 10% reduction ratio.
The main reason of the performance improvement is that
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Fig. 11. Reducing index size by discarding lists (IMDB).

by discarding long lists we can help list-merging algorithms
solve the T -occurrence problem more efficiently. We see that
significantly reducing the number of total list-elements to
process can overcompensate for the decrease in the threshold.
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Fig. 12. Improving query performance using two new approaches (IMDB).

Scalability: For each data set, we increased its number
of strings, and used 50% as the index-size-reduction ratio.
Fig. 11(d) shows that the TimeCost+ method performed
consistently well, even outperforming the corresponding un-
compressed indexes (indicated by “original”). At 100,000
data strings, the average query time increased from 0.61ms
to 0.78ms for TimeCost+. As the data size increased,
TimeCost+ began outperforming the uncompressed index.

C. Evaluating the CombineLists Algorithm

We evaluated the performance of the CombineLists algo-
rithm on the same three data sets. In step 1, we generated
candidate list pairs by using both (q + 1)-grams and LSH.
In step 2, we implemented both the basic and the cost-based
algorithms for iteratively selecting list pairs to combine.
Benefits of Improved List-Merging Algorithms: We first
evaluated the benefits of using the improved list-merging
algorithms to solve the T -occurrence problem for queries on
combined inverted lists, as described in Section V-B. As an
example, we compared the DivideSkip algorithm in [20] and
its improved version that considers duplicated inverted lists in
a query. We used the basic algorithm to select lists to combine.
Figure 13 shows the average running time for the algorithm
and its improved version (marked as “Improved”). When the
reduction ratio increased, more lists were combined, and the
improved algorithm did reduce the average query time.
Choosing Lists to Combine: We compared the basic al-
gorithm with the cost-based algorithm for choosing lists to
combine, and the results are shown in Figure 14(a). The
average query time was plotted over different reduction ratios
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Fig. 14. Reducing index size by combining lists (IMDB).

for both algorithms. We observe that on all three data sets, the
query running time for both algorithms increased very slowly
as we increased the index size reduction ratio, until about 40%
to 50%. That means, this technique can reduce the index size
without increasing the query time! As we further increased the
index size reduction, the query time started to increase. For
the cost-based algorithm, the time increased slowly, especially
on the IMDB data set. The reason is that this cost-based
algorithm avoided choosing bad lists to combine, while the
basic algorithm blindly chose lists to combine.

Figure 12(b) shows that when the reduction ratio is less
than 40%, the query time even decreased. This improve-
ment is mainly due to the improved list-merging algorithms.
Figure 14(b) shows how the algorithms of combining lists
affected query performance as we increased the data size, for
a reduction ratio of 40%.

D. Extension to Other Similarity Functions

For simplicity, our discussion so far mainly focused on the
edit distance metric. We can generalize the results to com-
monly used similarity measures such as Jaccard and cosine.
To reduce the size of inverted lists based on those similarity
functions, the main procedure of algorithms DiscardLists and
CombineLists remains the same. The only difference is that in
DiscardLists, to compute the merging threshold T for a query
after discarding some lists, we need to subtract the number of
hole lists for the query from the formulas proposed in [20].
In addition, for the estimation of the post-processing time, we
also need to replace the estimation of the edit distance time
with that of Jaccard and cosine time respectively. Figure 15
shows the average running time for the DBLP data using
variants of the TimeCost+ algorithm for these two functions.
The results on the other two data sets were similar. We see
that the average running time continuously decreased when
the reduction ratio increased to up to 40%. For example, at a
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40% reduction ratio for the cosine function, the running time
decreased from 1.7ms to 0.8ms.
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Fig. 15. Jaccard and Cosine functions (DiscardLists, DBLP titles)

The performance started degrading at a 50% reduction ratio
and increased rapidly at a ratio higher than 60%. For a 70%
ratio, the time for the cosine and jaccard functions increased to
150ms and 115ms for LongList. For high reduction ratios the
TimeCost and TimeCost+ methods became worse than the
panic-based methods, due to the inaccuracy in estimating the
merging time. Note that the Cosine and Jaccard functions are
expensive to compute, therefore the punishment (in terms of
post-processing time) for inaccurately estimating the merging
time can be much more severe than that for the edit distance.

E. Comparing Different Compression Techniques

We implemented the compression techniques discussed so
far as well as the VGRAM technique. Since Carryover-12 and
VGRAM do not allow explicit control of the compression ratio,
for each of them we reduced the size of the inverted-list index
and computed their compression ratio. Then we compressed
the index using DiscardLists and CombineLists separately
to achieve the same compression ratio.
Comparison with Carryover-12: Figure 16(a) compares the
performance of the two new techniques with Carryover-12.
For Carryover-12, to achieve a good balance between the
query performance and the index size, we used fixed-size
segments of 128 4-byte integers and a synchronization point
for each segment. The cache contained 20,000 segment slots
(approximately 10MB). It achieved a compression ratio of
58% for the IMDB dataset and 48% for the WebCorpus
dataset. We see that its online decompression has a profound
impact on the performance. It increased the average running
time from an original 5.85ms to 30.1ms for the IMDB dataset,
and from an original 1.76ms to 7.32ms for the WebCorpus
dataset. The CombineLists method performed significantly
better at 22.15ms for the IMDB dataset and 2.3ms for the
WebCorpus dataset. The DiscardLists method could even
slightly decrease the running time compared to the original
index to 5.81ms and 1.75ms for the IMDB and WebCorpus
datasets, respectively.
Comparison with VGRAM: Figure 16(b) compares the per-
formance of two new techniques with VGRAM. We set its
qmin parameter to 4. We did not take into account the memory
requirement for the dictionary trie structure because it was
negligible. The compression ratio was 30% for the IMDB
dataset and 27% for the WebCorpus dataset. Interestingly,
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Fig. 16. Comparing DiscardLists and CombineLists with existing techniques
at the same reduction ratio. In each figure, the left scale corresponds to the
WebCorpus data set, and the right scale corresponds to the IMDB data set.

all methods could outperform the original, uncompressed
index. As suspected, VGRAM can considerably reduce the
running time for both datasets. For the IMDB dataset, it
reduced the time from an original 5.85ms to 4.02ms, and
for the WebCorpus dataset from 1.76ms 1.55ms. Surprisingly,
the CombineLists method reduced the running time even
more than VGRAM to 3.34ms for the IMDB dataset and to
1.47ms for the WebCorpus dataset. The DiscardLists method
performed competitively for the IMDB dataset at 3.93ms
and slightly faster than the original index (1.67ms) on the
WebCorpus dataset.
Summary: (1) CombineLists and DiscardLists can signif-
icantly outperform Carryover-12 at the same memory re-
duction ratio because of the online decompression required
by Carryover-12. (2) For small compression ratios Com-
bineLists performs best, even outperforming VGRAM. (3) For
large compression ratios DiscardLists delivers the best query
performance. (4) While Carryover-12 can achieve reductions
up to 60% and VGRAM up to 30%, neither allows explicit con-
trol over the reduction ratio. DiscardLists and CombineLists
offer this flexibility with good query performance.

F. Integrating Several Approaches

The methods studied in this paper are indeed orthogonal,
thus we could even use their combinations to further reduce the
index size and/or improve query performance. As an example,
we integrated CombineLists with Carryover-12. We first
compressed the index using CombineLists approach with a
reduction α, and then applied Carryover-12 on the resulting
index. We varied α from 0 (no reduction for CombineLists)
to 60% in 10% increments. The results of the overall re-
duction ratio and the average query time are shown in the
“CL+Carryover-12” curve in Figure 17. The leftmost point
on the curve corresponds to the case where α = 0. For
comparison purposes, we also plotted the results of using the
CombineLists alone shown on the other curve. The results
clearly show that using both methods we can achieve high
reduction ratios with a better query performance than using
CombineLists alone. Consider the first point that only uses
Carryover-12. It could achieve a 48% reduction with an
average query time of 7.3ms. By first using CombineLists
at a 30% ratio (4th point on the curve) we could achieve a
higher reduction ratio (61%) at a lower query time (6.34ms).
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Fig. 17. Reducing index size using CombineLists with Carryover-12.

One way to integrate multiple methods is to distribute
the global memory constraint among several methods. Notice
since Carryover-12 and VGRAM do not allow explicit control
of the index size, it is not easy to use them to satisfy an
arbitrary space constraint. Several open challenging problems
need more future research. First, we need to decide how to
distribute the global memory constraint among different meth-
ods. Second, we need to decide in which order to use them.
For example, if we use CombineLists first, then we never
consider discarding merged lists in DiscardLists. Similarly, if
we run DiscardLists first, then we never consider combining
any discarded list in CombineLists.
Additional Experiments: In [4] we included many additional
experimental results, including experiments on more data sets,
performance of different methods to choose candidate pairs
to combine, and how the techniques perform in the presence
of query-workload changes. We also discuss how to utilize
filtering techniques for compression.

VII. CONCLUSIONS

In this paper, we studied how to reduce the size of
inverted-list index structures of string collections to support
approximate string queries. We studied how to adopt existing
inverted-list compression techniques to achieve the goal, and
proposed two novel methods for achieving the goal: one
is based on discarding lists, and one based on combining
correlated lists. They are both orthogonal to existing com-
pression techniques, exploit a unique property of our setting,
and offer new opportunities for improving query performance.
We studied technical challenges in each method, and proposed
efficient, cost-based algorithms for solving related problems.
Our extensive experiments on real data sets show that our
approaches provide applications the flexibility in deciding the
tradeoff between query performance and indexing size and can
outperform existing compression techniques.
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As huge volumes of data are organized or exported in tree-structured form, it is quite necessary to
extract useful information from these data collections using effective and efficient query processing
methods. A natural way of retrieving desired information from XML documents is using twig pattern
(TP), which is, actually, the core component of existing XML query languages. Twig pattern possesses
the inherent feature that query nodes on the same path have concrete precedence relationships. It
is this feature that makes it infeasible in many actual scenarios. This has driven the requirement of
relaxing the complete specification of a twig pattern to express more flexible semantic constraints in a
single query expression. In this paper, we focus on query evaluation of partially specified twig pattern
(PSTP) queries, through which we can reap the most flexibility of specifying partial semantic constraints
in a query expression. We propose an extension to XPath through introducing two Samepath axes to
support partial semantic constraints in a concise but effective way. Then we propose a stack based
algorithm, pTwigStack, to process a PSTP holistically without deriving the concrete twig patterns and
then processing them one by one. Further, we propose two DTD schema based optimization methods
to improve the performance of pTwigStack algorithm. Our experimental results on various datasets
indicate that our method performs significantly better than existing ones when processing PSTPs.

XML database, query processing, partially specified twig pattern, holistic twig join, XPath

1 Introduction

As a de facto standard for information represen-
tation and exchange over the Internet, XML has
been used extensively in many applications. Query
capabilities are provided through twig patterns
(TPs), which are the core components for standard
XML query languages, e.g. XPath (http://www.

w3.org/TR/xpath20/) and XQuery (http://www.
w3.org/TR/xquery/). A TP can be natu-
rally represented as a node-labeled tree, where
each edge denotes either Parent-Child (P-C) or
Ancestor-Descendant (A-D) relationship. For ex-
ample, the TP written in XPath format, Q1:
“//book[.//author/name= ‘Mike’]/title”, selects
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title elements which are children of some book ele-
ments written by an author named “Mike”. While
many existing algorithms[1−4] can efficiently pro-
cess a given TP, an inherent restrictive feature of
TP is that a concrete precedence order between
the nodes in every path of the query expression
should be clearly specified. In Q1, for example,
book should be an ancestor of author; thus Q1 can
only be used to retrieve information from D2 in
Figure 1, not D1.

Figure 1 An example data organization of different hierarchical

structures.

In fact, XQuery and XPath allow no concrete
precedence order between query nodes. For exam-
ple,
Q2: //author[child::name=“Mike”]/descendant-
or-self::*/ancestor-or-self::book/child::title,
can also be used to find title elements which are
children of book elements which are written by an
author named “Mike” from D2. Although book
and author should be on the same path, we know
nothing about which one is the ancestor of the
other or vice versa. The benefits of using Q2 is ob-
vious; it can be used to retrieve useful information
from both D1 and D2 without considering their
structural heterogeneity. However, such a query
cannot be easily evaluated. Although Olteanu et
al.[5,6] show that using special rules, XPath queries
with reverse axes, e.g. Q2, can be equivalently

rewritten as a set of TPs, they also show that this
transformation may lead to an exponential blowup
of the number of TPs. Further, Gottlob et al.[7]

show that the combined complexity of XPath is
P-hard (i.e., hard for polynomial time).

Usually in many scenarios, we cannot specify
the precedence relationships of query nodes when
we formulate query expression. 1) The document
structure is not available. 2) Extracting desired in-
formation from XML documents of structural het-
erogeneity. It is complex to use TPs in conjunc-
tion with data integration mapping rules between
a global schema and local schema, and may cause
errors since maintaining the mapping relationship
may involve extensive manual intervention. 3) The
change of business strategy and corporate environ-
ments may cause the data to be organized with
a different structure, which makes existing path
expression that depends on particular hierarchical
structure no longer feasible.

Although keyword based methods[8,9] can be
used freely without schema knowledge, only lim-
ited semantic constraints can be contained in
such a query expression. Query relaxation based
methods[10,11] will also produce a large number of
relaxed query expressions by relaxation operations,
which will further result in too many approximate
answers.

In ref. [12], the notion of partially specified twig
pattern (PSTP) was proposed to tackle this prob-
lem. Compared with TP, PSTP provides us with
the most flexibility: 1) we can specify the full struc-
tural constraints if the schema or document struc-
ture is available; 2) we can specify just keywords to
retrieve desired information if the schema or docu-
ment structure is not available; and 3) we can make
full use of whatever partial knowledge we have to
specify more flexible semantic constraints.

As a PSTP may correspond to multiple TPs, a
naive evaluation method[12] for PSTP is as follows:

Let Q be a PSTP, Q1, Q2, . . . , Qn be TPs de-
rived from Q, R,R1, R2, . . . , Rn be the answer sets
of Q,Q1, Q2, . . . , Qn on an XML document D, re-
spectively. Then R =

⋃
i∈[1,n] Ri.

While PSTP can express more flexible semantic
information, it is not feasible to directly apply it
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in practice, because n may be too large and thus
has great impact on query performance. Our con-
tributions are as follows:

1. We propose an extension to XPath by intro-
ducing two Samepath axes to enhance the expres-
siveness of XPath.

2. We give a detailed analysis of the challenges
of evaluating PSTP, and then propose an efficient
algorithm, pTwigStack, to process a PSTP holis-
tically. Our method possesses the following three
features: scanning only once; no redundant output;
and bounded space complexity.

3. We implemente related algorithms and make
comparison between our methods and existing
ones. Experimental results demonstrate that our
method is efficient in terms of various evaluation
metrics.

2 Preliminaries

2.1 Data model and numbering schemes

An XML document can be modeled as a node-
labeled tree, where nodes represent elements, at-
tributes and text data, while edges represent direct
nesting relationship between nodes in the tree. For-
mally, tree T = (V,E,Σ ,M), where V is the node
set and there is a unique root node R in V , E is
the edge set, and no cycle among the edges is per-
mitted, Σ is an alphabet of labels and text values,
M is a function that maps each node to its label.

Most XML query processing algorithms use a
special positional representation to represent an
element; we use pre(v), which is compatible with
preorder numbering, to denote the numerical id as-
signed to node v, in the sense that if a node v1 pre-
cedes a node v2 in the preorder left-to-right depth-
first traversal of the tree, then pre(v1) <pre(v2).
This positional representation can be easily imple-
mented using either region encoding[13] or Dewey
ID[14]. In the first case, pre(v) equals a tuple of
three fields: (start; end; level). We say that el-
ement u is an ancestor of element v if and only
if u.start < v.start < u.end. u is the parent
of v if and only if u.start < v.start < u.end

and u.level = v.level − 1. In the second case,
if u is the root node, label(u) = 1, otherwise,

label(u) = label(v).x, where u is the xth child of v,
and “.” in “label(v).x” is the concatenation opera-
tor which is different from the “.” in u.start, u.end

and u.level in the previous sentences.

2.2 Twig pattern (TP) matching

TPs are used to match data fragments from XML
data. The edges in a TP indicate either Parent-
Child (P-C) or Ancestor-Descendant (A-D) rela-
tionship of query nodes. For convenience, we use
“node” to denote query node and “element” to de-
note data element in an XML document.

Matching a TP against an XML document is to
find all occurrences of the TP in the database. For-
mally, given a TP Q and an XML document D, a
match of Q in D is identified by a mapping from
nodes in Q to elements in D, such that: i) the query
node predicates are satisfied by the corresponding
database elements; ii) the structural relationships
(P-C or A-D) among query nodes are satisfied by
the corresponding database elements. The answer
to query Q with n nodes can be represented as a
n-array tuple (e1, e2, . . . , en) which consists of the
database elements that identify a distinct match of
Q in D.

3 The Samepath axis

Definition 1 (SamepathStep). A SamepathStep

returns a sequence of nodes that are reachable from
the context node via a specified axis (PC-samepath
or AD-samepath axis). The SamepathStep has
two parts: an axis, which defines the “direction
of movement” for the step, and a node test, which
selects nodes based on their kind and name. The
resulting node sequence is returned in document
order.

Definition 2 (PC-samepath axis (“→”)). The
PC-samepath axis contains the set of data elements
that are children and parent of the context node.

Definition 3. (AD-samepath axis (“⇒”)).
The AD-samepath axis is the transitive closure of
the PC-samepath axis; it contains the set of data
elements that are descendant and ancestor of the
context node.

There are totally 82 rules in the current XPath
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grammar, among which only rules 26th and 28th
have to be modified. As shown in Figure 2,
SamepathStep is further defined by the new rules
[n1] and [n2]. It consists of two axes, i.e. PC-
samepath and AD-samepath. Except the two axes,
we also introduce two separators, “→” and “⇒”,
to indicate the semantic constraints of being on
the same path. Thus a path expression consisting
of a series of step expressions may be separated
by “→” or “⇒”. For example, “book⇒author” is
short for “child::book/AD-samepath::author” and
will return all authors that are descendant or ances-
tor of book. As a result, there are totally 84 rules
in the extended XPath grammar with two of them
modified and two newly added. This extension to
XPath provides users with the ability to specify
the semantic constraints of two nodes on the same
path in a very simple way. The Samepath axis is
similar to the current XPath axes insofar as it re-
turns a set of nodes corresponding to the context
node. We can use a node test and predicates to
filter those undesired nodes.

Figure 2 EBNF grammar for the extended XPath.

If both A and B are query nodes, we use “A →
B” to denote that A is the parent node of B or
vice versa, “A ⇒ B” denotes that A and B are on
the same path. If eA and eB are data elements of
tag A and B, “eA → eB” or “eA ⇒ eB” denotes
that eA and eB satisfy the structural constraints of
“A → B” or “A ⇒ B”, respectively.

Figure 3 Two partially specified twig patterns.

Example 1. Consider query Q3: “find
the title of the books that have an author

named ‘John’ from the two documents in Fig-
ure 1”. For D1, the query should be Q4: //au-
thor[.//name=“John”]//book//title; for D2, the
query should be Q5: //book[.//author//name=
“John”]//title. With Samepath axis, Q4 and
Q5 can be replaced by a PSTP with Samepath
axis in either Figure 3(a) or Figure 3(b), which
can be written in extended XPath format as
Q6: author[.//name=“John”]⇒book//title or Q7:
book[.⇒author//name=“John”]//title. Further,
PSTP expression can be seamlessly incorporated
into XQuery. For Q3, our solution using the
Samepath axis is as follows.

for $a in doc()//author,

$t in $a⇒book//title

where $a//name=“John”

return $t

Although the Samepath axis can be used to spec-
ify the semantic constraints of two nodes on the
same path, it only involves the relationship of two
nodes. Considering the PSTP in Figure 4(a), we
can easily understand that the semantics of A ⇒ B

equals A//B or B[.//A]. Further, considering the
PSTP expression A ⇒ B ⇒ C and its derived TPs
in Figure 4(b), where A and B should be on the
same path and B and C should be on the same
path, but not necessary for A and C. A ⇒ B ⇒ C

may correspond to B[.//A]//C since elements with
tag A and C are not required to be on the same
path. The PSTP in Figure 4(c) has not been spec-
ified with a concrete root node, and the related
TPs are not shown due to limited space. A prob-
lem we should notice is that node B in the PSTP
in Figure 4(c) should be on the same path with A,
and D should be on the same path with C, which
means that either B or D or both of them may be
ancestors of A and C.

4 Problems and our solutions

As we know from the above description that some
PSTPs may not have been specified with a con-
crete root node, like the one in Figure 4(c), which
corresponds to a keyword-like query, the difference
is that each part of the PSTP is also a path expres-
sion that may contain partial semantic constraints.
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Such a query can be evaluated easily by extend-
ing existing keyword based methods. We present
in this paper only query processing method for
PSTPs that are specified with concrete root nodes,
like the ones in Figure 4(a) and (b). Moreover, all
results presented in this section are based on A-D
and AD-samepath relationships. In this section,
we first analyze existing stack based TP matching
method, and then show challenges of evaluating
PSTP.

Figure 4 Three PSTPs and their corresponding TPs.

4.1 Insight into the TwigStack algorithm

In the TwigStack algorithm, each query node q in
a TP is associated with a stack Sq, a cursor Cq

and a data stream Tq. Cq can point to some el-
ements in Tq, especially, we say that Cq is NULL
if all elements in Tq are processed, and Cq is also
used to denote the element it points to. Before
executing, all cursors point to the first elements in
each data stream. We use Advance(Cq) to make Cq

pointing to the next element. The self-explaining
functions isRoot(q) and isLeaf(q) are used to de-
termine whether q is a root node or a leaf node.
The function children(q) is used to return all the
child nodes of q and parent(q) is used to return the
parent node of q.

TwigStack works in two steps. In the first step, it
repeatedly calls getNext(root) to get a query node

q with Solution Extension1), and then Cq is pro-
cessed by either being pushed into stack as a use-
ful element, or being skipped as a useless element.
Such operations will repeat until all elements of
leaf nodes are processed. At the end of this step,
TwigStack will produce all path solutions. In the
second step, all produced path solutions are merge-
joined to get the final answers. When all edges in
the TP are A-D edges, TwigStack guarantees that
both its time and I/O complexity are independent
of the size of partial matches to any root-to-leaf
path.

In the TwigStack algorithm, the objective of get-
Next(root) is finding the first element that may
participate in final answers from the elements that
are still not being processed, and Solution Exten-
sion is used here to guide the execution of get-
Next(root). As shown in Figure 5, QAD is a TP
with just A-D edges. Suppose B is returned by
getNext(A). From the definition of Solution Exten-
sion we know that it guarantees that the structural
constraints below B are satisfied, which is denoted
by (1) with arrows in Figure 5(a). Thus whether
CB is a useful element is determined by just check-
ing whether the top element in SA is an ancestor of
CB, which is denoted by (2) with an arrow. Obvi-
ously, Solution Extension, (1) with arrows, works
in down direction in TwigStack; while useful ele-
ment, (2) with an arrow, works in up direction.

Figure 5 Processing strategy for different methods.

Example 2. For D3 and Q11 in Figure 6, the
first call of getNext(A) in TwigStack will return B

with cursor CB pointing to b1, which means that
all descendant nodes of B have Solution Extension.
Among all cursors of descendant of B, CB has the
smallest preorder value. However, as no element
in SA is ancestor of b1, b1 is skipped as a useless

1) A node q has a Solution Extension if there is a solution for the sub query rooted at q composed entirely of the cursor elements of

the query nodes in the sub query. Note that if q has a Solution Extension, Cq is the ancestor of all cursor elements in the sub query tree

nodes, and pre(Cq) is smaller than all other elements of query nodes in the subtree rooted at q, based on the strictly nested property

of XML data.
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element instead of being pushed into SB. In this
example, the useful elements are a1, b2, b3 and c1.
After c1 is processed, the stack encoding is shown
in Figure 6(c) and then two path solutions are pro-
duced, they are (a1, b2, c1) and (a1, b3, c1).

Thus we have the following observations.
1. Query nodes in a TP are processed with a

special order in existing methods, i.e. left-to-right
depth-first traversing the TP. For Q11, the order is
A,B,C.

2. Query node q returned by getNext(root) must
have a Solution Extension, from which we can get
an element Cq for further processing. Cq can be ei-
ther pushed into stack if it can participate in final
answers, or skipped directly as a useless one.

3. If q is the root node or otherwise, Cq satisfies
the structural relationship of edge < parent(q), q >

with the top element in stack Sparent(q) (if such el-
ement exists), then Cq is a useful element, which
means that Cq can participate in final answers.

4. All elements in the same stack (from bot-
tom to top) are guaranteed to lie on a root-to-
leaf path according to the given XML document,
and elements in different stacks are linked together
through pointers (from descendant to ancestor).

Figure 6 An example of query processing of the TwigStack al-

gorithm.

4.2 Challenges and our solutions

Although TwigStack guarantees that all elements
are scanned only once and no redundant output,
the four aspects described above hold only for a
TP, not a PSTP. Similarly, we need to resolve the
following problems when evaluating a PSTP.
4.2.1 Query node processing order. As a PSTP
may correspond to multiple TPs, e.g. Q9 in Figure
4 corresponds to 7 TPs, a naive way is processing
each one of them using existing methods. Obvi-
ously, this will cause high processing cost. In our

method, we process a Samepath axis without de-
composing it into two P-C or A-D axes, thus we
can process a PSTP without considering the de-
rived TPs. In this way, the query node processing
order for Q9 is A,B,C.
4.2.2 Returning node. For the same reason,
when processing a PSTP, Solution Extension can-
not be used correctly in getNext as an indicator to
tell whether an element is useless. For example,
consider Q11 and D3 in Figure 6. If the current
cursors CA, CB and CC point to a2, b4 and c2, we
can skip b4 directly since b4 appears before c2 and
it is not the ancestor of c2. But for Q9 in Figure
4, Q11 is just one of the derived TPs of Q9. Al-
though b4 is useless for Q11, for Q9, however, we
cannot say that b4 is useless by just checking Q11,
b4 may be useful for other derived TPs since B also
appears at leaf node in two derived TPs of Q9. In
this case, we should return B for further processing
to avoid losing answers of Q9. For this problem, we
propose a notion partial solution extension (PSE)
to guide the execution of getNext. Intuitively, if q

has a PSE, q corresponds to at least one derived TP
in which q has a Solution Extension, which means
that Cq may participate in final answers of these
derived TPs.
4.2.3 Pushing element. In TwigStack, an ele-
ment Cq corresponding to q returned by get-
Next(root) can be pushed into stack if Cq can par-
ticipate in at least one final result, i.e. Cq is a
useful element. Similarly, in our method, Cq will
be pushed into stack if and only if it is a useful ele-
ment. Then what is a useful element for PSTP? In
TwigStack, we only need to check whether the top
element in Sparent(q) satisfies the structural relation-
ship of edge < parent(q), q > with Cq. However, we
need to check other related elements for PSTP so
as not to lose any result. For example, consider Q9

in Figure 4(b) and D4 in Figure 7(a). Obviously,
a1, b1 and c1 are useful elements since B[.//A]//C
and B//C[.//A] are two derived TPs of Q9; thus
the three elements are pushed into SA, SB and SC.
After that, CA, CB and CC point to a2, b2 and c2,
respectively. Because A appears at leaf node of
three derived TPs of Q9, after a2 is returned by
getNext(root), we need to check whether a2 can
participate in final answers with elements in stacks.
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Obviously, a2 is a useful element for Q9. For an-
other example, consider D3 in Figure 6 and Q9 in
Figure 4. Suppose CA, CB and CC point to a2, b4

and c2, respectively. Because B also appears at leaf
node of some derived TPs, b4 is first returned by
getNext(root) for further processing. Although b4

can satisfy the structural constraint of A ⇒ B with
top(SA), i.e. a1 ⇒ b4, it is a useless element for Q9

since no element with tag C can satisfy the struc-
tural constraint of B ⇒ C. We propose a notion,
Useful Element, in the next section as a metric to
tackle this problem.

Figure 7 Three XML documents.

4.2.4 Stack organization. For a PSTP, a query
node is the ancestor of another one in some de-
rived TPs; in other derived TPs, however, it may
be a descendant of that node. In our method, data
elements in the same stack (from bottom to top)
lie on a root-to-leaf path in an XML document,
and data elements in different stacks are linked to-
gether through pointers from elements in the stack
of descendant query node to elements in stack of
ancestor query node. For example, consider Q9 in
Figure 4 and D4 in Figure 7. a1, b1 and c1 satisfy
the structural constraint of A ⇒ B ⇒ C, so they
should be pushed into SA, SB and SC , respectively.
Although a1 is a descendant of b1, the pointer be-
tween them starts with b1 and ends at a1.

5 Related notions

From the discussion in section 4 we know that the
first problem of evaluating PSTPs is: in what con-
dition a query node q should be returned by get-
Next(root)? For example, QS in Figure 5(b) is
a PSTP, B and C have the Samepath relation-
ship, so each of them can be a leaf node, which
is denoted by (1) with arrows. Suppose B is re-

turned by getNext(A) in our method. Then CB

appears before CC and maybe they are not on the
same path. We cannot say that, in this case, CB is
useless. So the objective of getNext(root) can be
stated as not checking whether an element is use-
ful, but whether it is useless. If it is useless, the
element will be skipped directly, otherwise, it will
be returned for further processing. In the following
definition, hasSE(q) checks whether q has a Solu-
tion Extension.

Definition 4 (partial solution extension
(PSE)). Let Q be a PSTP, we say that a query
node q of Q has a PSE if and only if q satisfies any
one of the following conditions:

1. isLeaf(q)∧Cq �=NULL, or,
2. for each q′ ∈ children(q)
(1) q//q′ ∧ Cq//Cq′∧hasSE(q′), or,
(2) q ⇒ q′∧hasSE(q′) ∧ (pre(Cq) < pre(Cq′) ∨

Cq′ ⇒ Cq).
Case 1 is straightforward. Case 2 consists of two

independent conditions. (1) means that if q and
q′ have A-D relationship, the current elements of
q and q′, i.e. Cq and Cq′ , should satisfy the struc-
tural constraint of q//q′, i.e. Cq//Cq′ , at the same
time, q′ should have Solution Extension. For (2),
consider D5 in Figure 7(b) and Q9 in Figure 4(b),
and suppose CA, CB and CC point to a1, b1 and
c1, respectively. As B and C have the Samepath
relationship, C has a PSE and b1 ⇒ c1, which is
equal to q ⇒ q′∧hasSE(q′) ∧ Cq ⇒ Cq′ , so we say
that B has a PSE since b1 may participate in fi-
nal answers. Consider D6 in Figure 7(c) and Q9,
and suppose CA, CB and CC point to a1, b1 and
c1, respectively. In this case, A and B have the
Samepath relationship, B has a PSE, and a1 and
b1 are not on the same path, which is equal to q ⇒
q′∧hasSE(q′) ∧ pre(Cq) < pre(Cq′) ∧ ¬(Cq ⇒ Cq′).
However, we cannot say that a1 is useless just ac-
cording to the structural relationship between a1

and b1, because A can be a leaf node in some de-
rived TPs shown in Figure 4(b). In such a case, A

has a PSE and the union of the two cases is equal
to (2).

By the definition of PSE, we can easily check
whether a query node q has PSE. However, Cq

may not participate in final answers and we need
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to check whether Cq is useful, which forms the sec-
ond problem, i.e. in what condition should Cq be
pushed into stack Sq? From (2) with arrow in
Figure 5(b) we know that this operation should
include checking the satisfiability of all Samepath
relationships that are directly related with B from
both up and down directions. We propose a notion,
Useful Element, to answer this problem, where
top(Sq) returns the top element from stack Sq and
isEmpty(Sp) checks whether Sp is empty. For two
elements ep and eq, isHold(ep, eq, 〈p, q〉) is used to
check whether ep and eq satisfy the structural con-
straint between query nodes p and q.

Definition 5 (Useful element). An element
pointed by Cq (q is returned by getNext(root) in
our method) is a useful element if and only if any
one of the following conditions holds:

1. isRoot(q)∧hasSE(q), or,
2. isHold(top(Sparent(q)), Cq, 〈parent(q), q〉)∧
(1) hasSE(q), or,
(2) for each child q′ of q, if isHold(Cq, Cq′ , 〈q, q′〉)

= FALSE, then isHold(Cq,top(Sq′), 〈q, q′〉) =
TRUE

Intuitively, Cq is useful means that it can par-
ticipate in final answers. The fact we should un-
derstand is that q has a PSE does not means that
it must have a Solution Extension. Because the
Samepath axis is bidirectional in essence, if q has
not a Solution Extension, we need to check for each
child node q′ of q, whether there exists in Sq′ el-
ements that can satisfy the structural constraint
between q and q′ with Cq.

Case 1 means that if q is the root node and q

has Solution Extension, then Cq is a useful ele-
ment. Case 2 means that if q is not the root node,
Cq must satisfies the structural constraint between
parent(q) and q with top(Sparent(q)); moreover, q

must have a Solution Extension (shown as “(1)”),
or otherwise, for any child node q′, if Cq and Cq′

do not satisfy the structural constraints between q

and q′, then Cq and the top element of Sp′ must
satisfy the structural constraints between q and q′.
For example, consider D3 in Figure 6(a) and Q9 in
Figure 4(b), and suppose CA, CB and CC point to
a2, b4 and c2, respectively. From Definition 4 we
know that B has a PSE, and the top element a1

in SA satisfies the structural constraint of A ⇒ B,
i.e. a1 ⇒ b4. However, we still cannot say that
b4 is a useful element. As b4 and c2 do not satisfy
the structural constraint of B ⇒ C, B has not a
Solution Extension. Further, b4 does not satisfy
the second condition “(2)” of “2”, i.e. there is no
element (in SC) that can satisfy the structural con-
straint of B ⇒ C with b4. Therefore, b4 is a useless
element and can be safely discarded.

6 PSTP matching

Similarly to the TwigStack algorithm, in our
method, each query node q in the given PSTP is
associated with a stack Sq, a cursor Cq and a data
stream Tq. Sq, Cq and Tq have the same meaning as
that of TwigStack, and some functions used in our
method are the same as that described in section
4.1.

6.1 Algorithm: pTwigStack

As shown in Algorithm 1, in the first phase (lines
1–8), as long as not all elements in element streams
of leaf nodes are processed, getNext(root) is called
repeatedly in line 2 to get a query node q with a
PSE. If Cq is useful (determined by isUsefulEle(q)
in line 3), it will be pushed into Sq in line 4,
ModifyPointer(q) is used to modify related pointers
in line 5. In line 6, elements that are not processed
and have a smaller numerical id value than pre(Cq)
are processed by calling ProcessOtherEle(q), i.e.
all elements appear before Cq are processed all to-
gether with Cq if their corresponding query nodes
are descendant of q in the given PSTP. In line 7, Cq

is moved to the next element in Tq. When an ele-
ment is popped from stack, all its related path solu-
tions are produced by calling cleanStack(). In line
8, all remaining path solutions will be produced by
calling outputPaths(). In the second phase, these
path solutions are merge-joined to compute the fi-
nal answers by calling MergeAllPathSolution() in
line 9. Noting that path solutions should be out-
putted in root-to-leaf order so that they can be eas-
ily merged together to form the final answers, so we
need to block some path solutions during output,
just as showSolutionsWithBlocking[1] does.
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Algorithm 1: pTwigStack(root)

1: while ¬end(root) do

2: q = getNext(root)

3: if isUsefulEle(q) then

4: Push(Cq , Sq, NULL)

5: ModifyPointer(q)

6: ProcessOtherEle(q)

7: Advance(Cq )

8: outputPaths()

9: MergeAllPathSolution()

Function: end(q)

1: return ∀qi ∈ subtreeNodes(q): isLeaf(qi)∧end(Cqi )

Procedure: ModifiyPointer(q)

1: for p ∈ relatedNodes(q) do

2: if p//q ∨ p ⇒ q then top(Sq).ptr=top(Sp)

3: if q ⇒ p then top(Sp).ptr=top(Sq)

Function: isUsefulEle(q)

1: bUseful=FALSE; bFlag=TRUE

2: if isRoot(q)∧hasSE(q) then bUseful=TRUE

3: if ¬isRoot(q)∧isHold(top(Sparent(q)), Cq, 〈parent(q), q〉)
4: if hasSE(q) then bUseful=TRUE

5: else for each q′ ∈ children(q)

6: if ¬isHold(Cq , Cq′ , 〈q, q′〉)∧
¬isHold(Cq ,top(Sq′ ), 〈q, q′〉) then bFlag = FALSE

7: if bFlag=TRUE then bUseful=TRUE

8: return bUseful

Procedure: Push(Cq , Sq, ptr)

1: push the pair (Cq , ptr) onto stack Sq

Procedure: cleanStack(Sp, Cq)

1: Push all useful elements that are descendant of each

popped element of Sp, which does not satisfy the

structural relationship of 〈p, q〉 with Cq , then

output related path solutions

Procedure: ProcessOtherEle(q)

1: for p ∈ children(q) do

2: while q ⇒ p∧pre(Cq) < pre(Cp) do

3: cleanStack(Sq , Cp)

4: if isUsefulEle(p)=TRUE then

5: Push(Cp, Sp, Cq)

6: ModifyPointer(p)

7: ProcessOtherEle(p)

8: Advance(Cp)

getNext, as shown in Algorithm 2, is the core
function called in pTwigStack, in which we need
to consider A-D and the Samepath relationship si-
multaneously. getNext is used here to get a query
node with a PSE, from which we can get an ele-
ment that may participate in final answers. If q

is a leaf node, it will be returned directly in line
1. If not, in lines 2–5, for each child p of q, if

p′ (returned by getNext(p)) is not equal to p, p′

is returned in line 4; otherwise, if p′ equals p and
p has not a Solution Extension, p is directly re-
turned in line 5. If all children of q have Solu-
tion Extension, we need to determine whether q

has a PSE. In lines 6–7, we find nmin and nmax

which have the minimal and maximal numerical id
value from all children that have A-D but not the
Samepath relationship with q. In lines 8–9, Cq is
forwarded until Cq and Cnmax are on the same path
or Cnmax is before Cq. If pre(Cq) > pre(Cnmin),
nmin is returned in line 10. In lines 11–12, for
each child of q that has the Samepath relation-
ship with q, if Cq cannot cover or be covered by
Cp and Cp appears before Cq, p is returned. Fi-
nally, if all children of q satisfy the structural
constraint with q (hasSE(q)=TRUE) or Cq ap-
pears before Cp, i.e. ¬(Cq⇒Cp)∧pre(Cq) <pre(Cp)
(hasSE(q)=FALSE), q is returned in line 13.

Algorithm 2: getNext(q)

1: if isLeaf(q)=TRUE then return q

2: for p ∈ children(q) do

3: p′ = getNext(p)

4: if p′ 	= p then return p′

5: if ¬hasSE(p) then return p

6: nmin =minargp{pre(Cp)|q//p}
7: nmax =maxargp{pre(Cp)|q//p}
8: while pre(Cq) <pre(Cnmax)∧¬ (Cq⇒Cnmax) do

9: Advance(Cq )

10: if pre(Cq) >pre(Cnmin) then return nmin

11: for p ∈ children(q) do

12: if q ⇒ p ∧ ¬(Cq ⇒ Cp)∧pre(Cq) >pre(Cp) then

return p

13: return q

Example 3. As shown in Figure 8, (a) is the
given XML document D, (b) is a PSTP Q and (c)–
(f) are four TPs of Q. Initially, CA, CB and CC

point to a1, b1 and c1, respectively. The first call
of getNext(A) returns C with a PSE since A and
C have A-D relationship and pre(c1) <pre(a1) ∧
¬(a1//c1). Because c1 is useless, it is skipped di-
rectly and CC is moved to c2. The second call
of getNext(A) returns A with a PSE, then a1 is
pushed into SA and b1 is also pushed into SB since
pre(b1) <pre(a1) and B ∈children(A) and they are
all useful elements. The statuses of SA, SB and
SC are shown in Figure 8(g). Though B is a leaf
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node, no path solution will be produced after b1

is pushed into SB since b1 is ancestor of a1. After
that, CA and CB point to a2 and b2, respectively.
Thus CA, CB and CC point to a2, b2 and c2. In the
third call of getNext(A), a2 is skipped directly and
CA is moved forwardly to a3 since A and C have
A-D relationship and pre(a2) <pre(c2)∧¬(a2//c2).
Then C is returned with a PSE. Since c2 is useful,
it is pushed into stack SC . The statuses of SA, SB

and SC are shown in Figure 8(h). The path solu-
tion (a1, c2) is produced since C is a leaf node and
c2 is a descendant of a1. After that, c2 is popped
from SC . The next call of getNext(A) returns B

with a PSE, and b2 will be pushed into SB. The
statuses of SA, SB and SC are shown in Figure 8(i).
The path solution (a1, b2) is produced and b2 is
popped from SB. After all elements are processed,
all related path solutions are produced at the end
of the first phase. They are (a1, b1), (a1, b2) and
(a1, c2), respectively. In the second phase, all path
solutions are merge-joined to get the final results,
i.e. (a1, b1, c2) and (a1, b2, c2).

Figure 8 Document D, PSTP Q and its TPs ((a)–(f)), and

running examples ((g)–(i)).

When P-C or PC-samepath edges appear in the
given PSTP, we just need to take the level infor-
mation of each element into account, the detailed
description is omitted from Algorithm 1 for sim-
plicity.

6.2 Analysis of pTwigStack

We first show the correctness of pTwigSatck and
then analyze the complexity of pTwigStack.

Lemma 1. Let Q be a PSTP, and q be a query
node of Q. If q=getNext(root), q has a PSE.

Lemma 2. Any useful element Cq will be
pushed into stack Sq.

Obviously, Lemma 1 shows that from the query
node q returned by getNext(root) we can get an
element Cq that may be useful. Lemma 2 means
that all useful elements are pushed into stacks. Let
Q=A op B, where op can be A-D (“//”), P-C
(“/”), PC-samepath(“→”) or AD-samepath(“⇒”)
relationship. Because P-C and PC-samepath re-
lationships can be easily processed based on A-
D and AD-samepath relationships, we just show
the correctness about A-D and AD-samepath rela-
tionships. If op=“//”, Q = A//B and the subse-
quent operation is the same as that in TwigStack.
If op=“⇒”, Q = A ⇒ B. As shown in Figure
9, we need to consider four cases: (a) CA//CB ,
which is consistent with A ⇒ B and A is returned
first, the element processing order is CA, CB . (b)
CB//CA, which is consistent with A ⇒ B and A

is returned first. Further, element CB is processed
simultaneously after A is returned, and the ele-
ment processing order is CA, CB. This case de-
notes that all elements appearing before CA are
processed without another call of getNext(A). (c)
pre(CB) <pre(CA) ∧ ¬(CA ⇒ CB). B is returned
first by getNext(A) since CB appears before CA.
The element processing order is CB, CA. (d)
pre(CB) >pre(CA) ∧ ¬(CA ⇒ CB). In this case,
A is returned first by getNext(A) since CA appears
before CB, and A has a PSE, and the element pro-
cessing order is CA, CB. In each case, if the pro-
cessed element is useful, it will be pushed into Sq,
otherwise, it will be discarded directly. Thus we
have the following theorem.

Theorem 1. Let Q be a PSTP. If each edge
in Q represents an A-D or AD-samepath relation-
ship, then algorithm pTwigStack guarantees that
only useful elements can be pushed into stack and
each intermediate path solution can participate in
final answers.

Theorem 1 means that each intermediate path
solution produced by pTwigStack is useful when
considering only A-D and AD-samepath relation-
ship. The proof is simple. From Algorithm 1 we
know that if an element is useless (line 3 in Algo-
rithm 1), the cursor pointing to it will be forwarded
to the next element (line 7 in Algorithm 1), oth-
erwise, it will be pushed into stack according to
Lemma 2. Further, if an element is useful, it must
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Figure 9 Cases for pTwigStack.

satisfy the structural constraint of the given query
with other elements in the running stacks; thus
each intermediate path solution consisting of only
useful elements will definitely participate in final
answers, i.e. it is useful.

Since all useful elements are pushed into
stacks according to Lemma 2, in the procedure
cleanStack, path solutions are produced when el-
ements are popped from stacks. Finally, in the
second phase of pTwigStack, all path solutions are
merge-joined to compute the final answers. So we
have the following theorem.

Theorem 2. Given a PSTP Q and an XML
database D, algorithm pTwigStack correctly re-
turns all answers for Q on D.

While the correctness holds for any given PSTP
Q, the I/O optimality holds only for the case where
no P-C and PC-samepath edges exist in Q as only
useful elements are pushed into stacks. Therefore,
we have the following result.

Theorem 3. Consider an XML database D

and a PSTP Q that has n nodes and just A-D and
AD-samepath edges. Algorithm pTwigStack has
worst case I/O and CPU time complexities linear
in the sum of sizes of the n input lists and the out-
put list. Further, the worst case space complexity
of Algorithm pTwigStack is the minimum of (i) the
sum of sizes of the n input lists, and (ii) n times
the maximum length of a root-to-leaf path in D.

Theorem 3 holds only for PSTP with A-D and
AD-samepath edges, in the case where the PSTP
contains P-C or PC-samepath edges. Algorithm
pTwigStack is no longer guaranteed to be I/O and
CPU time optimal. In particular, the algorithm
might produce a solution for one root-to-leaf path
that does not match any solution in another root-
to-leaf path.

6.3 Optimization

If schema is not considered for query process-
ing, obviously, pTwigStack definitely outperform
TwigStack since a PSTP may correspond to mul-
tiple TPs. In this paper, we represent the under-
neath schema S as a directed graph, where each
node corresponds to a tag name, and each edge
from node A to node B means that in the docu-
ment complying with S, elements with tag B can
be children of elements with tag A. We say there
exists a cycle between A and B in S if there exists
at least a path from A to B and vice versa, which
means that elements with tag A can be ancestor
or descendant of elements with tag B. However,
if no cycle exists between two query nodes in S,
the Samepath relationship between the two nodes
in a PSTP can be replaced by just one P-C or A-D
relationship. If we can make use of such struc-
tural information, then query performance can be
improved significantly.

Let a PSTP Q = {V,E, T}, where V is the set
of nodes in Q, E ⊆ V × V is the set of edges
in Q, and T : E → R is a type function that
maps each edge to a value in the relationship set
R={‘/’,‘//’,‘→’,‘⇒’}. We propose Algorithm 3 to
optimize a PSTP using the schema S.

In Algorithm 3, hasCycle(A,B, S) is used to
check whether there exists a cycle between A and
B in schema S. For each edge 〈A,B〉 ∈ Q.E, if
A and B are connected by a PC-samepath edge
and there is no cycle between A and B (line 3),
the relationship between A and B can be replaced
by P-C edge (lines 4–5). Similarly, if A and B are
connected by an AD-samepath edge and there is
no cycle between A and B (line 6), the relation-
ship between A and B can be replaced by A-D
edge (lines 7–8). In line 9, the optimized PSTP Q

is returned. Compared with the PSTP input into
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Algorithm 3, the number of derived TP is reduced
significantly, as shown in Figure 10. For simplicity,
we call Algorithm 3 the 1st optimization technique.

Figure 10 Number of derived TPs for each query. #TP1,

Number of derived TPs without optimization; #TP2, number

of derived TPs after using the 1st optimization technique; #TP3,

number of remained TPs after using the 2nd optimization tech-

nique.

Algorithm 3: Rewrite(Q,S) /*Q is a PSTP, S is

the schema graph*/

1: for ∀A, B ∈ Q.V do

2: if 〈A, B〉 ∈ Q.E then

3: if T (〈A, B〉) = ‘ →′ ∧¬hasCycle(A, B, S) then

4: T (〈A, B〉) ←‘/’

5: ‘A → B’ is replaced by ‘A/B’ or ‘B/A’

6: if T (〈A, B〉)=‘⇒’ ∧¬hasCycle(A, B, S) then

7: T (〈A, B〉) ← ‘//’

8: ‘A ⇒ B’ is replaced by ‘A//B’ or ‘B//A’

9: return Q

Example 4. Assume that the DTD schema
of the given XML document consists of two
rules, namely 〈!ELEMENT A (A,B,C)〉 and
〈!ELEMENT B (A∗, C)〉. Obviously, there ex-
ists a cycle between A and B, not B and
C. If the given PSTP is Q9 in Figure 4
(b), by Algorithm 3, it can be rewritten as
Q9′ : A⇒B//C, through which we can get four
TPs, they are A//B//C,B//A//C,B//C[.//A]
and B[.//A]//C. Note that after optimization us-
ing Algorithm 3, the cost of evaluating Q9 is greatly
reduced since many derived TPs of Q9 are no longer
existent.

Further, schema information can also be used
to check whether a PSTP or derived TP is satis-
fied, i.e. the answer set is not empty. Thus we
can further reduce query processing cost by check-
ing whether the given query is consistent with the
schema information (i.e. Definition 6). We imple-
mented such an operation in Algorithm 4, which
we call the 2nd optimization technique.

Definition 6. Letting a PSTP Q = {V,E, T},
we say that Q is consistent with schema S if
for each edge 〈A,B〉 ∈ Q.E, we can find two
nodes A′, B′ that satisfy Lable(A) =Lable(A′) and
Lable(B) =Lable(B′) in S, such that the relation-
ship of A′ and B′ satisfies the structural constraint
of T (〈A,B〉) according to S, which corresponds to
four cases: 1) if T (〈A,B〉) =‘/’, there exists an
edge from A′ to B′; 2) if T (〈A,B〉)=‘//’, there ex-
ists a path from A′ to B′; 3) if T (〈A,B〉)=‘→’,
there exists an edge from A′ to B′ or vice versa;
and 4) if T (〈A,B〉) =‘⇒’, there exists a path from
A′ to B′ or vice versa.

Algorithm 4: isConsistent(Q,S)

1: for ∀A, B ∈ Q.V do

2: if 〈A, B〉 ∈ Q.E then

3: find two nodes A′, B′ corresponding to A and

B in S

4: if T (〈A, B〉) =‘/’ ∧¬hasEdge(A′, B′, S) then

5: return FALSE

6: if T (〈A, B〉) =‘//’ ∧¬hasEdge(A′, B′, S) then

7: return FALSE

8: if T (〈A, B〉) =‘→’ ∧
¬(hasEdge(A′, B′, S)∨hasEdge(B′ , A′, S)) then

9: return FALSE

10: if T (〈A, B〉) =‘⇒’ ∧
¬(hasPath(A′ , B′, S)∨hasPath(B′ , A′, S)) then

11: return FALSE

12: return TRUE

Algorithm 4 is used to determine whether the
given query is consistent with the underneath
schema, where hasEdge(A,B, S) is used to check
whether there is an edge from A to B in S. And
hasPath(A,B, S) is used to check whether there
is a path from A to B. For each edge 〈A,B〉 in
Q.E, we find two nodes A′, B′ that correspond to
A and B in S. In lines 4–11, we check whether
the relationship between A′ and B′ in S is satisfied
with the structural constraint between A and B in
Q, which corresponds to the four cases in Defini-
tion 6. If any one of the four cases does not hold,
Algorithm 4 is terminated with FALSE returned,
meaning that Q is not consistent with S; otherwise,
TRUE is returned in line 12, which means that Q

is consistent with S.
Assume that the DTD schema is the same to

that of Example 4. Consider the four TPs derived
from Q9′ , i.e. A//B//C,B//A//C,B//C[.//A]
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and B[.//A]//C. Since no elements can appear
below elements with tag C according to the DTD
schema, we can safely discard B//C[.//A] as it is
not consistent with the DTD schema. Thus only
three TPs are left for further processing.

7 Experimental evaluation

7.1 Experimental setup

Our experiments were implemented on a PC with
Pentium4 2.8 GHz CPU, 512 MB memory, 160 GB
IDE disk, and Windows XP professional as the op-
eration system.

We used TwigStack as the basis when imple-
menting the naive method proposed in ref. [12],
which we call nTwigStack (nTS). In addition to
nTS and pTwigStack (pTS), we also implemented
five other algorithms using three optimization tech-
niques including B+ tree index, the 1st and 2nd
optimization techniques (i.e. Algorithm 3 and Al-
gorithm 4). B+ tree is used to index element labels
so that we can skip useless element labels in label
stream like TSGeneric+[2]. The 1st optimization is
used to rewrite the given PSTP and the 2nd opti-
mization is used to check whether a given query is
consistent with the underneath schema. All these
algorithms are listed in Table 1, where nTS-O is an
improved version of nTS using the 1st optimization
technique, nTS-OB is the combination of nTS, the
1st optimization technique and B+ tree index, and
nTS-OBO is the combination of nTS, B+ tree in-
dex, the 1st and the 2nd optimization techniques.
Similarly, pTS-O is an improved version of pTS
using the 1st optimization technique, pTS-OB is
the combination of pTS, the 1st optimization tech-
nique and B+ tree index. All algorithms were im-
plemented using Visual C++ 6.0.

7.2 Datasets and queries

We used XMark (http://monetdb.cwi.nl/xml),

DBLP (http://www.cs.washington.edu/research/
xmldatasets/www/repository.html) and TreeBank
for our experiments. The main characteristics of
the three datasets can be found in Table 2. Al-
though PSTP can be used to extract useful infor-
mation from multiple XML documents with struc-
tural heterogeneity, we use one data set with re-
cursive structure to simulate multiple data sources
with different structures.

In our experiment, each element is labeled with
a triple (start, end, level) and then stored into two
separate files, one is sequential file, and the other is
random file (disk-based B+ tree index). All labels
corresponding to same tag are stored together in
a label stream in an ascending order according to
start value of each label. Sequential file is used in
nTS, nTS-O, pTS and pTS-O algorithms without
B+ tree index, and random file is used in nTS-OB,
nTS-OBO and pTS-OB algorithms with B+ tree
index. Each query node with a distinct tag name
corresponds to a separate label stream.

The queries used in our experiment are listed in
Table 3. Since the 2nd optimization technique is
just used for the derived TPs in our experiment,
we show in Table 3 only the changes caused by
the 1st optimization technique. The benefits of
the 2nd optimization is shown in Figure 10. All
these queries can be classified into three categories:
1) PSTPs without the Samepath edges (“⇒” and
“→”), e.g. QD1, QX1 and QT1, which we call
1st group PSTPs. 2) PSTPs can be transformed
to TPs based on DTD schema using the 1st opti-
mization, e.g. QD2, QD3 and QX2, which we call
the 2nd group. 3) PSTPs cannot be transformed to
TPs, which means that some Samepath edges can-
not be replaced by P-C or A-D edges since there
exist cycles in the schema between the nodes con-
nected by these Samepath edges, e.g. QX3, QT2
and QT3, which we call the 3rd group.

Table 1 Algorithms and optimization techniques used in our experiment

nTS nTS-O nTS-OB nTS-OBO pTS pTS-O pTS-OB

The 1st optimization
√ √ √ √ √

B+ tree index
√ √ √

The 2nd optimization
√
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Table 2 Statistics of XML data sets

Dataset Size (M) Nodes (Million) Max depth Average depth

DBLP 127 3.3 6 2.9

XMark 113 1.7 12 5.5

TreeBank 82 2.4 36 7.8

Table 3 Queries used in our experimenta)

Dataset Status Queries Group

QD1 DBLP
BO //book/author

1

AO -no change-

QD2 DBLP
BO //www[.⇒editor]/url

2

AO //www[.//editor]/url

QD3 DBLP
BO //dblp⇒article/year

2

AO //dblp//article/year

QX1 XMark
BO //site/people/person/name

1

AO -no change-

QX2 XMark
BO /site⇒closed auctions/emph

2

AO /site//closed auctions/emph

QX3 XMark
BO //listitem[.//bold]/text[.//emph]⇒keyword

3

AO -no change-

QT1 TreeBank
BO //S/VP/VBD

1

AO -no change-

QT2 TreeBank
BO //S[.⇒JJ]/NP

3

AO -no change-

QT3 TreeBank
BO //S⇒VP/PP[NP/VBN]/IN

3

AO -no change-

a) BO, Before the 1st optimization; AO, after the 1st optimization.

7.3 Performance comparison and analysis

We consider the following performance metrics to
compare the performance of different algorithms:
1) number of derived TPs, which reflects the effect
of using the 1st and 2nd optimization techniques;
2) number of scanned elements; 3) running time;
and 4) scalability.

Consider the first metric, i.e. number of derived
TPs, as shown in Figure 10, for the 1st group of
PSTPs, optimization equals no optimization since
no Samepath edge is contained in the three PSTPs.

For the 2nd group of PSTPs, the 1st optimiza-
tion will cause the Samepath edge replaced by A-
D edge, the 2nd optimization technique will not
bring us any benefits since each PSTP is consistent
with the schema. For PSTPs in the 3rd group, the
1st optimization technique does not work in such
a case since the three PSTPs are consistent with
the schema and the Samepath edge in each PSTP
cannot be replaced by A-D or P-C edge, but the
2nd optimization technique does work since some
derived TPs of QX3 and QT3, except QT2, are not
consistent with the schema; thus they can be safely
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discarded without further processing.
Consider the 1st group of PSTPs, as shown in

Figure 11(a), the number of scanned elements of
nTS, nTS-O, pTS and pTS-O are same as each
other, because neither of the two optimization tech-
niques works for the 1st group of PSTPs, and for
a given query, each algorithm uses the same set of
label streams (sequential files); thus they will read
the same amount of element labels. Figure 11(b)
shows that our method, pTS and pTS-O, need
to afford additional CPU cost since our method
has more judging operations. This conclusion also
holds for the comparison of nTS-OB, nTS-OBO
and pTS-OB. However, as shown in the follow-
ing, this performance degradation can be safely ig-
nored when compared with the significant perfor-
mance improvement achieved from the 3rd group
of PSTPs.

For the 2nd group of PSTPs, as shown in Figure
12, the number of scanned elements of nTS is more
than that of other algorithms since nTS will pro-
cess each derived TP of the given PSTP without
any optimization; as a result, running time of nTS
is also very large compared with other algorithms.

For the remainder algorithms, we can see from Fig-
ure 12 that algorithms with same basic configura-
tion (label streams and optimization techniques)
have similar performance because after the 1st op-
timization, each one of the 2nd group of PSTPs will
be transformed to a TP, and the 2nd optimization
doesn’t work for each PSTP after transformation.
Note using B+ tree index to skip useless elements
will greatly improve query performance for QD2
rather than QD3. For QD2, only few elements are
useful, so the running time of nTS-OB, nTS-OBO
and pTS-OB is less than that of nTS-O, pTS and
pTS-O. For QD3, although the number of scanned
elements is reduced after using B+ tree index, re-
peatedly searching from root to leaf node makes
the I/O cost of nTS-OB, nTS-OBO and pTS-OB
larger than that of nTS-O, pTS and pTS-O, which
will further result in poor query performance.

For the 3rd group of PSTPs, as shown in Figure
13, for any metrics in this figure, our methods, i.e.
pTS, pTS-O and pTS-OB, outperform nTS, nTS-
O, nTS-OB and nTS-OBO significantly, because
the 1st optimization technique is useless for the
3rd group of PSTPs and each PSTP corresponds

Figure 11 Performance comparison against the 1st group of PSTPs. (a) Number of scanned elements; (b) runnin time.

Figure 12 Performance comparison against the 2nd group of PSTPs. (a) Number of scanned elements; (b) running time.
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Figure 13 Performance comparison against the 3rd group of PSTPs. (a) Number of scanned elements; (b) running time.

Figure 14 Performance comparison of seven algorithms over XMark of different sizes using QX3. (a) Number of scanned elements;

(b) running time.

to multiple TPs (Figure 10), among which only
limited TPs can be safely discarded using the 2nd
optimization technique, thus all remainder TPs af-
ter the 2nd optimization will be processed one by
one using nTS, nTS-O, nTS-OB or nTS-OBO al-
gorithm, as a result, large amount of elements need
to be scanned multiple times, which will result in
high CPU cost. Although the 2nd optimization
technique is useful in such a case, the effect is lim-
ited for the 3rd group of PSTPs. Obviously, naive
method, nTS, and its improved algorithms, nTS-
O, nTS-OB and nTS-OBO, cannot work efficiently
for the 3rd group of PSTPs.

Further, we present the performance results
about scalability of QX3 in Figure 14, from which
we know that our methods can work more effi-
ciently than naive methods when processing PSTP
over XML document with different size, because
our method processes each element only once,
while the performance of naive methods is deter-
mined by the number of derived TPs.

From the above experimental results and our
analysis we know that when processing PSTPs
with Samepath edges, especially the effect of op-

timization is not remarkable, e.g. QX3, QT2 and
QT3, our methods, e.g. pTS, pTS-O and pTS-OB,
can work much more efficiently than naive meth-
ods, i.e. nTS, and its optimization, i.e. nTS-O,
nTS-OB and nTS-OBO. The reason lies in two as-
pects: 1) our methods guarantee that each element
is scanned only once; and 2) our methods guarantee
that no useless intermediate paths will be produced
when considering only A-D and AD-samepath rela-
tionships (Theorem 1). Even if no Samepath edge
appears in the query expression, e.g. QD1, QX1
and QT1, or otherwise, the Samepath edges can
be replaced by P-C or A-D edges after optimiza-
tion, e.g. QD2, QD3 and QX2, our method can
achieve similar performance to that of the existing
methods.

8 Related work

TPs can be used to match data fragments in an
XML document. MPMGJN[13] was proposed for
efficient structural join, Stack-Tree-Desc/Anc[15]

improves the query performance of MPMGJN by
using stack-based binary structural join algorithm.
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Wu et al.[16] studied the problem of binary join or-
der selection for complex queries based on a cost
model. All these structure join methods suffer
from the large number of intermediate results. To
process a TP holistically, many methods[1−4] were
proposed to avoid producing large size of useless in-
termediate results. Among them, TwigStack[1] was
proposed to process a TP in a holistic way. When
considering only A-D edges, TwigStack guarantees
that the CPU time and I/O complexity is inde-
pendent of the size of partial matches to any root-
to-leaf path. Other methods[2−4] made improve-
ments against TwigStack from different aspects.
TSGeneric+[2] focused on holistic twig joins on
all/partly indexed XML documents to skip some
useless elements. Chen et al.[3] proposed iTwigJoin
that exploits different data partition strategies to
further boost the holism. TJEssential[4] uses a hy-
brid strategy to avoid redundant operations com-
pared with the methods of refs. [1–3]. All these
methods can only be used to a single TP, for a
PSTP, however, they cannot work efficiently since
a PSTP may correspond to several TPs.

Keyword based methods[8,9] can provide us with
the most flexibility. MLCAS was introduced in
ref. [9] to reduce meaningless results. XSEarch[8]

returns semantically related document fragments
that satisfy the user’s query. However, we can
not specify that several nodes are on the same
path without specifying the concrete precedence
relationship. Query relaxation based methods[10,11]

will produce a large number of relaxed query ex-
pressions, thus resulting in too many approximate

answers.
In the area of integrating tree-structured data,

the Xyleme system[17] exploits XML views to cope
with the problem. The Agora system[18] translates
query expressions to SQL queries on each local data
source. In ref. [19], queries are processed using
mapping rules between a global schema and many
local data sources, and then evaluated in each data
source.

Although the notion of PSTP has been proposed
in ref. [12] to provide the users with a more flexi-
ble way to express semantic constraints, no exist-
ing work has focused on holistic query evaluation
for PSTPs. In ref. [20], the authors proposed a
method for evaluation of partial path queries, not a
query expression with branch node, thus we do not
compare them with this method since it is based
on different query syntaxes.

9 Conclusions

In this paper, we firstly extended XPath language
with the new axis, Samepath axis, which allows
users to express partial semantic constraints of be-
ing on the same path in a concise but effective way;
then we proposed a new holistic query process-
ing method, pTwigStack, for semantically querying
tree-structured data sources using PSTPs. Our ex-
perimental results show that our method can work
more efficiently than the existing methods when
processing PSTPs. As our method cannot process
a PSTP that is not specified with a root node, we
will focus on this problem in the near future.
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Abstract— Inspired by the great success of information re-
trieval (IR) style keyword search on the web, keyword search on
XML has emerged recently. The difference between text database
and XML database results in three new challenges: (1) Identify
the user search intention, i.e. identify the XML node types that
user wants to search for and search via. (2) Resolve keyword
ambiguity problems: a keyword can appear as both a tag name
and a text value of some node; a keyword can appear as the text
values of different XML node types and carry different meanings.
(3) As the search results are sub-trees of the XML document,
new scoring function is needed to estimate its relevance to a given
query. However, existing methods cannot resolve these challenges,
thus return low result quality in term of query relevance.

In this paper, we propose an IR-style approach which basically
utilizes the statistics of underlying XML data to address these
challenges. We first propose specific guidelines that a search
engine should meet in both search intention identification and
relevance oriented ranking for search results. Then based on
these guidelines, we design novel formulae to identify the search
for nodes and search via nodes of a query, and present a novel
XML TF*IDF ranking strategy to rank the individual matches of
all possible search intentions. Lastly, the proposed techniques are
implemented in an XML keyword search engine called XReal,
and extensive experiments show the effectiveness of our approach.

I. INTRODUCTION

The extreme success of web search engines makes keyword
search the most popular search model for ordinary users. As
XML is becoming a standard in data representation, it is
desirable to support keyword search in XML database. It is
a user friendly way to query XML databases since it allows
users to pose queries without the knowledge of complex query
languages and the database schema.

Effectiveness in term of result relevance is the most crucial
part in keyword search, which can be summarized as the
following three issues in XML field.
Issue 1: It should be able to effectively identify the type of
target node(s) that a keyword query intends to search for. We
call such target node as a search for node.
Issue 2: It should be able to effectively infer the types of
condition nodes that a keyword query intends to search via.
We call such condition nodes as search via nodes.
Issue 3: It should be able to rank each query result in
consideration of the above two issues.

The first two issues address the search intention problem,
while the third one addresses the relevance based ranking
problem w.r.t. the search intention. Regarding to Issue 1 and

Issue 2, XML keyword queries usually have ambiguities in
interpreting the search for node(s) and search via node(s), due
to two reasons below.

• Ambiguity 1: A keyword can appear both as an XML
tag name and as a text value of some other nodes.

• Ambiguity 2: A keyword can appear as the text values
of different types of XML nodes and carry different
meanings.

For example see the XML document in Figure 1, keywords
customer and interest appear as both an XML tag name and a
text value (e.g. value of the title for book B1), and art appears
as a text value of interest, address and name node.

Regarding to Issue 3, the search intention for a keyword
query is not easy to determine and can be ambiguous, because
the search via condition is not unique; so how to measure the
confidence of each search intention candidate, and rank the
individual matches of all these candidates are challenging.

Although many research efforts have been conducted in
XML keyword search [1], [2], [3], [4], [5], none of them has
addressed and resolved the above three issues yet. For instance,
one widely adopted approach so far is to find the smallest
lowest common ancestor (SLCA) of all keywords [3]. Each
SLCA result of a keyword query contains all query keywords
but has no subtree which also contains all the keywords. Since
[4], [5] etc. are variations of SLCA, we use SLCA as a typical
existing approach in the rest discussion. Those SLCA-based
approaches only take the tree structure of XML data into
consideration, without considering the semantics of the query
and XML data.

In particular, regarding to Issue 1 and 2, SLCA may intro-
duce answers that are either irrelevant to user search intention,
or answers that may not be meaningful or informative enough.
E.g. when a query “Jim Gray” that intends to find Jim Gray’s
publications on DBLP [6] is issued, SLCA returns only the
author elements containing both keywords. Besides, SLCA
also returns publications written by two authors where “Jim”
is a term in 1st author’s name and “Gray” is a term in 2nd
author, and publications with title containing both keywords.
It is reasonable to return such results because search intention
may not be unique; however they should be given a lower
rank, as they are not matches of the major search intention.
Regarding to Issue 3, no existing approach has studied the
problem of relevance oriented result ranking in depth yet.
Moreover, they don’t perform well on pure keyword query
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Fig. 1. Portion of data tree for an online bookstore XML database

when the schema information of XML data is not available
[4]. The actual reason is, none of them can solve the keyword
ambiguity problems, i.e. Ambiguity 1 and Ambiguity 2, as
demonstrated by the following example.

Example 1: Consider a keyword query “customer interest
art” issued on the bookstore data in Figure 1, and most likely
it intends to find the customers who are interested in art.

If adopting SLCA, we will get 5 results, which include
the title of book B1 and the customer nodes with IDs from
C1 to C4 (as these four customer nodes contain “customer”,
“interest” and “art” in either the tag names or node values) in
Figure 1. Since SLCA cannot well address the search intention,
all these 5 SLCA results are returned without any ranking
applied. However, only C4 is desired which should be put as
the top ranked one, and C2 is less relevant, as his interest is
“street art” rather than “art”, while C1 and C3 are irrelevant.�

Inspired by the great success of IR approach on web search
(especially its distinguished ranking functionality), we aim to
achieve similar success on XML keyword search, to solve the
above three issues without using any schema knowledge. The
main challenge we are going to solve is how to extend the
keyword search techniques in text databases (IR) to XML
databases, because the two types of databases are different.
First, the basic data units in text databases searched by users
are flat documents. For a given query, IR systems compute
a numeric score for each document and rank the document
by this score. In XML databases, however, information is
stored in hierarchical tree structures. The logical unit of
answers needed by users is not limited to individual leaf nodes
containing keywords, but a subtree instead. Second, unlike
text database, it is difficult to identify the (major) user search
intention in XML data, especially when the keywords contain
ambiguities mentioned before. Third, effective ranking is a
key factor for the success of keyword search. There may be
dozens of candidate answers for an ordinary keyword query
in a medium-sized database. E.g. in Example 1, five subtrees
can be the query answers, but they are not equally useful
to user. Due to the difference in basic answer unit between
document search and database search, in XML database we
need to assign a single ranking score for each subtree of

certain category with a fitting size, in order to rank the answers
effectively.

Statistics is a mathematical science pertaining to the collec-
tion, analysis, interpretation or explanation of data; it can be
used to objectively model a pattern or draw inferences about
the underlying data being studied. Although keyword search is
a subjective problem that different people may have different
interpretations on the same keyword query, statistics provides
an objective way to distinguish the major search intention(s).

This motivates us to design a best efforts heuristic approach
that provides an objective way to measure the query result
relevance; thus we model the search engine as a domain
expert who automatically interprets user’s all possible search
intention(s) through analyzing the statistics knowledge of
underlying data. In this paper we propose a novel IR-style ap-
proach which well captures XML’s hierarchical structure, and
works well on pure keyword query independent of any schema
information of XML data. In particular, the original TF*IDF
similarity [7] is extended to handle both semi-structured and
unstructured data, and a keyword search system prototype
called XReal is implemented to achieve effective identification
of user search intention and relevance oriented ranking for the
search results in the presence of keyword ambiguities.

Example 2: We use the query in Example 1 again to
explain how XReal infers user’s desired result and puts it
as a top-ranked answer. XReal interprets that user desires to
search for customer nodes, because all three keywords have
high frequency of occurrences in customer nodes. Similarly,
since keywords “interest” and “art” have high frequency of
occurrences in subtrees rooted at interest nodes, it is con-
sidered with high confidence that this query wants to search
via interest nodes, and incorporate this confidence into our
ranking formula. Besides, customers interested in “art” should
be ranked before those interested in (say) “street art”. As a
result, C4 is ranked before C2, and further before customers
with address in “art street”(e.g. C1) or named “art” (e.g. C3).�

To our best knowledge, we are the first that exploit the
statistics of underlying XML database to address search in-
tention identification, result retrieval and relevance oriented
ranking as a single problem for XML keyword search. Our
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main contributions are summarized as follows:

1) This is the first work that addresses the keyword ambi-
guity problem. We also identify three crucial issues that
an effective XML keyword search engine should meet.

2) We define our own XML TF (term frequency) and XML
DF (document frequency), which are cornerstones of all
formulae proposed later.

3) We propose three important guidelines in identifying the
user desired search for node type, and design a formula
to compute the confidence level of a certain node type
to be a desired search for node based on the guidelines.

4) We design formulae to compute the confidence of each
candidate node type as the desired search via node to
model natural human intuitions, in which we take into
account the pattern of keywords co-occurrence in query.

5) We propose a novel relevance oriented ranking scheme
called XML TF*IDF similarity which can capture the
hierarchical structure of XML, and resolve Ambiguity 1
and Ambiguity 2 in a heuristic way; and also distinguish
the similarity computation for leaf nodes and internal
nodes in XML data. Moreover, our approach is able to
handle both semi-structured and unstructured data.

6) We implement the proposed techniques in a keyword
search engine prototype called XReal. Extensive exper-
iments show its effectiveness, efficiency and scalability.

The rest of the paper is organized as follows. We present
the related work in Section II, and preliminary on IR and data
model in Section III. Section IV infers user search intention,
and Section V discusses relevance oriented ranking. Section
VI presents the search algorithms. Experimental evaluation is
given in Section VII and we conclude in Section VIII.

II. RELATED WORK

Extensive research efforts have been conducted in XML
keyword search to find the smallest sub-structures in XML
data that each contains all query keywords in either the tree
data model or the directed graph (i.e. digraph) data model.

In tree data model, LCA (lowest common ancestor) seman-
tics is first proposed and studied in [8], [2] to find XML nodes,
each of which contains all query keywords within its subtree.
Subsequently, SLCA (smallest LCA [9], [3]) is proposed to
find the smallest LCAs that do not contain other LCAs in their
subtrees. GDMCT (minimum connecting trees) [5] excludes
the subtrees rooted at the LCAs that do not contain query
keywords. Sun et al. [10] generalize SLCA to support key-
word search involving combinations of AND and OR boolean
operators. XSeek [4] generates the return nodes which can be
explicitly inferred by keyword match pattern and the concept
of entities in XML data. However, it addresses neither the
ranking problem nor the keyword ambiguity problem. Besides,
it relies on the concept of entity (i.e. object class) and considers
a node type t in DTD as an entity if t is “*”-annotated in DTD.
As a result, customer, phone, interest, book in Figure 1,
are identified as object classes by XSeek. However, it causes
the multi-valued attribute to be mistakenly identified as an
entity, causing the inferred return node not as intuitive as

possible. E.g. phone and interest are not intuitive as entities.
In fact, the identification of entity is highly dependent on the
semantics of the underlying database rather than its DTD, so
it usually requires the verification and decision from database
administrator. Therefore, the adoption of entities for keyword
search should be optional although this concept is very useful.

In digraph data model, previous approaches are heuristics-
based, as the reduced tree problem on graph is as hard as
NP-complete. Li et al. [11] show the reduction from minimal
reduced tree problem to the NP-complete Group Steiner Tree
problem on graphs. BANKS [12] uses bidirectional expansion
heuristic algorithms to search as small portion of graph as
possible. BLINKS [13] proposes a bi-level index to prune and
accelerate searching for top-k results in digraphs. Cohen et
al. [14] study the computation complexity of interconnection
semantics. XKeyword [15] provides keyword proximity search
that conforms to an XML schema; however, it needs to com-
pute candidate networks and thus is constrained by schemas.

On the issue of result ranking, XRANK [2] extends
Google’s PageRank to XML element level, to rank among
the LCA results; but no empirical study is done to show the
effectiveness of its ranking function. XSEarch [1] adopts a
variant of LCA, and combines a simple tf*idf IR ranking with
size of the tree and the node relationship to rank results; but it
requires users to know the XML schema information, causing
limited query flexibility. EASE [16] combines IR ranking and
structural compactness based DB ranking to fulfill keyword
search on heterogenous data. Regarding to ranking methods,
TF*IDF similarity [7] which is originally designed for flat
document retrieval is insufficient for XML keyword search due
to XML’s hierarchical structure and the presence of Ambiguity
1 and Ambiguity 2. Several proposals for XML information
retrieval suggest to extend the existing XML query languages
[17], [18], [19] or use XML fragments [20] to explicitly
specify the search intention for result retrieval and ranking.

III. PRELIMINARIES

A. TF*IDF cosine similarity

TF*IDF (Term Frequency * Inverse Document Frequency)
similarity is one of the most widely used approaches to
measure the relevance of keywords and document in keyword
search over flat documents. We first review its basic idea, then
address its limitations for keyword search in XML. The main
idea of TF*IDF is summarized in the following three rules.

• Rule 1: A keyword appearing in many documents should
not be regarded as being more important than a keyword
appearing in a few.

• Rule 2: A document with more occurrences of a query
keyword should not be regarded as being less important
for that keyword than a document that has less.

• Rule 3: A normalization factor is needed to balance be-
tween long and short documents, as Rule 2 discriminates
against short documents which may have less chance to
contain more occurrences of keywords.

To combine the intuitions in the above three rules, the
TF*IDF similarity is designed:
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ρ(q, d) =

∑
k∈q∩d Wq,k ∗ Wd,k

Wq ∗ Wd
(1)

where q represents a query, d represents a flat document and
k is a keyword appearing in both q and d. A larger value of
ρ(q, d) indicates q and d are more relevant to each other. Wq,k

and Wd,k represent the weights of k in query q and document
d respectively; while Wq and Wd are the weights of query q
and document d. Among several ways to express Wq,k, Wd,k,
Wq and Wd, the followings are the conventional formulae:

Wq,k = ln (N/(fk + 1)) (2)
Wd,k = 1 + ln (fd,k) (3)

Wq =
√∑

k∈q

W 2
q,k (4)

Wd =
√∑

k∈d

W 2
d,k (5)

where N is the total number of documents, and document
frequency fk in Formula 2 is the number of documents
containing keyword k. Term frequency fd,k in Formula 3 is
the number of occurrences of k in document d.

Wq,k is monotonical decreasing w.r.t. fk (Inverse Document
Frequency) to reflect Rule 1; while Wd,k is monotonical
increasing w.r.t. fd,k (Term Frequency) to reflect Rule 2. The
logarithms used in Formula 2 and 3 are designed to normalize
the raw document frequency fk and raw term frequency fd,k.
Finally, Wq and Wd are increasing w.r.t. the size of q and d,
playing the role of normalization factors to reflect Rule 3.

However, the original TF*IDF is inadequate for XML,
because it is not able to fulfill the job of search intention
identification or resolve keyword ambiguities resulted from
XML’s hierarchical structure, as Example 3 shows.

Example 3: Suppose a keyword query “art” is issued to
search for customers interested in “art” in Figure 1’s XML
data. Ideally, the system should rank customers who do have
“art” in their nested interest nodes before those who do not
have. Moreover, it is desirable to give customer (A) who is
only interested in art a higher rank than another customer (B)
who has many interests including art (e.g. C4 in Figure 1).

However, it causes two problems if directly adopting orig-
inal TF*IDF to XML data. (1) If the structures in customer
nodes are not considered, customer A may have a lower rank
than B if A happens to have more keywords in its subtrees
(analog to long document in IR) than B. (2) Even worse,
suppose a customer C is not interested in art but has address
in “art street”. If C has less number of keywords than A and
B in XML data, then C may have higher rank than A and B.

B. Data model

We model XML document as a rooted, labeled tree, such as
the one in Figure 1. Our approach exploits the prefix-path of a
node rather than its tag name for result retrieval and ranking.
Note that the existing works [4], [21] rely on DTD while our
approach works without any XML schema information.

Definition 3.1: (Node Type) The type of a node n in an
XML document is the prefix path from root to n. Two nodes
are of same node type if they share the same prefix path.

In Definition 3.1, the reason that two nodes need to share
same prefix path instead of their tag name is, there may be
two or more nodes of the same tag name but of different
semantics (i.e. in different contexts) in one document. E.g. In
Figure 1, the name of publisher and the name of customer are
of different node types, as they are in different contexts.

To facilitate our discussion later, we use the tag name
instead of the prefix path of a node to denote the node type
in all examples throughout this paper. Besides, we distinguish
an XML node into either a value node or a structural node, to
separate the content part from leaf node.

Definition 3.2: (Value Node) The text values contained in
the leaf node of XML data (i.e. #PCDATA) is defined as a
value node.

Definition 3.3: (Structural Node) An XML node labeled
with a tag name is called a structural node. A structural node
that contains other structural nodes as its children is called an
internal node.

Definition 3.4: (Single-valued Type) A given node t is of
single-valued type if each node of type t has at most one
occurrence within its parent node.

Definition 3.5: (Multi-valued Type) A given node t is of
multi-valued type if each node of type t has more than one
occurrence within its parent node.

Definition 3.6: (Grouping Type) An internal node t is
defined as a grouping type if each node of type t contains
child nodes of only one multi-valued type.

XML nodes of single-valued type and multi-valued type can
be easily identified when parsing the data. A node of single-
valued (or multi-valued, or grouping) type is called a single-
valued (or multi-valued, or grouping) node. E.g. in Figure 1,
address is a single-valued node, while interest is a multi-
valued node and interests is a grouping node for interest.

In this paper, for ease of presentation later, we assume every
multi-valued node has a grouping node as its parent, as we can
easily introduce a dummy grouping node in indexing without
altering the data. Note a grouping node is also a single-valued
node. Thus, the children of an internal node are either of same
multi-valued type or of different single-valued types.

C. XML TF & DF
Inspired by the important role of data statistics in IR

ranking, we try to utilize it to resolve ambiguities for XML
keyword search, as it usually provides an intuitionistic and
convincing way to model and capture human intuitions.

Example 4: When we talk about “art” in the domain of
database like Figure 1, we in the first place consider it as a
value in interest of customer nodes or category (or title) of
book nodes. However, we seldom first consider it as a value
of other node types (e.g. street with value “Art Street”).

The reason for this intuition is, usually there are many nodes
of interest type and category type containing “art” in their
text values (or subtrees) while “art” is usually infrequent in
street nodes. Such intuition (based on domain knowledge)
always can be captured by statistics of the underlying database.

Similarly, when we talk about “interest” here, we in the
first place consider it as a node type instead of a value of
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the title of book nodes with intuition thinking. Besides the
simple reason that “interest” matches the XML tag interest,
it can also be explained from statistical point of view, i.e. all
interest nodes contain keyword “interest” in their subtrees.

The importance of statistics in XML keyword search is
formalized as follows.

Intuition 1: The more XML nodes of a certain type T (and
their subtrees) contain a query keyword k in either their text
values or tag names, it is more intuitive that nodes of type T
are more closely related to the query w.r.t. keyword k.

In this paper, we maintain and exploit two important basic
statistics terms, fa,k and fT

k .
Definition 3.7: (XML TF) fa,k: The number of occurrences

of a keyword k in a given value node a in the XML database.
Definition 3.8: (XML DF) fT

k : The number of T -typed
nodes that contain keyword k in their subtrees in the XML
database.

Here, fa,k and fT
k are defined in an analogous way to term

frequency fd,k (in Formula 3) and document frequency fk (in
Formula 2) used in original TF*IDF similarity; except that we
use fT

k to distinguish statistics for different node types, as the
granularity on which to measure similarity in XML scenario
is a subtree rather than a document. Therefore, fa,k and fT

k

can be directly used to measure the similarity between a value
node (with parent node of type T ) and a query based on the
intuitions of original TF*IDF. Besides, fT

k is also useful in
resolving ambiguities, as Intuition 1 shows. We will discuss
how these two sets of statistics are used for relevance oriented
ranking for XML keyword search in presence of ambiguities.

IV. INFERRING KEYWORD SEARCH INTENTION

In this section, we discuss how to interpret the search
intentions of keyword query according to the statistics in XML
database and the pattern of keyword co-occurrence in a query.

A. Inferring the node type to search for

The desired node type to search for is the first issue that a
search engine needs to address in order to retrieve the relevant
answers. Given a keyword query q, a node type T is considered
as the desired node to search for only if the following three
guidelines hold:
Guideline 1: T is intuitively related to every query keyword
in q, i.e. for each keyword k, there should be some (if not
many) T -typed nodes containing k in their subtrees.
Guideline 2: XML nodes of type T should be informative
enough to contain enough relevant information.
Guideline 3: XML nodes of type T should not be overwhelm-
ing to contain too much irrelevant information.

Guideline 2 prefers an internal node type T at a higher
level to be the returned node, while Guideline 3 prefers that
the level of T -typed node should not be very near to the
root node. For instance let’s refer to Figure 1: according to
Guideline 2, leaf nodes of type interest, street etc. are usually
not good candidates for desired returned nodes, as they are
not informative. According to Guideline 3, nodes of type
customers and books are not good candidates as well, as
they are too overwhelming as a single keyword search result.

By incorporating the above guidelines, we define
Cfor(T, q), which is the confidence of a node type T
to be the desired search for node type w.r.t. a given keyword
query q as follows:

Cfor(T, q) = loge(1 +
∏
k∈q

fT
k ) ∗ rdepth(T ) (6)

where k represents a keyword in query q; fT
k is the number

of T -typed nodes that contain k as either values or tag names
in their subtrees; r is some reduction factor with range (0,1]
and normally chosen to be 0.8, and depth(T ) represents the
depth of T -typed nodes in document.

In Formula 6, the first multiplier (i.e. loge(1 +
∏

k∈q fT
k ))

actually models Intuition 1 to address Guideline 1. Meanwhile,
it effectively addresses Guideline 3, since the candidate over-
whelming nodes (i.e. the nodes that are near the root) will
be assigned a small value of

∏
k∈q fT

k , resulting in a small
confidence value. The second multiplier rdepth(T ) simply
reduces the confidence of the node types that are deeply nested
in the XML database to address Guideline 2. In addition, we
use product rather than sum of fT

k (i.e.
∏

k∈q fT
k ) in the first

multiplier to combine statistics of all query keywords for each
node type T . The reason is, the search intention of each query
usually has a unique desired node type to search for, so using
product ensures that a node type needs to be intuitively related
to all query keywords in order to have a high confidence as
the desired type. Therefore, if a node type T cannot contain
all keywords of the query, its confidence value is set to 0.

Example 5: Given a query “customer interest art”, node
type customer usually has high confidence as the desired
node type to search for, because the values of three statistics
fcustomer
“customer”, f customer

“interest” and f customer
“art” (i.e. the number of sub-

trees rooted at customer nodes containing “customer”, “inter-
est” and “art” in either nested text values or tags respectively)
are usually greater than 1. In contrast, node type customers
doesn’t have high confidence since f customers

“customer” = f customers
“interest” =

f customers
“art” = 1. Similarly, node type interest doesn’t have high

confidence since f interest
“customer” usually has small value. E.g. in

Figure 1’s XML data, f interest
“customer” = 0.

Finally, with the confidence of each node type being the
desired type, the one with the highest confidence is chosen as
the desired search for node, when the highest confidence is
significantly greater than the second highest. However, when
several node types have comparable confidence values, either
users can be offered a choice to decide the desired one, or the
system will do a search for each convincing candidate node.
Although not always fully automatic, our inference approach
still provides a guidance for the system-user interaction for
ambiguous keyword queries in absence of syntax.

B. Inferring the node types to search via

Similar to inferring the desired search for node, Intuition 1
is also useful to infer the node types to search via. However,
unlike the search for case which requires a node type to be
related to all keywords, it is enough for a node type to have
high confidence as the desired search via node if it is closely
related to some (not necessarily all) keywords, because a query
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may intend to search via more than one node type. E.g. we
can search for customer(s) named ”Smith” and interested in
“fashion” with query “name smith interest fashion”. In this
case, the system should be able to infer with high confidence
that name and interest are the node types to search via, even
if keyword “interest” is probably not related to name nodes.

Therefore, we define Cvia(T, q), which is the confidence of
a node type T to be a desired type to search via as below:

Cvia(T, q) = loge(1 +
∑
k∈q

fT
k ) (7)

where variables k, q and T have the same meaning as those
in Formula 6. Compared to Formula 6, we use sum of fT

k

instead of product, as it is sufficient for a node type to have
high confidence as the search via node if it is related to some
of the keywords. In addition, if all nodes of a certain type T
do not contain any keyword k in their subtrees, fT

k is equal
to 0 for each k in q, resulting in a zero confidence value,
which is also consistent with the semantics of SLCA. Then,
the confidence of each possible node type to search via will
be incorporated into XML TF*IDF similarity (which will be
discussed in Section V-B) to provide answers of high quality.

C. Capturing keyword co-occurrence

While statistics provide a macro way to compute the confi-
dence of a node type to search via; it alone is not adequate to
infer the likelihood of an individual value node to search via
for a given keyword in the query.

Example 6: Consider a query “customer name Rock interest
Art” searching for customers whose name includes “Rock”
and interest includes “Art”. Based on statistics, we can infer
that name and interest-typed nodes have high confidence to
search via by Formula 7, as the frequency of keywords “name”
and “interest” are high in node types name and interest
respectively. However, statistics is not adequate to help the
system infer that the user wants “Rock” to be a value of name
and “Art” to be a value of interest, which is intuitive with
the help of keyword co-occurrence in the query. Therefore,
purely based on statistics, it is difficult for search engine to
differ customer C4 (with name ”Art” and interest ”Rock”)
from C3 (with name “Rock” and interest ”Art”) in Figure 1.

Motivated from the above example, the pattern of keyword
co-occurrence in a query provides a micro way to measure
the likelihood of an individual value node to search via, as a
compliment of statistics. Therefore, for each query-matching
value node in XML data, in order to capture the co-occurrence
of keywords matching the node types and keywords matching
the value nodes, the following distances are defined.

Given a keyword query q and a certain value node v, if
there are two keywords kt and k in q, such that kt matches
the type of an ancestor node of v and k matches a keyword
in v, then we define the following distances.

Definition 4.1: (In-Query Distance (IQD)) The In-Query
Distance Distq(q, v, kt, k) between keyword k and node type
kt in query q with respect to a value node v is defined as the
position distance between kt and k in q if kt appears before
k in q; Otherwise, Distq(q, v, kt, k) = ∞.

Note the position distance of two keywords k1 and k2 in a
query q is the difference of k1’s position and k2’s position in
the query. The above definition assumes there is no repeated
kt and k in a query q. When there are multiple occurrences of
kt and/or k (e.g. query “name smith address smith street”), we
define Distq(q, v, kt, k) as the minimal value for all possible
combinations of each occurrence of kt and k.

Definition 4.2: (Structural Distance (SD)) The structural
Distance Dists(q, v, kt, k) between kt and k w.r.t. a value
node v is defined as the depth distance between v and the
nearest kt-typed ancestor node of v in XML document.

Definition 4.3: (Value-Type Distance (VTD)) The Value-
Type Distance Dist(q, v, kt, k) between kt and k w.r.t. a value
node v is defined as

max(Distq(q, v, kt, k), Dists(q, v, kt, k)).
In general, the smaller the value of Dist(q, v, kt, k) is, it is

more likely that q intends to search via the node v with value
matching keyword k. Therefore, we define the confidence of
a value node v as the node to search via w.r.t. a keyword k
appearing in both query q and v as follows.

Cvia(q, v, k) = 1 +
∑

kt∈q∩ancType(v)

1
Dist(q, v, kt, k)

(8)

Example 7: Consider the query q in Example 6 again with
same search intention. Let n3 and i3 represent the value nodes
under name (i.e. Art Smith) and interest (i.e. rock music)
respectively of customer C3. Similarly, let n4 and i4 be the
values nodes under name and interest of customer C4. Now
Distq(q, n3, name, Art) = 3; Dists(q, n3, name, Art) = 1;
as a result Dist(q, n3, name, Art) = 3 and Cvia(q, n3, Art)
= 4/3. Similarly, Cvia(q, i3, Rock) = 1; Cvia(q, n4, Rock) =
2; and Cvia(q, i4, Art) = 2. We can see that the values of
customer C4 are larger than those of customerC3.

V. RELEVANCE ORIENTED RANKING

In this section, we first summarize some unique features
of keyword search in XML, and address the limitations of
traditional TF*IDF similarity for XML. Then we propose a
novel XML TF*IDF similarity which incorporates the confi-
dence formulae we have designed in Section IV, to resolve the
keyword ambiguity problem in relevance oriented ranking.

A. Principles of keyword search in XML

Compared with flat documents, keyword search in XML has
its own features. In order for an IR-style ranking approach to
smoothly apply to it, we present three principles that the search
engine should adopt.
Principle 1: When searching for XML nodes of desired type
D via a single-valued node type V , ideally, only the values
and structures nested in V -typed nodes can affect the relevance
of D-typed nodes as answers, whereas the existence of other
typed nodes nested in D-typed nodes should not. In other
words, the size of the subtree rooted at a D-typed node d
(except the subtree rooted at the search via node) shouldn’t
affect d’s relevance to the query.

Example 8: When searching for customer nodes via street
nodes using a keyword query “Art Street”, a customer node
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(e.g. customer C1 in Figure 1) with the matching keyword
“street” shouldn’t be ranked lower than another customer
node (e.g. customer C3 in Figure 1) without the matching
keyword “street”, regardless of the sizes, values and structures
of other nodes nested in C1 and C3. Note this is different
from the original TF*IDF similarity that has strong intuition
to normalize the relevance score of each document with respect
to its size (i.e. to normalize against long documents).

Principle 2: When searching for the desired node type D via a
multi-valued node type V ′, if there are many V ′-typed nodes
nested in one node d of type D, then the existence of one
query-relevant node of type V ′ is usually enough to indicate,
d is more relevant to the query than another node d′ also
of type D but with no nested V ′-typed nodes containing the
keyword(s). In other words, the relevance of a D-typed node
which contains a query relevant V ′-typed node should not be
affected (or normalized) too much by other query-irrelevant
V ′-typed nodes.

Example 9: Consider when searching for customers inter-
ested in art using the query “art”, a customer with “art”-
interest along with many other interests (e.g. C4 in Figure
1) should not be regarded as less relevant to the query than
another customer who doesn’t have “art”-interest but has “art
street” in address (e.g. C1 in Figure 1).

Principle 3: The order of keywords in a query is usually
important to indicate the search intention.

The first two principles look trivial if we know exactly the
search via node. However, when the system doesn’t have exact
information of which node type to search via (as user issues
pure keyword query in most cases), they are important in
designing the formula of XML TF*IDF similarity; we will
utilize them in designing Formula for W q

a in section V-B.2.

B. XML TF*IDF similarity

We propose a recursive Formula 9, which captures XML’s
hierarchical structure, to compute XML TF*IDF similarity
between an XML node of the desired type to search for and
a keyword query. It first (base case) computes the similarities
between leaf nodes l of XML document and the query,
then (recursive case) it recursively computes the similarities
between internal nodes n and the query, based on the similarity
value of each child c of n and the confidence of c as the node
type to search via, until we get the similarities of search for
nodes:

ρs(q, a) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(a) a is value node∑
k∈q∩a

W Ta
q,k∗Wa,k

W Ta
q ∗Wa

(base case)

(b) a is internal∑
c∈chd(a)

ρs(q,c)∗Cvia(Tc,q)

W q
a

node
(recursive case)

(9)
where q represents a keyword query; a represents an XML

node; and the result ρs(q, a) represents the similarity value
between q and a.

We first discuss the intuitions behind Formula 9 briefly.
(1) In the base case, we compute the similarity values between

XML leaf nodes and a given query in a similar way to original
TF*IDF, since leaf nodes contain only keywords with no
further structure.
(2) In the recursive case: on one hand, if an internal node
a has more query relevant child nodes while another internal
node a′ has less, then it is likely that a is more relevant to the
query than a′. This intuition is reflected as the numerator in
Formula 9(b). On the other hand, we should take into account
the fan-out (size) of the internal node as normalization factor,
since the node with large fan-out has a higher chance to
contain more query relevant children. This is reflected as the
denominator of Formula 9(b).

Next, we will illustrate how each factor in Formula 9
contributes to the XML structural similarity in Section V-B.1
(for base case) and V-B.2 (for recursive case).

1) Base case of XML TF*IDF: Since XML leaf nodes
contain keywords with no further structure, we can adopt
the intuitions of original TF*IDF to compute the similarity
between a leaf node and a keyword query by using statistics
terms fT

k and fa,k which have been explained in Section III-C.
However, unlike Rule 1 in original TF*IDF which models

and assigns the same weight to a query keyword w.r.t. all
documents (i.e. Wq,k in Formula 2), we model and distinguish
the weights of a keyword w.r.t. different XML leaf node types
(i.e. WTa

q,k in Formula 10).
Example 10: Keyword “road” may appear quite frequently

in street nodes of Figure 1 while infrequently in other nodes.
Thus it is necessary to distinguish the (low) weight of “road”
in address from its (high) weight in other nodes. Similarly,
we distinguish the weights of a query w.r.t. different XML
node types (i.e. WTa

q ), rather than fixed weight for a given
query for all flat documents.

Now let’s take a detailed look at Formula 9. In the base case
for XML leaf nodes, each k represents a keyword appearing
in both query q and value node a; Ta is the type of a’s parent
node; WTa

q,k represents the weight of keyword k in q w.r.t.
node type Ta. Wa,k represents the weight of k in leaf node
a; WTa

q represents the weight of q w.r.t. node type Ta; and
Wa represents the weight of a. Following the conventions of
original TF*IDF, we propose the formulas for WTa

q,k, Wa,k,
WTa

q and Wa in Formula 10, 11, 12 and 13 respectively:

WTa

q,k = Cvia(q, a, k) ∗ loge (1 + NTa
/(1 + fTa

k )) (10)

Wa,k = 1 + loge (fa,k) (11)

WTa
q =

√∑
k∈q

(WTa

q,k)2 (12)

Wa =
√∑

k∈a

W 2
a,k (13)

In Formula 10, NTa
is the total number of nodes of type

Ta while fTa

k is the number of Ta-typed nodes containing
keyword k; Cvia(q, a, k) is the confidence of node a to be a
search via node w.r.t. keyword k (explained in Section IV-C).
In Formula 11, fa,k is the number of occurrences of k in value
node a. Similar to Rule 1 and Rule 2 in original TF*IDF,
WTa

q,k is monotonical decreasing w.r.t. fTa

k , while Wa,k is
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monotonical increasing w.r.t. fa,k. Wa is normally increasing
w.r.t. the size of a, so put it as part of denominator to play
a role of normalization factor to balance between leaf nodes
containing many keywords and those with a few keywords.

2) Recursive case of XML TF*IDF: The recursive case of
Formula 9 recursively computes the similarity value between
an internal node a and a keyword query q in a bottom-up way
based on two intuitions below.

Intuition 2: An internal node a is relevant to q, if a has
a child c such that the type of c has high confidence to be a
search via node w.r.t. q (i.e. large Cvia(Tc, q)), and c is highly
relevant to q (i.e. large ρs(q, c)).

Intuition 3: An internal node a is more relevant to q if a
has more query-relevant children when all others being equal.

In the recursive case of Formula 9, c represents one child
node of a; Tc is the node type of c; Cvia(Tc, q) is the
confidence of Tc to be a search via node type presented in
Formula 7; ρs(q, c) represents the similarity between node c
and query q which is computed recursively; W q

a is the overall
weight of a for the given query q.

Next, we explain the similarity design of an internal node
a in Formula 9: we first get a weighted sum of the similarity
values of all its children, where the weight of each child c is
the confidence of c to be a search via node w.r.t. query q. This
weighted sum is exactly the numerator of formula 9, which
also follows Intuition 2 and 3 mentioned above. Besides, since
Intuition 3 usually favors internal nodes with more children,
we need to normalize the relevance of a to q. That naturally
leads to the use of W q

a (Formula 14) as the denominator.
3) Normalization factor design:

W q
a =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(a) if a is√ ∑
c∈chd(a)

(Cvia(Tc, q) ∗ B + DW (c))2 grouping
node
(b)√ ∑

T∈chdType(Ta)

Cvia(T, q)2 otherwise
(14)

Formula 14 presents the design of W q
a , which is used as

a normalization factor in the recursive case of XML TF*IDF
similarity formula. W q

a is designed based on Principle 1 and
Principle 2 pointed out in section V-A.

Formula 14(a) presents the case that internal node a is a
grouping node; then for each child c of a (i.e. c ∈ chd(a)), B
is considered as a Boolean flag: B = 1 if ρs(q, c) > 0 and B =
0 otherwise; DW (c) is a small value as the default weight
of c which we choose DW (c) = 1/ loge(e − 1 + |chd(a)|) if
B = 0 and DW (c) = 0 if B = 1, where |chd(a)| is the
number of children of a, so that W q

a for grouping node a grows
with the number of query-irrelevant child nodes, but grows
very slowly to reflect Principle 2. Note DW (c) is usually
insignificant as compared to Cvia(Tc, q).

Now let’s explain the reason that we design Formula 14(a).
The intuition for the formula of grouping node a comes

from Principle 2, so we don’t count Cvia(Tc, q) in the
normalization unless c contains some query keywords within
its subtree. In this way, the similarity of a to q will not

be significantly normalized (or affected) even if a has many
query-irrelevant child nodes of the same type. At the same
time, with the default weight DW (c), we still provide a way
to distinguish and favor a grouping node with small number of
children from another grouping node with many children, in
case that the two contain the same set of query-relevant child
nodes. Informally speaking, the more compact the meaningful
answer is, the higher the rank it is given.

When internal node a is a non-grouping node, we compute
W q

a based on the type of a rather than each individual node.
In Formula 14(b), chdType(Ta) represents the node types of
the children of a, and it computes the same W q

a for all a-
typed nodes even if each individual a-typed node may have
different set of child nodes (e.g. some customer nodes have
nested address while some do not have).

This design has two advantages. First, it models Principle
1 to achieve a normalization that the size of the subtree of
individual node a does not affect the similarity of a to a query.

Example 11: Given a query q “customer Art Street”,
since address has high confidence to be searched via (i.e.
Cvia(address, q)), C1 (with address in “Art Street”) will be
ranked before C2 (with interest in “street art”) according to the
normalization in Formula 14(b). However, if we compute the
normalization factor based on the size of each individual node,
then the high confidence for address node doesn’t contribute
to the normalization factor of C2 (who even doesn’t have
address and street nodes etc.). As a result, C2 has a good
chance to be ranked before C1 due to its small size which
results in small normalization factor.

Second, Formula 14(b)’s design has advantage in term of
computation cost. With W q

a for non-grouping node computed
based on node types instead of data nodes, we only need to
compute W q

a for all a-typed nodes once for each query, instead
of repeatedly computing W q

a for each a-typed node in the data.
Note in the base case, a keyword k is less important in T -

typed nodes if more T -typed nodes contain k. However, now
we consider T -typed nodes are more important for keyword k
(i.e. larger Cvia(T, k)). These two, which seem contradictive,
are in fact the key to accurate relevance based ranking.

Example 12: Consider when searching for customers with
query “customer art road”, statistics will normally give more
weights to address than other node types because of the
high frequency of keyword “road” in address. But if no
customer node has address in “art road” but some have address
in “art street”, then these customer nodes will be ranked
before customers with address containing “road” without “art”.
Because the keyword “road” has a lower weight than ”art” in
address nodes due to its much higher frequency.

VI. ALGORITHMS

A. Data processing and index construction
We parse the input XML document during which we collect

the following information for each node n visited: (1) assign
a Dewey label DeweyID [22] to n; (2) store the prefix path
prefixPath of n as its node type in a global hash table,
so that any two nodes sharing the same prefixPath have the

4
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same node type; (3) in case n is a leaf node, we create a value
node a (mentioned in section III-B) as its child and summarize
two basic statistics data fa,k (in Definition 3.7) and Wa (in
Formula 13) at the same time. Besides, we also build two
indices in order to speedup the keyword query processing.

The first index built is called keyword inverted list, which
retrieves a list of value nodes in document order whose values
contain the input keyword. In particular, we have designed
and evaluated three candidates for the inverted list: (1) Dup,
the most basic index which stores only the dewey id and
XML TF fa,k; (2) DupType, which stores an extra node type
(i.e. its prefix path) compared to Dup; (3) DupTypeNorm,
which stores an extra normalization factor Wa (in Formula
13) associated with this value node compared to DupType.
DupTypeNorm provides the most efficient computation of
XML TF*IDF, as it costs the least index lookup time; in
contrast Dup and DupType need extra index lookup to gather
the value of Wa,k (see formula 11) to compute Wa online.

Given a keyword k, the inverted list returns a set of nodes a
in document order, each of which contains the input keyword
and is in form of a tuple <DeweyID, prefixPath, fa,k,
Wa>. Each term here has been explained as above. In order
to facilitate the explanations of the algorithm, we name such
tuple as “Node”. It supports the following operations:

• getDeweyID(a,k) returns the Dewey id of value node a.
• getPrefix(a,k) returns the prefix path of a in XML data.
• getFrequency(a,k) returns the value of fa,k.

Algorithm 1: KWSearch(keywords[m], IL[m], F [m])
Let max = 0; Tfor = null1
List Lfor = getAllNodeTypes()2
foreach Tn∈Lfor do3

Cfor(Tn, keywords) = getSearchForConfidence(Tn,keywords)4
if (Cfor(Tn) > max) then5

max = Cfor(Tn); Tfor = Tn6
LinkedList rankedList7
Nfor = getNext(Tfor)8
while (!end(IL[1]) || ... || (!end(IL[m]))) do9

Node a = getMin(IL[1],IL[2],...,IL[m])10
if (!isAncestor(Nfor , a)) then11

ρs(keywords,Nfor) = getSimilarity(Nfor ,keywords)12
rankedList.insert(Nfor , ρs(keywords,Nfor))13
Nfor = getNext(Tfor)14

if (isAncestor(Nfor , a)) then15
ρs(keywords, a) = getSimilarity(a,keywords)16

else17
ρs(keywords, a) = 018

return rankedList;19

The second index built is called frequency table, which
stores the frequency fT

k for each combination of keyword k
and node type T in XML document. Its worst case space com-
plexity is O(K*T), where K is the number of distinct keywords
and T is the number of node types in XML database. Since
the number of node types in a well designed XML database
is usually small (e.g. 100+ in DBLP 370MB and 500+ in
XMark 115MB), the frequency table size is comparable to
inverted list. It is indexed by keywords using Berkeley DB
B+-tree [23], so the index lookup cost is O(log(K)). It supports
getFrequency(T,k) which returns the value of fT

k .
Note that values returned by these operations are important

to compute the result of the formulae presented in Section V.

B. Keyword search & ranking

Algorithm 1 presents a flowchart of keyword search and
result ranking. The input parameters keywords[m] is a key-
word query containing m keywords. Based on the inverted
lists built after pre-processing the XML document, we extract
the corresponding lists IL[1], ..., IL[m] for each keyword in
the query. F is the frequency table mentioned in section VI-A.
In particular, Algorithm 1 executes in three steps.

First, it identifies the search intention of the user, i.e. to
identify the most desired search for node type (line 1-6).
In particular, it first collects all distinct node types in XML
document (line 2). Then for each node type, we compute its
confidence to be a search for node through Formula 6, and
choose the one with the maximum confidence as the desired
search for node type Tfor (line 3-6).

Second, for each search for node candidate Nfor, it com-
putes the XML TF*IDF similarity between n and the given
keyword query (line 7-18). We maintain a rankedList to
contain the similarity of each search for node candidate (line
7). Nfor is initially set to the first node of type Tfor in
document order (line 8). The computation of XML TF*IDF
similarity between an XML node and the given query is
computed recursively in a bottom-up way (line 9-18): for each
Nfor, we first extract node a which occurs first in document
order (line 10), then compute the similarity of all leaf nodes
a by calling Function getSimilarity(), then go one level up
to compute the similarity of the lowest internal node (line 15-
18), until it reaches up to Nfor, which is actually the root of
all nodes computed before. Then it computes the similarity
between current Nfor and the query (line 12), insert a pair
(Nfor, ρ) into rankedList (line 13), and move the cursor to
next Nfor by calling function getNext() and calculate the
similarity of next Nfor in the same way (line 14).

Third, it returns the ranked list of all search for node
candidates by their similarity to the query (line 19).
Function getSimilarity(Node a, q[n])

if (isLeafNode(a)) then1
foreach k ∈ q

⋂
a do2

Cvia(q, a, k) = getKWCo-occur(q,a,k);3

W Ta
q,k

= getQueryWeight(q,k,a);4

W Ta
q,k

= Cvia(q, a, k) * W Ta
q,k

;5
Wa,k = 1+loge(fa,k);6

sum += W Ta
q,k

* Wa,k;7

ρs(q, a) = sum/(W Ta
q *getWeight(a));8

if (isInternalNode(a)) then9
W q

a = getQWeight(a,q);10
foreach c∈child(a) do11

Tc = getNodeType(c);12
Cvia(Tc,q) = getSearchViaConfidence();13
sum += getSimilarity(c, q) * Cvia(Tc,q);14

ρs(q, a) = sum/W q
a ;15

return ρs(q, a);16

Function getSimilarity() presents the procedure of com-
puting XML TF*IDF similarity between a document node a
and a given query q of size n. There are two cases to consider.
Case 1: a is a leaf node (line 1-8). For each keyword k
in both a and q, we first capture whether k co-occurs with
keyword kt matching some node type. Line 3-8 present the
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calculation details of ρs(q, a) in Formula 9(a). The statistics in
line 3,5,6 are illustrated in Formula 8, 10 and 11 respectively.
Case 2: a is an internal node (line 9-15). We compute a’s
similarity ρs(q, a) w.r.t. query q by exactly following Formula
9(b). ρs(q, a) is computed by a sum of the product of the
similarity of each of its child c and the confidence value of c as
a search via node (line 11-14). Finally, ρs(q, a) is normalized
by a factor W q

a (line 15), which is the weight of internal node
a w.r.t. q. Lastly, we return the similarity value (line 16).

Moreover, XReal can work on both semi-structured and
unstructured data, since unstructured data is a special case
of semi-structured data with no structure, and XML TF*IDF
ranking formula 9(a) for value node can be easily simplified
to original TF*IDF Formula 1 by ignoring the node type.

VII. EXPERIMENTS

We have performed comprehensive experiments to compare
the effectiveness, efficiency and scalability of XReal with
SLCA and XSeek. XReal and SLCA are implemented in Java
and run on a 3.6GHz Pentium 4 machine with 1GB RAM
running Windows XP; the binary file of XSeek is generously
provided by its author. We have tested both synthetic and
real datasets. The synthetic dataset is generated using XMark
benchmark [24] with size 115MB; WSU and eBay from
Washington XML Data Repository [25] and DBLP 370MB
are used as real datasets. Berkeley DB Java Edition [23] is
used to store the keyword inverted lists and frequency table.

 Query Intention XReal SLCA / XSeek 

DBLP (370MB) 

QD1 Java, book book book book; title / book; 

article  

QD2 author, Chen, Lei inproceedings inproceedings author 

QD3 Jim, Gray, article article article article 

QD4 xml, twig inproceedings inproceedings title / inproceedings 

QD5 Ling, tok, wang,  

twig 

inproceedings inproceedings inproceedings 

QD6 vldb, 2000 inproceedings inproceedings inproceedings 

WSU (16.5MB) 

QW1 230 place course; place room; crs / course 

QW2 CAC, 101 course course course 

QW3 ECON course course prefix / course 

QW4 Biology course course title / course 

QW5 place, TODD  course course place / course 

QW6 days, TU, TH course course days / course 

eBay (0.36MB) 

QE1 2, days auction_info listing time_left / listing 

QE2 cpu, 933 listing listing cpu / listing 

QE3 Hard, drive, CA listing listing description / listing 

Fig. 2. Test on inferring the search for node

The effectiveness test contains two parts: (1) the quality of
inferring the desired search for node; (2) the quality of our
ranking approach.

A. Search effectiveness
1) Infer the search for node: To test XReal’s accuracy in

inferring the desired search for node, we make a survey of
20 keyword queries, most of which do not contain an explicit
search for node. To get a fairly objective view of user search

intentions in real world, we post this survey online and ask for
46 people to write down their desired search for and search
via nodes. We summarize their answers and choose the queries
that more than 80 percentage of users agree on a same search
intention. The final queries are shown in Figure 2, and some
queries contain ambiguities: e.g. QD1 and QD3 have both
Ambiguity 1 and Ambiguity 2; QD2, QD6 and QW1 have
Ambiguity 2. The 4th column contains the search for node
inferred by XReal while the 5th column contains the majority
node types returned by SLCA and XSeek, as the semantics of
SLCA cannot guarantee all results are of the same node type.

We find XReal is able to infer a desired search for node in
most queries, especially when the search for node is not given
explicitly in the query (e.g. QD2, QD4, QW2, QE1), or its
choice is not unique (e.g. QD1, QD3), or both cases such as
QW1. XSeek just blindly infers the return nodes of individual
keyword matches case by case, rather than addressing the
major search intention(s), whereas XReal does so before it
goes to find individual matches.

In addition, if more than one candidate have comparable
confidence to be a search for node, XReal returns all possible
candidates (for user to decide) or returns a ranked list for
each such candidate if user interaction is not preferred. E.g.
in QW1, both place and course can be the return node, as
the frequency of “230” in subtrees of course and place are
comparable. The search for node models a real world object,
so we choose to return sub-trees rooted at the desired search
for node, and provide links to the descendants of subtrees for
user interested in particular parts of the subtree to explore.
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SLCA
XSeek
XReal

XReal Top-100

(a) DBLP
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(b) WSU
Fig. 3. Precision Comparison(%)

2) Precision, Recall & F-measure: To measure the search
quality, we evaluate all queries in Figure 2, and summarize
two metrics, i.e. precision and recall borrowed from IR field.
The results are shown in Figure 3 and 4. Precision measures
the percentage of the output subtrees that are desired; recall
measures the percentage of the desired subtrees that are output.
We obtain the correct answers by running the schema-aware
XQuery and additionally verifying the correctness manually.

To evaluate XReal’s performance on large real datasets, we
include four more queries for DBLP: QD7 “Philip Bernstein”;
QD8 “WISE”; QD9 “ER 2005”; QD10 “LATIN 2006”. Each
of these queries have Ambiguity 2 problem, e.g. ”WISE” can
be the booktitle, title of inproceedings, or a value of author.

As users are always interested in top-k results, so we com-
pute XReal’s top-100 precision besides the overall precision
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of SLCA, XSeek and XReal on DBLP and WSU, shown in
Figure 3; results on eBay are not shown due to space limit.
We have four main observations as below.

(1) XReal achieves higher precision than SLCA and XSeek
for the queries that contain ambiguities (e.g. QD1-QD4, QD6-
QD10, QW1). E.g. in QD3 which intends to find articles
written by author “Jim Gray”. Since “article” can be either
a tag name or a value of title node, and “Jim” and “Gray”
can appear in one author or two different authors, SLCA
and XSeek generate many false positive results and lead
to low accuracy, while XReal addresses these ambiguities
well. As another example in QD9 which intends to find
the inproceedings of ER conference in year 2005. As “ER”
appears in both booktitle and title, and “2005” appears in both
title and year, XSeek returns not only the intended results, but
also other inproceedings whose title contains both keywords;
but XReal correctly interprets the search intention.

(2) We find SLCA suffers a zero precision and recall
from the pure keyword value query, e.g. QD4, QD7, QD8,
QW1 and QW3 etc. Because the result returned by SLCA
contains nothing relevant except the SLCA node. E.g. for
QD8 SLCA returns the booktitle or title nodes containing
“WISE”, while user wants to find the inproceedings of “WISE”
conference. However, XReal detects keyword ”WISE” has
large occurrences as a booktitle of inproceedings and correctly
captures the search intention. XSeek suffers a zero precision in
QD2 and QD7, mainly because it mistakenly decides “author”
as an entity, while the query intends to find the publications.
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(3) XReal Performs as well as XSeek (in both recall and
precision) when queries have no ambiguity in XML data (e.g.
QD5, QW4-QW6, etc).

(4) By comparing the overall and top-100 precision of
XReal on DBLP in Figure 3(a), XReal Top-100 has a higher
precision, which indirectly proves our ranking strategy works
well w.r.t. the user search intention on large datasets.

TABLE I

F-MEASURE COMPARISON

F-measure SLCA XSeek XReal XReal top-100
DBLP 0.272 0.3461 0.4748 0.4799
WSU 0.0083 0.4162 0.4967 0.497
EBAY 0 0.4002 0.4002 0.4002

Furthermore, we adopt F-measure used in IR as the
weighted harmonic mean of precision and recall. We compute
the average precision and recall of all queries in Figure 2

(plus QD7-QD10) for each dataset, adopting formula F =
precision ∗ recall/(precision + recall) to get F-measure in
Table I. We find XReal beats SLCA and XSeek on all datasets,
and achieves almost a perfect value of F which is 0.5 on WSU.

TABLE II

RANKING PERFORMANCE OF XREAL

Dataset Top-1 Number/Total Number R-Rank MAP
DBLP 27/30 0.946 0.925
WSU 8/10 0.85 0.803
eBay 9/10 0.9 0.867

XMark 7/10 0.791 0.713

B. Ranking effectiveness
To evaluate the effectiveness of XReal’s ranking strategy, we

use three measures widely adopted in IR field. (1) Number
of top-1 answers that are relevant. (2) Reciprocal rank (R-
rank). For a given query, the reciprocal rank is 1 divided
by the rank at which the first correct answer is returned,
or 0 if no correct answer is returned. (3) Mean Average
Precision (MAP). A precision is computed after each relevant
answer is retrieved, and MAP is the average value of such
precisions. The first two measure how good the system returns
one relevant answer, while the third one measures the overall
effectiveness for top-k answers returned, k=40 for DBLP (as
DBLP data has very large size) and k=20 for others.

We evaluate a set of 30 randomly generated queries on
DBLP, and 10 queries on WSU, eBay and XMark, with an
average of 3 keywords. The average values of these metrics
are recorded in Table II. We find XReal has an average R-rank
greater than 0.8 and even over 0.9 on DBLP. Besides, XReal
returns the relevant result in its top-1 answer in most queries,
which shows high effectiveness of our ranking strategy.
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C. Efficiency
We compare the query response time of XReal adopting

three indices for keyword inverted list mentioned in section
VI-A, i.e. Dup, DupType and DupTypeNorm, measured by
the timestamp difference between a query is issued and result
is returned. Throughout section VII, XReal refers to the one
adopting DupTypeNorm. Figure 5 shows the time on hot cache
for queries listed in Figure 2. DupTypeNorm outperforms the
other two on all three real datasets, about 2 and 4 times faster
than DupType and Dup respectively. Because DupTypeNorm
stores the dewey id, node type and normalization factor (for
value nodes) together, thus it needs less number of index
lookups to fulfill the similarity computation in Formula 9. Such
advantage is significant when the number of keywords is large
or query result size is large, e.g. QD5 and QD6 in Figure 5(a).

D. Scalability
Among the existing keyword search systems SLCA[3],

GDMCT[5] and XSEarch[1], SLCA is recognized as the most
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efficient one so far, so we compare XReal with SLCA on
DBLP and XMark. For each dataset, we test a set of 50
randomly generated queries, each guarantees to have at least
one SLCA result and contains |K| number of keywords, where
|K| = 2 to 8 for DBLP and |K| = 2 to 5 for XMark. The
response time is average time of the corresponding 50 queries
in four executions on hot cache, as shown in Figure 6. From
Figure 6(a) and 6(b), we find XReal is nearly 20% slower than
SLCA on both datasets which is acceptable, because SLCA
only find all the SLCA nodes resulting in low accuracy, while
XReal does extra search intention identification, precise result
retrieval and ranking; and XReal finds extra results (satisfying
the boolean OR semantics). So this overhead is worthwhile.
We also find, the response time of each proposed index
increases as number of keywords increases. In particular, the
one using DupTypeNorm index costs less time than DupType,
in turn less than Dup. XReal adopting DupTypeNorm index
scales as well as SLCA, especially when |K| varies from 5 to
8 for DBLP (Figure 6(b)).
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Besides, we evaluate the scalability of those indices by
drawing the relationship between the response time and query
result size (in term of number of nodes returned). A range of
15 queries with various result sizes run over DBLP, and the
result is shown in Figure 7(a). We can see DupTypeNorm again
outperforms the other two, and scales linearly w.r.t. the query
result size. Similarly, we test the response time of a query
“location united states item” on XMark data of size 5MB up
to 40MB. As shown in Figure 7(b), both DupTypeNorm and
DupType’s response time increases linearly w.r.t. the data size.
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VIII. CONCLUSION

In this paper, we study the problem of effective XML
keyword search which includes the identification of user
search intention and result ranking in the presence of keyword
ambiguities. As statistics provide an objective way to model
patterns and draw inferences on the underlying data, we utilize

them to infer user’s search intention and rank the query results.
In particular, we define XML TF (term frequency) and XML
DF (document frequency). Based on these two statistic terms,
we design formulas to compute the confidence level of each
candidate node type to be a search for/search via node. Then,
we propose a novel XML TF*IDF similarity ranking scheme
which takes the above confidence levels and the co-occurrence
of keywords into consideration, and well captures the hierar-
chical structure of XML document. Moreover, we are the first
paper to investigate and solve the keyword ambiguity problem.
As a result, we implement an XML keyword search engine
prototype called XReal, which exploits only data statistics to
combine search intention identification, search result retrieval
and relevance oriented ranking together as a single problem
in XML keyword search. Extensive experiment results show
XReal is much more effective than the existing approaches.
For future work, we are now investigating the ranking strategy
for XML documents with ID/IDREFs.
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Abstract Keyword search method provides users with a friendly way to query XML data, but a user’s keyword query may often be an 

imperfect description of their intention. Even when the information need is well described, a search engine may not be able to return the 

results matching the query as stated. The task of refining the user’s original query is first defined to achieve better result quality as the 

problem of keyword query refinement in XML keyword search, and  guidelines are designed to decide whether query refinement is 

necessary. Four refinement operations are defined, namely term deletion, merging, split and substitution. Since there may be more then 

one query refinement candidates, proposes the definition of refinement cost, which is used as a measure of semantic distance between 

the original query and refined query, and also a dynamic programming solution to compute refinement cost. In order to achieve the goal 

of finding the best refined queries and generate their associated results within a one-time node list scan,  a stack-based algorithm is 

proposed, followed by a generalized partition-based optimization, which improves the efficiency a lot. Finally, extensive experiments 

have been done to show efficiency and effectiveness of the query refinement approach. 
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Table 1 Examples of query refinement 

1   

Original query Refined query 

Q1 IR 2003 Mike RQ1 Information Retrieval

2003 Mike 

Q2 Mike publication RQ2 Mike publications 

Q3 Database paper RQ3 Database inproceedings

Q4 XML John 2003 RQ4 XML John 
Q5 hobby news paper RQ5 hobby newspaper 
Q6 on line data base RQ6 online database 
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Fig. 3 Partition-based algorithm for query refinement 
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Table 2 Sample query refinement on SIGMOD Record 

2   SIGMOD Record  

id Original query Refined query Result size 

Q1 data, base, Codd database, Codd 2 

Q2 data, mining, jia, 

wei, han 

data, mining,, han, 

jiawei, 

3 

Q3 paper, net, work  article, network 6 

Q4 real, time, systems real-time, systems 9 

Q5 keyword, search, 

database, rank 

search, database 11 

Q6 adhoc, article article, ad, hoc 1 

Table 3 Sample query refinement on DBLP 

3   DBLP  

id Original query Refined query Result size 
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As XML is gradually becoming the standard in 
exchanging and representing data, effective and efficient 
methods to query XML data has become an increasingly 
important problem. XQuery can convey complex 
semantics meanings and therefore retrieve precisely the 
desired results. However, in order to write the right 
query, the user should know the underlying data schema 
and master the complex query syntax. Keyword search  

 
 

enables users to easily access XML data without the 
need to learn a structured query language and to study 
complex data schemas. So keyword search over XML 
data has attracted a lot of research efforts. However, no 
existing work has touched the field of automatic query 
refinement for XML keyword search yet. In this paper, 
we first define the problem of keyword query 
refinement in XML keyword search, in which four 
refinement operations are defined, namely term deletion, 
merging, split and substitution. In order to achieve the 
goal of finding the best refined queries and generating 
their associated results within a one-time node lists scan, 
we propose a stack-based algorithm, followed by a 
partition-based optimization. 
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ABSTRACT
Solid State Drive (SSD), emerging as new data storage media with
high random read speed, has been widely used in laptops, desk-
tops, and data servers to replace hard disk during the past few years.
However, poor random write performance becomes the bottle neck
in practice. In this paper, we propose to insert unmodified data into
random write sequence in order to convert random writes into se-
quential writes, and thus data sequence can be flushed at the speed
of sequential write. Further, we propose a clustering strategy to
improve the performance by reducing quantity of unmodified data
to read. After exploring the intrinsic parallelism of SSD, we also
propose to flush write sequences with the help of the simultaneous
program between planes and parallel program between devices for
the first time. Comprehensive experiments show that our method
outperform the existing random-write solution up to one order of
magnitude improvement.
Categories and Subject Descriptors: H.2.2 Database Manage-
ment: Physical Design-Access methods
General Terms: Algorithm, Design, Performance
Keywords: Flash Memory, Database, Random Write, Parallelism

1. INTRODUCTION
SSD, emerging as a new electronic storage device, is widely

adopted in laptops and personal computers during the past few
years. This mainly benefits from the high read performance of
SSD, especially random read performance. As we know, SSD does
not has mechanical part like the magnetic head of Hard Disk Drive
(HDD), therefore there is no latency for random read of SSD. As
a result, random read has similar speed with sequential read. This
characteristic improves the read performance of system fundamen-
tally. Besides this, SSD has other attractive characteristics, such
as low power consumption, high shock resistance and lightweight
form. All of these advantages make SSD as outstanding data stor-
age instead of HDD.

However, the random write performance of SSD, especially small
random writes, is very poor as shown in table 1. Read and sequen-
tial write is faster than random write in two orders. The costly erase
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Table 1: IO Performance Values of Mtron SSD[5]
Sequential Sequential Random Random

Read Write Read Write
11,100 16,600 11,200 120

operation of flash memory lays down the main reason for the slow
performance of random writes. Erase is peculiar to flash memory.
In a word, erase operation has two important characteristics: erase
before rewrite and high cost. We must erase the whole block if we
want to rewrite pages of it. On the other hand, the cost of erase is
1.5ms, while that of write is only 0.22ms according to Micron elec-
tronics datasheet[3]. Besides the cost of erase itself, large quantity
of data need to be transferred before erase operation is executed.
Although erase operation has high cost and leads to low write per-
formance, every small updates will still trigger erase operation in
the worst situation. FTL embedded in SSD can reduce the num-
ber of erase by implementing out-of-place update with the help of
Physical-to-Logical mapping[4], but the efficiency is very low ac-
cording to random write performance as shown in table 1. As a
result, low performance of random write becomes the bottleneck of
wider applications of SSD.

In this paper we propose a novel and efficient method for avoid-
ing random write. Based on the key observation that SSD has high
sequential write performance, our method avoids random writes by
converting random write sequence into sequential write sequence
in order to take full advantage of high performance of sequential
write. We novelly insert unmodified data into the random write
sequence, which locate between the lower and upper limit of the
random write sequence. Finally we flush the constructed sequential
write sequence into SSD instead of original random write sequence.
Compared with flushing random write sequence, cost of writing the
converted sequential write sequence is much lower. Therefore the
write performance is enhanced obviously. Density and granular-
ity of write sequence are two key factors of the efficiency of our
method in this paper. We also propose to reduce the cost of get-
ting addresses and reading unmodified data further by cluster when
density is low than MD(Minimum Density).

We also propose to improve write performance by intrinsic par-
allelism of SSD further. SSD contains several flash memory de-
vices and one chip is made up of a number of planes. According
to this, we explore the simultaneous program between planes and
parallel program between devices for the first time. With help of in-
trinsic parallelism of SSD, we partition sequential write sequence
and flush partitions in parallel. Results of comparison experiments
show the write performance are enhanced obviously, especially for
sequence with low density.

The rest of this paper is organized as follows. Section 2 explains
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Figure 1: Conversion of static random write sequence and performance experiments

the basic idea. Section 3 expresses our method in detail with data
stream. We also enhance performance further in section 4. Experi-
ments are shown in section 5. Finally, section 6 concludes.

2. STATIC RANDOM WRITE SEQUENCE
In this section, we first describe the basic idea of our method

by static random write sequence, and then discuss how density and
granularity impact the efficiency of our method. Finally, we opti-
mize our method according to density.

2.1 Converting Random Write Sequence
Static random write sequence is defined as a random write se-

quence without changes during the course of conversion. We insert
unmodified data into the random write sequence, which locate be-
tween the lower and upper limit of the random write sequence. So
we flush the constructed sequential write sequence into SSD instead
of original random write sequence. Therefore the cost of write will
be reduced due to high sequential write performance. For exam-
ple, the random write sequence has four data items as shown in
Fig. 1(A). The addresses of these items are 5, 2, 7 and 1. It may
take four random writes if we flush this write sequence into SSD di-
rectly. According to table 1, the cost will be 33 ms. However, after
we extend the random sequence with unmodified data items, item
2, 4 and 6, we can flush the sequential write sequence as shown in
Fig. 1(A) sequentially. As a result, we only cost seven sequential
writes. The cost of flushing is only 0.4 ms ideally. Although the
approach is straightforward in concept, when one actually attempts
to implement such a facility, one is faced with myriad options and
difficult decisions every step of the way. One of important prob-
lems is how to decide the granularity and density of random write
sequence. We will explore the impaction as follows.

2.2 Granularity and Density
Granularity is defined as the write unit when we flush the con-

verted sequential write sequence into SSD. As shown in Fig. 1(B),
the throughput becomes higher when we increase the write unit
size. The results shows that the write performance of SSD is not
taken full use of when the write unit size is less than 32KB. There-
fore, 32KB is the optimum granularity for our SSD to perform se-
quential write. According to this experiment, we define this special
write unit as OS WG(Optimum Sequential Write Granularity). Dif-
ferent SSDs have different OSWGs.

Density is defined as the length ratio of random write sequence
to the converted sequential write sequence. Density is direct ra-
tio to the performance. The less the density is, the more unmodi-
fied data items are inserted, and the larger the cost of reading and
flushing these data is. According to different density, we get run-

time of flushing random write sequence and the converted sequen-
tial write sequence. According to the experiment results as shown
in Fig. 1(C), the larger density is, the higher the efficiency of our
method is. We define the density of intersection point as MD. Our
method outperforms random write about 100%∼150% when den-
sity is larger than MD. Different SSDs have different MDs. The
MD of the Mtron SSD in our lab is 18%.

2.3 Optimization
According to Fig. 1(C), our method is worse than random write

when density is less than MD. For example, when the density is
10%, the runtime of our method is as high as 201.7 seconds. In
our method, the runtime of getting addresses of each data item,
reading unmodified data items and flushing converted sequential
write sequence are 6.4, 50.7 and 144.6 seconds, respectively. the
In this case, we need to read too much unmodified data, and then
flush them into SSD. In a word, the large quantity of unmodified
data lead to low performance of our method.

A sub-sequence is defined as a cluster if the density of it is larger
than MD. After sorting the random write sequence according to
addresses, we generate clusters as follows. Firstly we decide the
first data item as a cluster. Secondly, this cluster and its next data
item are treated as a new sub-sequence. If the density of it is larger
than MD, the next data item are grouped into this cluster. If not, the
next data item will be grouped as a new cluster. This course cycles
until all data items are grouped into clusters. After getting clusters,
we convert these clusters into sequential write sequence instead of
the whole write sequence. We re-execute the experiments with the
help of clusters when density is less than MD. Experiments show
our method outperforms random write about 10%. This attributes
to obvious decrease of the quantity of unmodified data to read, and
then the costs of random read and sequential write decrease.

3. DATA STREAM
Section 2 explains our basic idea by static random write sequence.

However real applications usually generate writes continuously as
data stream. According to characteristics of dynamic write se-
quence, we first load and initialize the write sequence, and then
generate initial clusters. Lastly the final clusters are evolved from
initial clusters and flushed into SSD. The above steps repeat until
the end of data stream. We will explain each steps in following.

3.1 Initialization
After loading writes from data stream, we need to calculate den-

sity. The address of each data item is used to calculate the den-
sity of write sequence. Therefore, we need to get the address of
each data item in the first step. Actually, this step takes full ad-
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Figure 2: Initialized random write sequence. Data items are
grouped into initial clusters , and initial clusters are merged
into final clusters.

vantage of characteristics of SSD. During the course of getting an
address of a data item, we need to look up it from index, and so
several random read operations must be executed. Compared with
HDD, SSD gets high performance because of its high random read
performance, and then the cost of getting address is low for SSD.
After getting addresses of data items, we need to sort the write se-
quence in cache according to addresses and generate initial clusters
as shown in Fig. 2. The numbers denote the addresses of data items.

3.2 Final Cluster
The design objective of final cluster is to avoid small granularity

of write. Final cluster is defined as the random write sub-sequence,
the length of which is larger than OSWG and the density of which
is larger than MD. The basic design principle is the length should be
as long as possible in order to take full advantage of high sequential
write speed of SSD. Therefore we will get final clusters by merging
initial clusters. There are two cases according to the maximum
length of initial clusters: The maximum length is no less or less
than OSWG. We will discuss them in following.

No Less Than OSWG. The initial clusters are defined as candi-
date clusters if their lengths are no less than OSWG. In order to
lengthen the final cluster, we need to merge adjacent initial clusters
into candidate clusters with the grantee of density. The detail step
of merger is described as following. For each candidate cluster, we
first merge preceding initial clusters into candidate cluster. If the
density of merged cluster is less than MD, the course of the merger
will be terminated. In the same way, the following initial clusters
are merged. For example, as to cluster 4 in Fig. 2, preceding clus-
ters will be merged into cluster 4 firstly. Because the density of
cluster 3∪cluster 4 is less than MD, the course of merging preced-
ing clusters is terminated. As for following initial clusters, cluster
5 will be merged with cluster 4. At last we get final cluster 2.

Less than OSWG. We need to merge initial clusters into final
clusters when lengths of all initial clusters are less than OSWG.
[cluster i, cluster j] means the cluster union from cluster i to j. In
order to get the maximum length efficiently, we use the method of
top to down. For example, all initial clusters are shown in Fig. 3.
Firstly, the density of [clusters 1, cluster 6] is calculated. If the den-
sity is larger than MD, the course of merger will be terminated. If
not, the course will continue. For example, the density of [clusters
1, cluster 5] is calculated. This course will be continued until the
cluster union only contain two clusters. As shown in Fig. 3, final
clusters will be gotten in the last step. The density of [cluster 1,
cluster 2] is larger than MD and length is larger than OSWG, they
are merged into final cluster 1. So does the Final cluster 2.

4. OPTIMIZATION WITH INTRINSIC
PARALLELISM

In this section we will explore the intrinsic parallelism of SSD,
and then optimize our method further.

New date item

Figure 3: Random write sequence with lengths of all initial
clusters are less than OSWG.

4.1 Intrinsic Parallelism
After disassembling the SSD used in my lab, we can see that

sixteen flash devices are arrayed on the circuit board, and the part
number is MT29F8G08DAA. Therefore we assure that parallelism
exists between flash devices because each device can be operated
individually. Besides this, parallelism also exists in the interior of
one flash device. According to specifications[3], one flash device
contains two CE#s(Chip Enable) which has two planes. Both CE#s
and planes can be accessed in parallel. As to smaller storage unit,
plane is made up from blocks which contain pages.

In order to testify the parallelism, we design five experiments.
Each experiment will write 131072 pages of data into SSD. Exper-
iment 1 sequentially writes pages in a single plane. Experiment 2, 3
and 4 alternately and sequentially write pages between two planes,
two CE#s and two devices. Finally, experiment 5 sequentially write
pages according page NO. We allocate storage area sequentially in
logic layer and suppose it is physically sequential. The experiment
results show the reasonableness of our assumption.

The runtime of experiment 1, 2, 3, 4 and 5 are 28.2, 25.8, 23.2,
23 and 25.2 seconds, respectively. The write performance of exper-
iment 1 is less than that of experiment 2 about 10%. The reason is
experiment 1 only can write data one by one. However, experiment
2 can write data into two planes of the same CE# at the same time
by TWO-PLANE PROGRAM. So do experiments 3 and 4. Finally
we find that sequential write almost has the same performance with
experiments 2. Because even-numbered and odd-numbered blocks
belong to different planes, sequential write also utilizes the TWO-
PLANE PROGRAM to speed up write as experiment 2. But se-
quential write does not utilize intrinsic parallelism between CE#s
and devices, so the performance is lower than experiment 3 and 4.

4.2 Optimization
According to above experiments, we propose to speed up our

method further with intrinsic parallelism between CE#s and de-
vices. Data items in write sequence are programmed alternately
into flash devices if they belong to different CE#s or devices. For
example, we suppose the final cluster 1 and 2 in Fig. 2 belong to
different devices. As to previous method, we will flush final cluster
1 firstly, and then final cluster 2. However, we change the write
sequence according to the parallelism of SSD. Final cluster 1 and 2
will be written alternately. The write sequence will be organized as
50, 300, 51, 301......57, 307, 308, 309......317. After re-organizing
the write sequence, the parallelism between devices is triggered,
and then the write performance is further improved.

5. PERFORMANCE EVALUATION
In this section we will firstly introduce the hardware platform

and benchmarks in our experiments. In the next, comparison ex-
periment results are shown and analyzed.

5.1 Experiments Setup and Workloads
We implement our experiments on a desktop PC powered by In-

tel Core 2 Pentium 4 Duo CPU 2.83GHz running Linux fedora 8

212



(A) Experiment on IO trace of FileBench (B) Experiment on IO trace of Tiobench (C) Experiment on IO trace of TPCC

Figure 4: Comparison experiments about performance of RS-Wrapper.

with 2GB main memory. The kernel version is Linux-2.6.23. The
SSD used in our experiments is 16GB Mtron SSD(MSD-SATA
3035-016). We use three benchmark tests to testify the IO per-
formance enhancement brought by our RS-Wrapper. We also use
blktrace[1] to trace the IO activities at the block level. After run-
ning benchmarks, we get the IO activities, OWS (Original Write Se-
quence). In our comparison experiments, we firstly write OWS into
SSD directly. Secondly, we re-organize OWS by our RS-Wrapper
and flush the new sequences. For each benchmark, a series of ex-
periments are run by varying the length of write sequence.

5.2 File System Benchmarks
FileBench[2] is a framework of workload for measuring file sys-

tem performance. In our experiments, the number of files is set
50,000, 50,000 and 25,000 for creatfiles, deletefiles and copyfiles
respectively. Besides this, both the file size and IO size are set as 2
kilobytes. We also convert the OWS by our method when the length
of sequence varies from 5,000 to 50,000. The runtime is plotted in
Fig. 4 (A). Our method outperforms OWS about 600% as a whole.
The main reason is that IO operations of a file are basically sequen-
tial. In this case, the density of final cluster is very high in our
method. Therefore, our RS-Wrapper gains high performance.

5.3 File IO Benchmarks
IOzone[6] is a file system benchmark tool. In order to simu-

late the real workload mostly, we select the full automatic mode.
The IO operations cover all tested file operations for record sizes
of 4KB to 16MB for file sizes of 64KB to 512MB. The comparison
experiment results are shown in Fig. 4(B). With the length of write
sequence varying from 1,000 to 10,000, our RS-Wrapper is faster
than OWS about 800% as a whole. As for IOzone, the IO activi-
ties are random and converge in a limited range. In common test,
the maximum size is 512MB. Therefore, every writes are random,
and thus the write cost of OWS is very high. However, converted
sequential sequence has high density. Therefore our method takes
full advantage of, and then performance is enhanced obviously.

5.4 TPCC Benchmark
In order to test the write performance enhancement on databases,

we select the typical write intensive benchmark, TPC-C. In this ex-
periment, write sequence comes from the disk IO operations by
running TPC-C on PostgreSQL database system version 8.3.5. The
operation system is Red Hat Linux 2.6.27. After setting the number
of warehouses as 50, page size as 8KB, the number of threads as
200, we run TPC-C 30 minutes. We modify postgreSQL to record
disk IO operations when executing the routines of writing data to
disk. In the same way, we flush IO trace by two ways. The experi-

ment results are shown as Fig. 4(C). Our method outperforms OWS
about 300% when length N is no less than 25000. The high perfor-
mance is obtained because our method converges random writes
into high density clusters and flushes them in parallel.

6. CONCLUSIONS
SSD is applied widely due to its high random read speed and

sequential access performance. However, poor random write leads
to the low performance of write-intensive applications on SSD. We
novelly propose to extend random write sequence into sequential
write sequence by inserting unmodified data into write sequence.
Firstly, we explore the impact of density and length on performance
of our method with static random write sequence. Secondly, we
optimize our method with cluster which reduces the quantity of
data to read and flush during the course of conversion. Thirdly,
we improve the performance in further by merging initial clusters
into final clusters. Finally, we improve write performance with its
intrinsic parallelism. The experiments show our method improves
write performance of SSD obviously under all tested workloads.
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ABSTRACT 
NAND Flash has become the most popular stable storage medium 
for embedded systems. As on-board storage capacity increases, 
the need for efficient indexing techniques arises. Such techniques 
are very challenging to design due to a combination of NAND 
Flash constraints (for example the block-erase-before-page-
rewrite constraint and limited number of erase cycles) and 
embedded system constraints (for example tiny RAM and 
resource consumption predictability). Previous work adapted 
traditional indexing methods to cope with Flash constraints by 
deferring index updates using a log and batching them to decrease 
the number of rewrite operations in Flash memory. However, 
these methods were not designed with embedded system 
constraints in mind and do not address them. In this paper, we 
propose a new alternative for indexing Flash-resident data that 
specifically addresses the embedded context. This approach, 
called PBFilter, organizes the index structure in a purely 
sequential way. Key lookups are sped up thanks to two principles 
called Summarization and Partitioning. We instantiate these 
principles with data structures and algorithms based on Bloom 
Filters and show the effectiveness of this approach through a 
comprehensive performance study.   

1. INTRODUCTION 
Smart cards were equipped with kilobytes of EEPROM stable 
storage in the 90’s and megabytes of NAND Flash in the 00’s; 
mass-storage cards are coming soon that will link a 
microcontroller to gigabytes of NAND Flash memory [9]. All 
categories of smart objects (e.g., sensors, smart phones, cameras 
and mp4 players) benefit from the same storage capacity 
improvement thanks to high density NAND Flash. Smart objects 
are more versatile than ever and are now effective to manage 
medical, scholastic and other administrative folders, agendas, 
address books, photo galleries, transportation and purchase 
histories, etc. As storage capacity increases, the need for efficient 
indexing techniques arises. This motivates manufacturers of Flash 
modules and smart objects to integrate file management and even 
database techniques into their firmware.   
Designing efficient indexing techniques for smart objects is very 
challenging, however, due to conflicting hardware constraints and 
design objectives.  

On the one hand, although it is excellent in terms of shock 
resistance, density and read performance, NAND Flash exhibits 
specific hardware constraints. Read and write operations are done 
at a page granularity, as with traditional disks, but writes are more 
time and energy consuming than reads. In addition, a page cannot 
be rewritten without erasing the complete block containing it, 
which is a costly operation. Finally, a block wears out after about 
105 repeated write/erase cycles. As a result, updates are usually 
performed “out-of-place” entailing address translation and 
garbage collection overheads. The more RAM is devoted to 
buffering and caching and the lazier garbage collection is, the 
better the performance. 
On the other hand, smart object manufacturers are facing new 
constraints in terms of energy consumption (to increase device 
autonomy/lifetime), microcontroller size (to increase tamper-
resistance) and storage capacity (to save production costs on 
billion-scale markets)[2]. In this context, performance competes 
with energy, RAM and Flash memory consumption.  Co-design 
rules are therefore essential to help manufacturers calibrate the 
hardware resources of a platform and select the appropriate data-
management techniques to match the requirements of on-board 
data-centric applications.  
State of the art Flash-based storage and indexing methods were 
not designed with embedded constraints in mind and poorly adapt 
to this context. Database storage models dedicated to NAND 
Flash have been proposed in [11, 13] without specifically 
addressing the management of hot spot data in terms of updates, 
like indexes. Other work addressed this issue by adapting B+Tree-
like structures to NAND Flash [4, 16, 18]. While different in their 
implementation, these methods rely on a similar approach: 
delaying index updates using a log dedicated to the index, and 
batching them with a given frequency so as to group updates 
related to the same index node. We refer to these methods as 
batch methods. The benefit of batch methods is that they decrease 
write cost, which is considered the main problem with using Flash 
in the database context. However, all these methods maintain 
additional data structures in RAM to limit the negative impact of 
delayed updates on lookup cost. All these methods also perform 
“out-of-place” updates, reducing Flash memory usage and 
generating address translation and garbage collection overheads. 
Such indirect costs have proven high and unpredictable [16].   
Rather than adapting traditional index structures to Flash memory, 
we believe that indexing methods must be completely rethought if 
we are to meet the requirements of the embedded context, 
namely: 
– Low_RAM: accommodate as little RAM as possible 
– Low_Energy: consume as little energy as possible 
– Low_Storage: optimize the Flash memory usage 
– Adaptability: make resource consumption adaptable to the 
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performance requirements of on-board applications 
– Predictability: make performance and resource consumption 

fully predictable 
Low_RAM emphasizes the specific role played by RAM in the 
embedded context. Due to its poor density, and as it competes 
with other hardware resources on the same silicon die, RAM is 
usually calibrated to its bare minimum [2]. Hence, the less RAM 
an indexing method consumes, the wider the range of devices that 
can be targeted. Low_Energy is also critical but concerns only 
autonomous devices. The objective of Low_Storage is to 
minimize not only the amount of Flash memory occupied by the 
index structure, but also, and above all, of Flash memory wasted 
by the obsolete data produced by index updates and leading to 
overprovisioning Flash memory. Adaptability conveys the idea 
that optimal performance is not the ultimate goal; rather 
optimality is reached when no resource is unduly consumed to get 
better performance than that strictly required by on-board 
applications. In other words, Adaptability means that Low_RAM, 
Low_Energy and Low_Storage must be considered in light of the 
applications’ performance expectations. Finally, Predictability is a 
prerequisite to co-design. 
In this paper, we propose a Flash-based indexing method, called 
PBFilter, specifically designed to answer these requirements. 
PBFilter organizes the index structure in a purely sequential way 
to minimize the need for buffering and caching and to avoid the 
unpredictable side effects incurred by “out-of-place” updates. But 
how to look up a given key in a sequential list with acceptable 
performance? We answer this question using two principles. 
Summarization consists of building an index summary used at 
lookup time to quickly determine the region of interest in the 
index. This introduces an interesting source of tuning between the 
compression ratio of the summary and its accuracy. Partitioning 
consists of vertically splitting the index list and/or its summary in 
such a way that only a subset of partitions need to be scanned at 
lookup time. This introduces a second trade-off between lookup 
performance and RAM consumption. The key idea behind 
Summarization and Partitioning is speeding up lookups without 
hurting sequential writes in Flash memory.  
PBFilter gracefully accommodates files up to a few million tuples, 
a reasonable limit for embedded applications. PBFilter is 
optimized to support append-oriented files but deletion and 
updates can be supported without compromising the five 
requirements above. 
The paper is organized as follows. Section 2 reviews the main 
characteristics of NAND Flash, studies the related work and 
introduces the metrics of interest for this study. Section 3 details 
the PBFilter indexing scheme. Section 4 presents an instantiation 
of  the PBFilter scheme with partitioned Bloom Filter summaries. 
Section 5 presents a comprehensive performance study and 
Section 6 is the conclusion. 

2. PROBLEM STATEMENT 
2.1 NAND Flash Characteristics 
Embedded Flash devices come today in various form factors such 
as compact flash cards, secure digital cards, smart cards and USB 
tokens. They share several common characteristics. A typical 
NAND Flash array is divided into blocks, in turn divided into 
pages (32-64 pages per block), and divided again into sectors 
(usually 4 sectors per page). Read and write operations usually 

happen at page granularity, but can also apply at sector 
granularity if required. A page is typically 512-2,048 bytes. A 
page can only be rewritten after erasing the entire block 
containing it (usually called the block-erase-before-rewrite 
constraint). Page write cost is higher than read, both in terms of 
execution time and energy consumption, and the block erase 
requirement makes writes even more expensive. A block wears 
out after about 105 repeated write/erase cycles, requiring write 
load to be evenly spread out across the memory.  
These hardware constraints make update management complex, 
although this complexity is slightly mitigated by the 
decomposition of a page into sectors. Sectors can be written 
independently (albeit sequentially) in the same page, allowing one 
write per sector before the block must be erased. To avoid erasing 
blocks too frequently, “out-of-place” updates are usually 
performed by using a Flash Translation Layer (FTL) which 
combines: (1) a translation mechanism relocating the pages and 
making their address invariant through indirection tables and (2) a 
garbage collection mechanism that erases blocks, either lazily 
(waiting for all the pages of the block to become obsolete) or 
eagerly (moving the active pages still present in the block before 
erasing it).  
As extensively studied in [16], the execution time and energy 
consumption of read and write operations vary greatly among the 
Flash devices. The high discrepancies between the platforms are 
partly due to the raw chip characteristics and partly to the 
firmware managing the FTL which is usually proprietary and 
constitutes the primary source of performance unpredictability 
[16]. 

2.2 Related Work 
Some work [11, 13] has adopted the idea of log-structured file 
systems (LFS) [17] to design or improve database storage models 
dedicated to NAND Flash, without proposing new index methods. 
For example, the primary objective of IPL [13] is to hide Flash 
peculiarities from the upper layers of the DBMS. Updates in Flash 
are delayed using a log stored in each physical block and an 
accurate version of each page is rebuilt at load time. Updates are 
physically applied to a page when the corresponding log region 
becomes full. While elegant, this general method is not well 
suited to managing hot spot data in terms of updates, like indexes, 
because of frequent log overflows.  
Other work has specifically considered the indexing problem in 
NAND Flash. Hash-based and tree-based index families can be 
distinguished. So far, little attention has been paid to hash-based 
methods in Flash. This is probably because hashing only performs 
well when a large number of buckets can be used and when the 
RAM can accommodate one buffer per bucket, which is a rare 
situation in the targeted context. One exception is Microhash 
designed to speed up lookups in sensor devices [22]. However, 
this method is not general and only applies to sensed data varying 
within a small range (e.g., temperature). 
Within the tree-based family, one work has also considered 
indexing sensed data [14]. This work proposes a tiny index called 
TINX based on a specific unbalanced binary tree. The 
performance demonstrated by the authors (e.g., 2,500 page reads 
to retrieve one record from 0.6 million records) disqualifies this 
method for large files. To the best of our knowledge, all other 
papers suggest adaptations of the well-known B+Tree structure. 
Regular B+Tree techniques built on top of FTL have been shown 
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to be poorly adapted to the characteristics of Flash memory [18]. 
Indeed, each time a new record is inserted into a file, its key must 
be added to a B+Tree leaf node, causing an out-of-place update of 
the corresponding Flash page. To avoid such updates, BFTL [18] 
constructs an “index unit” for each inserted primary key and 
organizes the index units as a kind of log. A large buffer is 
allocated in RAM to group the various insertions related to the 
same B+Tree node in the same log page. To maintain the logical 
view of the B+Tree, a node translation table built in RAM keeps, 
for each B+Tree node, the list of log pages which contain index 
units belonging to this node. In order to limit the size of these lists 
and therefore RAM consumption as well as lookup cost, each list 
is compacted when a certain threshold (e.g., 5 log pages in the 
list) is reached. At this time, logged updates are batched to refresh 
the physical image of the corresponding B+Tree node. 
FlashDB [16] combines the best of Regular B+Tree and BFTL 
using a self-tuning principle linked to the query workload. JFFS3 
proposes a slightly different way of optimizing B+Tree usage [4]. 
Key insertions are logged in a journal and are applied in the 
B+Tree in a batch mode. A journal index is maintained in RAM 
(recovered at boot time) so that a key lookup applies first to the 
journal index and then to the B+Tree. 
In short, all B+Tree-based methods rely on the same principle: (1) 
delay index updates using a log and batch them with the purpose 
of grouping updates related to the same index node; (2) build a 
RAM index at boot time to speed up lookup of a key in the log; 
(3) commit log updates with a given commit frequency (CF) in 
order to limit log size. The differences between batch methods 
mainly include the way index nodes and log are materialized, 
which affect the way CF is managed. 
In their attempt to decrease the number of writes, batch methods 
are in line with the Low_Energy requirement introduced in 
Section 1. By allowing trading reads, RAM and Flash memory 
usage for writes using CF, they also provide an answer to 
Adaptability. However, all batch methods fail in satisfying 
Low_RAM. Indeed, the higher the CF, the greater the RAM 
consumption. However, the primary objective of batch methods is 
to decrease the number of writes in Flash memory, leading to a 
higher CF. Section 5 will demonstrate that good write 
performance for batch methods requires RAM consumption 
incompatible with most embedded environments (in any case, not 
the objective they claim). Regarding Predictability, even if the 
number of writes is reduced, writes still generate out-of-place 
updates in Flash memory. This results in an indirect and 
unpredictable garbage collection cost linked to the strategy 
implemented in the underlying FTL [16]. Flash memory usage is 
also difficult to predict because it depends on the distribution of 
obsolete data in the pages occupied by the index.   

2.3 Metrics of Interest 
In light of the preceding discussion, more complete and accurate 
metrics appear necessary to help in assessing the adequacy of an 
indexing method for the embedded context. To this end, we 
propose the following metrics to capture the five requirements 
introduced in Section 1: 
– RAM consumption: as already stated, RAM consumption is of 

utmost importance in the embedded context, since several 
devices (e.g., smart cards, sensors and smart tokens) are 
equipped with RAM measured in kilobytes [2]. This metric, 

denoted hereinafter RAM, comprises the buffers to read from 
and write to the Flash memory as well as the main memory 
data structures required by the indexing method. 

– Read/write cost: this metric distinguishes between read cost R
of executing a lookup and read cost IR and write cost W for 
inserting keys into the index. Depending on the objective, the 
metric can be execution time (wrt Adaptability) or energy 
consumption (wrt Low_Energy). To address both concerns, R, 
IR and W will be expressed in terms of number of operations. 
Note that this metric does not directly capture the 
Adaptability requirement, but rather tells whether the 
performance expected by on-board applications can be 
achieved.

– Flash memory usage:  the objective is to capture the Flash 
memory usage, both in terms of space occupancy and effort to 
reclaim obsolete data. We distinguish between two values: VP
is the total number of valid pages occupied by the index (i.e., 
pages containing at least one valid item); OP is the total 
number of pages containing only obsolete data and which can 
be reclaimed without copying data. Comparing these two 
values with the raw size of the index (total size of the valid 
items only) gives an indication of the quality of the Flash 
memory usage and the effort to reclaim stale space, 
independent of any FTL implementation. 

– Predictability: as claimed in the introduction, performance and 
resource consumption predictability is a prerequisite for co-
design. Predictability is mandatory in calibrating the RAM 
and Flash memory resources of a new hardware platform to 
the performance requirements of the targeted on-board 
applications. Another objective is to predict the limit (i.e., in 
terms of file size or response time) of an on-board application 
on existing hardware platforms. Finally, predictability is also 
required to build accurate query optimizers. To avoid making 
this metric fuzzy by reducing it to a single number, we 
express it qualitatively using two dimensions: (1) whether the 
indexing method is dependent on an underlying FTL or can 
bypass it, (2) whether the values measured for RAM, 
read/write cost and Flash memory usage can be accurately 
bounded independent of their absolute value and of the 
uncertainty introduced by the FTL, if any. 

This paper aims to define a Flash-based indexing method that 
behaves satisfactorily in all of these metrics at once. 

3. PBFILTER INDEXING SCHEME 
As an alternative to the batch indexing methods, PBFilter 
performs index updates eagerly and makes this acceptable by 
organizing the complete database as a set of sequential data 
structures, as presented in Figure 1. The primary objective is to 
transform database updates into append operations so that writes 
are always produced sequentially, an optimal scenario for NAND 
Flash and buffering in RAM.
The database updating process is as follows. When a new record 
is inserted, it is added at the end of the record area (RA). Then, a 
new index entry composed by a couple <key, pt> is added at the 
end of the key area (KA), where key is the primary key of the 
inserted record and pt is the record physical address1. If a record 
                                                                
1 Like all state of the art methods mentioned in Section 2, we 

concentrate the study on primary keys. The management of 
secondary keys is discussed in [21]. 
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is deleted, its identifier (or its address) is inserted at the end of the 
delete area (DA) but no update is performed in RA nor KA. A 
record modification is implemented by a deletion (of the old 
record) followed by an insertion (of the new record value). To 
search for a record by its key, the lookup operation first scans 
KA, retrieves the required index entry if it exists, check that pt 

DA and gets the record in RA. Assuming a buffering policy 
allocating one buffer in RAM per sequential data structure, this 
updating process never rewrites pages in Flash memory.  
The benefits and drawbacks provided by this simple database 
organization are obvious with respect to the metrics introduced in 
Section 2. RAM: a single RAM buffer of one page is required per 
sequential structure (RA, KA and DA). The buffer size can even 
be reduced to a Flash sector in highly constrained environments. 
Read/write cost: a lower bound is reached in terms of reads/writes 
at insertion time (IR and W) since: (1) the minimum of 
information is actually written in Flash memory (the records to be 
inserted and their related index entries and no more), (2) new 
entries are inserted at the index tail without requiring any extra 
read to traverse the index. On the other hand, the lookup cost is 
dramatically high since R = ( KA /2 + DA  + 1) on the average, 
where  denotes the page cardinality of a structure. Flash
memory usage: besides DA, a lower bound is reached in terms of 
Flash usage, again because the information written is minimal and 
never updated. Hence, the number VP of valid pages containing 
the index equals the raw size of this index and the number OP of 
obsolete pages is null. Hence, the garbage collection cost is saved. 
Predictability: since data never moves and is never reclaimed, 
PBFilter can bypass the FTL address translation layer and garbage 
collection mechanism. RAM and Flash memory consumption is 
accurately bounded as discussed above. However, performance 
predictability is not totally achieved since the uncertainty on R is 
up to ( KA  - 1). 
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Figure 1. Database organization 
The objective is now to decrease the lookup cost R to an 
acceptable value with a minimal degradation of the benefits listed 
above. Summarization and Partitioning are two principles 
introduced to reach this goal. 
Summarization refers to any method which can condense 
sequentially the information present in KA. Let us consider an 
algorithm that condenses each KA page into a summary record. 
Summary records can be sequentially inserted into a new structure 
called SKA through a new RAM buffer of one page (or sector) 
size. Then, lookups do a first sequential scan of SKA and a KA 
page is accessed for every match in SKA in order to retrieve the 
requested key, if it exists. Summarization introduces an 
interesting trade-off between the compression factor c
(c= KA / SKA ) and the fuzziness factor f (i.e., probability of 
false positives) of the summary, the former decreasing the I/O 
required to traverse SKA and the latter decreasing the I/O 

required to access KA. The net effect of summarization is 
reducing R to ( KA /2c + f KA /2) on the average, where 
denotes the element cardinality of a structure. The positive impact 
on R can be very high for favorable values of c and f. The 
negative impact on the RAM consumption is limited to a single 
new buffer in RAM. The negative impact on the write cost and 
Flash memory usage is linear with SKA  and then depends on c.
Different algorithms can be considered as candidate “condensers”, 
with the objective to reach the higher c with the lower f, if only 
they respect the following property: summaries must allow 
membership tests with no false negatives.
The idea behind Partitioning is to vertically split a sequential 
structure into p partitions so that only a subset of partitions has to 
be scanned at lookup time. Partitioning can apply to KA, meaning 
that the encoding of keys is organized in such a way that lookups 
do not need to consider the complete key value to evaluate a 
predicate. Partitioning can also apply to SKA if the encoding of 
summaries is such that the membership test can be done without 
considering the complete summary value. The larger p, the higher 
the partitioning benefit and the better the impact on the read cost 
and on Predictability. On the other hand, the larger p, the higher 
the RAM consumption (p buffers) or the higher the number of 
writes into the partitions (less than p buffers) with the bad 
consequence of reintroducing page moves and garbage collection. 
Again, different partitioning strategies can be considered with the 
following requirement: to increase the number of partitions with 
neither significant increase of RAM consumption nor need for 
garbage collection.

4. PBFILTER INSTANTIATION 
4.1 Bloom Filter Summaries 
The Bloom Filter data structure has been designed for 
representing a set of elements in a compact way while allowing 
membership queries with a low rate of false positives and no false 
negative [5]. Hence, it presents all the characteristics required for 
a condenser.
A Bloom filter represents a set A={a1, a2, … an} of n elements by 
a vector v of m bits, initially all set to 0. The Bloom filter uses k
independent hash functions, h1, h2, … hk, each producing an 
integer in the range [1,m]. For each element ai A, the bits at 
positions h1(ai), h2(ai), ..., hk(ai) in v are set to 1. Given a query for 
element aj, all bits at positions h1(aj), h2(aj), ..., hk(aj) are checked. 
If any of them is 0, then aj cannot be in A. Otherwise we 
conjecture that aj is in A although there is a certain probability 
that we are wrong. The parameters k and m can be tuned to make 
the probability of false positives extremely low [8]. 

Table 1. False positive rate under various m/n and k
m/n   k=3 k=4 k=5 k=6 k=7 k=8 
8 .0306 .024 .0217 .0216 .0229  
12 .0108 .0065 .0046 .0037 .0033 .0031 
16 .005 .0024 .0014 .0009 .0007 .0006 

This probability, called the false positive rate and denoted by f in
the sequel, can be calculated easily assuming the k hash functions 
are random and independent. After all the elements of A are
hashed into the Bloom filter, the probability that a specific bit is 
still 0 is mknkn em //11 . The probability of a false positive is 

then kmknkkn em /1/111 = kp1 for p= mkne / . The salient 
feature of Bloom filters is that three performance metrics can be 
traded off against one another: computation time (linked to the 
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number k), space occupancy (linked to the number m), and false 
positive rate f. Table 1 illustrates these trade-offs for some values 
of k and m. This table shows that a small increase of m may allow 
a dramatic benefit for f if the optimal value of k is selected. We 
consider that k is not a limiting factor in our context, since 
methods exist to obtain k hash values by calling only three times 
the hash function, while giving the same accuracy as by 
computing k independent hash functions [7].  

Bloom filters can be used as a condenser algorithm in PBFilter as 
follows. For each KA page, a Bloom filter summary is built by 
applying k hash functions to each index key present in that page. 
This computation is performed when the KA page is full, just 
before the RAM buffer containing it is flushed to the Flash 
memory. The computed Bloom filter summary is stored in the 
RAM buffer allocated to SKA. In turn, the SKA buffer is flushed 
to the Flash memory when full. At lookup time, the searched key 
ai is hashed with the k hash functions. Then, SKA is scanned to 
get the first Bloom filter summary having all bits at positions 
h1(ai), h2(ai), ..., hk(ai) set to 1. The corresponding page of KA is 
directly accessed and the probability that it contains the expected 
index entry (ai,pt) is (1-f). Otherwise, the scan continues in SKA. 
The last step is to check that pt DA before accessing the record 
in RA.   

4.2 Dynamic Partitioning 
Despite the benefits of summarization, the lookup performance 
remains linked to the size of SKA (on the average, half of SKA 
needs to be scanned). The lookup performance can be improved 
by applying the partitioning principle suggested in section 3. Each 
Bloom filter is vertically split into p partitions (with p m), so 
that the bits in the range [1 .. m/p] belong to the first partition, the 
bits in the range [((i-1)*m/p + 1) .. (i*m/p)] belong to the ith

partition, etc. When the SKA buffer is full, it is flushed into p
Flash pages, one per partition. By doing so, each partition is 
physically stored in a separate set of Flash pages. When doing a 
lookup for key ai, instead of reading all pages of SKA, we need to 
get only the SKA pages corresponding to the partitions containing 
the bits at positions h1(ai), h2(ai), ..., hk(ai). The benefit is a cost 
reduction of the lookup by a factor p/k. The larger p, the higher 
the partitioning benefit for lookups but also the greater the RAM 
consumption (p more buffers) or the greater the number of writes 
(because page fragments have to be flushed in the partitions in 
Flash memory instead of full pages) and then the need for garbage 
collection (because of multiple writes in the same page of Flash). 
We propose below a partitioning mechanism which exhibits the 
nice property of supporting a dynamic increase of p with no 
impact on the RAM consumption and no need for a real garbage 
collection (as discussed at the end of the section, obsolete data is 
naturally grouped in the same blocks which can be erased as a 
whole at low cost). This dynamic partitioning mechanism comes 
at the price of introducing a few reads and extra writes at insertion 
time. The proposed mechanism relies on: (1) the usage of a fixed 
amount of Flash memory as a persistent buffer to organize a 
stepwise increase of p and (2) the fact that a Flash page is divided 
into s sectors (usually s=4) which can be written independently. 
The former point gives the opportunity to reclaim the Flash buffer 
at each step in its integrality (i.e., without garbage collection). 
The latter point allows s writes into the same Flash page before 
requiring copying the page elsewhere. 
Figure 2 illustrates the proposed partitioning mechanism. The size 
of the SKA buffer in RAM is set to the size of a Flash page and 

the buffer is logically split into s sectors. The number of initial 
partitions, denoted next by L1 partitions, is set to s and one page 
of Flash is initially allocated to each L1 partition. The first time 
the SKA buffer in RAM becomes full (step 1), each sector si (with 
1 i s) of this buffer is flushed in the first sector of the page 
allocated to the ith L1 partition. The second flush of the SKA 
buffer will fill in the second sector of these same pages and so 
forth until the first page of each L1 partition becomes full (i.e., 
after s flushes of the SKA buffer). A second Flash page is then 
allocated to each L1 partition and the same process is repeated 
until each partition contains s pages (i.e., after s2 flushes of the 
SKA buffer). Each L1 partition contains 1/s part of all Bloom 
filters (e.g., the ith L1 partition contains the bits in the range [((i-
1)*m/s + 1) .. (i*m/s)]).  
At this time (step 2), the s L1 partitions of s pages each are 
reorganized (read back and rewritten) to form s2 L2 partitions of 
one page each. Then, each L2 partition contains 1/ s2 part of all 
Bloom filters. As illustrated in Figure 2, each L2 partition is 
formed by projecting the bits of the L1 partition it stemmed from 
on the requested range, s times finer (e.g., the ith L2 partition 
contains the bits in the range [((i-1)*m/s2 + 1) .. (i*m/s2)]). 
After another s2 SKA buffer flushes (step 3), s new L1 partitions 
have been built again and are reorganized with the s2 L2 partitions 
to form (s2+s2) L3 partitions of one page each and so forth. The 
limit is p=m after which there is no benefit to partition further 
since each bit of bloom filter is in a separate partition. After this 
limit, the size of partitions grows but the number of partitions 
remains constant (i.e., equal to m). 
In the example presented in Figure 2, where s=4, the number of 
partitions grows in an approximately linear way (4, 16, 32…)2.
Assuming for illustration purpose Flash pages of 2KB, bloom 
filters of size m=2048 bits in SKA and <key,pt> of size 8 bytes in 
KA, each page of L3 partitions gathers 1/32 part of 256 bloom 
filters summarizing themselves 65536 keys. Scanning one 
complete partition in SKA costs reading the corresponding page 
in L3 plus 1 to s pages in L1. 
More precisely, the benefit of partitioning dynamically SKA is as 
follows. A lookup needs to consider only k Li partitions of one 
page each (assuming the limit p=m has not been reached and Li 
partitions are the last produced) plus min (k ,s) L1 partitions, the 
size of which vary from 1 to s pages. This leads to an average cost 
of (k + min (k, s) * s/2). This cost is both low and independent of 
the file size while p m.  
The RAM consumption remains unchanged, the size of the SKA 
buffer being one page (note that extending it to s pages would 
save the first iteration). The impact on IR and W (Read and write 
cost at insertion time) is an extra cost of about

i
i s 2log *2 2

reads and writes (see the cost model for details). This extra cost 
may be considered important but is strongly mitigated by the fact 
that it applies to SKA where each page condenses Bp/d records, 
where Bp is the size of a Flash page in bits (Bp /d is likely to be 
                                                                
2 In practice, it does not grow exactly linearly because the bloom 

filter cannot be equally divided into an arbitrary number of 
partitions. For the same reason, the bloom filter size is always a 
power of 2, so one bloom filter may summarize more than 1 
(less than 2) KA pages. The impact of these implementation 
details have been taken into account in the cost model in 
Section 5, and the extra cost has proven low. 
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greater than 1000). Section 5 will show that this extra cost is 
actually low compared to existing indexing techniques. Section 5 
will also show the low impact of partitioning on the Flash usage 
for the same reason, that is the high compression ratio obtained by 
Bloom filters making SKA small with respect to KA. 
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Figure 2. Dynamic partitioning 
At the end of each step i, and after Li partitions have been built, 
the Flash buffer hosting L1 partitions and the pages occupied by 
Li-1 partitions can be reclaimed. Reclaiming a set of obsolete 
pages stored in the same block is far more efficient than collecting 
garbage crumbs spread over different pages in different blocks. 
The distinction between garbage reclamation and garbage 
collection is actually important. Garbage collection means that 

active pages present in a block elected for erasure must be moved 
first to another block. In addition, if at least one item is active in a 
page, the complete page remains active. In methods like BFTL, 
active index units can be spread over a large number of pages in 
an uncontrolled manner. This generates a worst situation where 
many pages remain active while they contain few active index 
units and these pages must be often moved by the garbage 
collector. PBFilter never generates such situations. The size of the 
Flash buffer and of the Li partitions is a multiple of s2 pages and 
these pages are always reclaimed together. Blocks are simply split 
in areas of s2 pages and a block is erased when all its areas are 
obsolete.

4.3 Hash then Partition 
As stated above, the benefit of partitioning is a cost reduction of 
the lookup by a factor p/k. The question is whether this factor can 
still be improved. When doing a lookup for key ai in the current 
solution, the probability that positions h1(ai), h2(ai), ..., hk(ai) fall 
into a number of partitions less than k is low, explaining the rough 
estimate of the cost reduction by the factor p/k. This situation 
could be improved by adding a hashing step before building the 
Bloom filters. Each Bloom filter is split into q buckets by a hash 
function h0 independent of h1, h2, ..., hk,. Each time a new key is 
inserted in KA, h0 is applied first to determine the right bucket, 
then h1, h2, ..., hk are computed to set the corresponding bits in the 
selected bucket. This process is similar as building q small Bloom 
filters for each KA page. The experiments we conducted led to the 
conclusion that q must remain low to avoid any negative impact 
on the false positive rate. Thus, we select q=s (with s usually 
equals to 4). The benefit of this initial hashing is guaranteeing that 
the k bits of interest for a lookup always fall into the same L1 
partition, leading to an average cost of (k + s/2) for scanning 
SKA. 

4.4 An Illustration of Hashed PBFilter 
Now let us illustrate the key insertion and lookup processes of 
hashed PBFilter through an example (Figure 3). As pointed above, 
we set q=s=4 and m=2048, while supposing the size of <key, pt> 
is 8 bytes and the size of a page is 2048 bytes. To simplify the 
calculation, we use only 3 hash functions to build the bloom 
filters, denoted by h1(key), h2(key) and h3(key). The hash function 
used in the pre-hashing step is denoted by h0(key). 
When the first key key1 is inserted, the hash bucket number is 
determined first by using h0, and then h1, h2 and h3 are computed.  
Suppose that: h0(key1) = 0, h1(key1) = 1, h2(key1) = 201, and 
h3(key1) = 301. Accordingly, the 1st, 201st and 301st bits in bucket 
0 (the first 512 bits) of the first bloom filter bloom1 are set to 1 
(Status 1 in Figure 3).
After inserting 2048 keys, the SKA buffer is full with 8 bloom 
filters (each bloom filter summarizes one KA page which contains 
256 <key, pt> entries), so the bloom filters are partitioned and 
flushed into the L1 partitions: the first 512 bits (bucket 0) of each 
bloom filter are written into the first sector of page P01, the second 
512 bits (bucket 1) of each bloom filter are written into the first 
sector of page P11, and so on (Status 2).
After inserting 32768 keys, the L1 partition pages are full, so the 
bloom filters are repartitioned into smaller pieces forming L2: the 
first 128 bits of all 128 bloom filters are written into the first L2 
partition P1, the second 128 bits of all 128 bloom filters are 
written into the second L2 partition P2, and so forth (Status 3). 
After inserting 65536 keys, the new L1 partitions are full again, 

219



so the bloom filters are repartitioned once more into ever smaller 
pieces forming L3: the first 64 bits of all 256 bloom filters (128 
from the L2 partitions and 128 from the L1 partitions) are written 
into the first L3 partition P1’, the second 64 bits of all 256 bloom 
filters are written into the second L3 partition P2’, and so forth 
(Status 4). 
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Figure 3. Storage status changing of a bloom filter 
Now the bloom filters have been partitioned three times and have 
produced 32 L3 partitions each containing 64 bits of each bloom 
filter. Note that each of the L3 partitions still belongs to a single 
hash bucket set by h0: the first 8 pages belong to bucket 0, the 
second 8 pages belong to bucket 1, and so on. 
At this time, the process for looking up key1 is as follows. First, 
compute the hash functions to locate the required bit positions: 
h0(key1) = 0, h1(key1) = 1, h2(key1) = 201, and h3(key1) = 301, 
which means that, the 1st, 201st, and 301st bit positions of bucket 0 
should be checked. In the L3 partitions, the three bit positions are 
stored in P1’, P4’ and P5’ respectively, so only these pages have 
to be loaded into RAM. In this case, key1 will be found by only 
checking these pages. In other cases, if the searched key is not 
found in the L3 partitions, the current L1 partitions must be 
checked also: instead of scanning all the L1 partitions, only the 
pages in the corresponding bucket need to be checked (at most s 
pages), for example, if h0(key) = 1, only P11, P12, P13 and P14 are 
scanned if they are not empty. 

4.5 Deletes and Updates 
PBFilter has been preliminary designed to tackle applications 
where insertions are more frequent and critical than deletes or 
updates. This characteristic is common in the embedded context. 
For instance, deletes and updates are proscribed in medical folders 
and many other administrative folders for legal reasons. Random 
deletes and updates are also meaningless in several applications 
dealing with historical personal data, audit data or sensed data. 
Note that cleaning history to save local space differs from 
deleting/updating randomly elements. While the latter impose to 
deal with a large DA area, the former can be easily supported. 
Indeed, cleaning history generates bulk and sequential deletes of 
old data. A simple low watermark mechanism can isolate the data 
related in RA, KA and SKA to be reclaimed together.  

Let us now consider a large number of random deletes and 
updates enlarging DA and thereby decreasing the lookup 
performance. The solution to tackle this situation is to index DA 
itself using the same strategy, that is building bloom filters on the 
content of DA pages and partitioning them. The lookup cost being 
non linear with the file size, there is a great benefit to keep a 
single DA area for the complete database rather than one per file. 
This will bound the extra consumption of RAM to s more buffers 
for the whole architecture. The extra cost in Flash memory is 
again strongly limited by the high compression ratio of bloom 
filters. As section 5 will show, the lookup cost is kept low, though 
roughly multiplied by a factor 2 with high update/delete rate. 

5. PERFORMANCE EVALUATION 
The first objective of this section is to study how traditional 
B+Tree, batch methods and PBFilter perform in the embedded 
context. To allow a fair comparison between the approaches and 
isolate the FTL cost indirectly paid by batch methods and B+Tree, 
we introduce a precise analytical cost model. The results are more 
easily interpretable than real measurements performed on an 
opaque firmware. These results show that, while B+Tree and 
batch methods can slightly outperform PBFilter in some situations, 
PBFilter is the sole method to meet all requirements of an 
embedded context. Then, this section discusses how PBFilter can 
be tuned in a co-design perspective. Finally, preliminary 
performance measurements conducted on a specific hardware 
platform are given for illustrative purpose. 

5.1 Analytical Performance Comparison 
5.1.1 Indexing Methods under Test 
As stated above, the objective is not to perform an exhaustive 
comparison of all Flash-based indexing methods, considering that 
only PBFilter has been specifically designed to cope with 
embedded constraints. The comparison will then concentrate on 
opposite approaches (traditional, batch, Summarization & 
Partitioning), rather than focusing on variations. Regular B+Tree 
running on top of FTL, denoted by BTree hereafter, is considered 
as a good representative of traditional disk-based indexing 
methods running on Flash memory with no adaptation. BFTL [18] 
is selected as a good, and probably best known, representative of 
batch methods. To better understand the impact of (not) bounding 
the log size in batch methods, we consider two variations of 
BFTL: BFTL1 with no compaction of the node translation table 
and BFTL2 with the periodic compaction of the node translation 
table suggested in [18]. The Bloom filter instantiation of PBFilter, 
denoted by PBF hereafter, is so far the unique representative of 
Summarization & Partitioning methods. 
The performance metrics used to compare these methods are those 
introduced in Section 2.3, namely: RAM (RAM consumption in 
KB), R (average number of page reads to lookup a key), IR (total 
number of page reads to insert N records), W (total number of 
page writes to insert N records), VP (total number of valid Flash 
pages) and OP (total number of obsolete Flash pages). 

5.1.2 Parameters and Formulas 
The parameters and constants used in the analytical model are 
listed in Table 2 and Table 3, respectively. 
Table 4 contains basic formulas used in the cost model and the 
cost model itself is presented in Table 5. To make the formulas as 
precise as possible, we use Yao’s Formula [20] when necessary. 
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- Yao’s Formula: Given n records grouped into m blocks 
(1<m n), each contains n/m records. If k records (k n-n/m) 
are randomly selected, the expected number of blocks hit is:
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Table 2. Parameters for the analytical model 
Param Signification 
N Total number of inserted records 
Sk Size of the primary key (in bytes) 
B Number of buffer pages in RAM 
C Maximum size of a node translation table list in BFTL2 
d Value of m/n in Bloom filter (see Table 1 for examples) 
k Number of hash functions used by Bloom filter 

Table 3. Constants for the analytical model
Constants Signification 
Sr=4 (bytes) Size of a physical pointer 
fb=0.69 Average fill factor of B+Tree [19] 

=2
Expansion factor of flash storage  
caused by the buffering policy in BFTL [18] 

Sp=2048(bytes) Size of a Flash page 

5.1.3 Performance Comparison 
We first compare the four methods under test on each metric with 
the following parameter setting: N=1 million records, Sk=12, C=5 
for BFTL2 (a medium value wrt [18]), and B=7, d=16, k=7 for 
PBF (which correspond also to medium values). The results are 
shown in Figures 4(a) to 4(e).
BTree exhibits an excellent lookup performance and consumes 
little RAM but the price to pay is an extremely high write cost and 
consequently a very high number of obsolete pages produced 
(OP). Hence, either the Flash memory usage will be very poor or 
the garbage collection cost very high. Considering that writes are 
more time and energy consuming than reads, BTree adapt poorly 
Flash storage whatever the environment (embedded or not) 3.
BFTL has been primarily designed to decrease the write cost 
incurred by BTree and Figures 4(c) and 4(e) show the benefit. 
BFTL1 exhibits the highest benefit in terms of writes and Flash 
memory usage. However, it incurs an unacceptable lookup cost 
and RAM consumption given that the node translation lists are not 
bounded. The IR cost is also very high since each insertion incurs 
a traversal of the tree. By bounding the size of the node 
translation lists, BFTL2 exhibits a much better behaviour for 
metrics R, IR and RAM (though RAM remains high wrt 
embedded constraints) at the expense of a higher number of writes 
(to refresh the index nodes) and a higher Flash memory 
consumption (BFTL mixing valid and obsolete data in the same 
Flash pages). To better capture the influence of the log size in 
batch methods, we vary parameter C in Figure 4(f), keeping the 
preceding values for the other parameters, and study the influence 
on metrics W, VP and OP. As expected, W and OP (which equals 
to W) decrease as C increases since the tree reorganizations 
                                                                
3 The same conclusion can be drawn for other traditional indexing 

techniques applied to Flash with no adaptation. E.g., for 
hashing, either the number of buckets is kept very small so that 
a RAM buffer can be allocated to each and R is very bad 
(because of the bucket size) or the number of buckets is very 
high and RAM is very high too.

become less frequent (VP stays equal to 0), up to reach  the same 
values as BFTL1 (equivalent to an infinite C). Conversely, R and 
RAM grows linearly with C (e.g., R=105 and RAM=2728 when 
C=30, as shown by formula in Table 5). Trading R and RAM for 
W and OP is common to all batch methods  but there is no trade-
off which exhibits acceptable values for RAM, W and OP 
altogether to meet embedded constraints (Low_RAM, 
Low_Energy, Low_Storage). Even FlashDB [16] which 
dynamically takes the best of BTree and BFTL according to the 
query workload cannot solve the equation. 
Though slightly less efficient for lookups than BTree and even 
BFTL2 when the update/delete rate is high (figure 4(a) shows that 
metric R for PBF ranges from 10 without update up to 22 with 
100% updates)4, PBF is proved to be the sole indexing method to 
meet all embedded constraints at once. In this setting, PBF 
exhibits excellent behaviour in terms of IR, W, VP and OP while 
the RAM consumption is kept very low. Note that if the RAM 
constraint is extremely high, the granularity of the buffer could be 
one sector, as explained in Section 3 and 4.2, leading to a total 
RAM consumption of 3.5KB5.
The point is to see whether the same conclusion can be drawn in 
other settings, and primarily for larger files where sequential 
methods like PBF are likely to face new difficulties. Figures 4(g) 
to 4(i) analyse the scalability of BFTL and PBF on R, W and 
RAM varying N from 1 million up to 7 million records, keeping 
the initial values for the other parameters (Figures 4(g) and 4(i) 
use a logarithmic scale for readability). BTree is not further 
considered considering its dramatically bad behaviour in terms of 
W and OP.
BFTL2 scales better than PBF in terms of R and even outperforms 
PBF for N greater than 2.5 million records (though R performance 
of PBF remains acceptable). However, BFTL2 scales very badly 
in terms of W. BFTL1 scales much better in terms of W but 
exhibits unacceptable performance for R and RAM. 
Unfortunately, PBF scales also badly in terms of W. Beyond this 
comparison which shows that efficient Flash-based method for 
indexing very large files still need to be invented, let us see if the 
scalability of PBF can be improved to cover the requirements of 
most embedded applications. Actually, the cost of repartitioning 
becomes dominant for large N and repartitioning occurs at every 
Flash buffer overflow. A solution for large files is then to increase 
the size of the Flash buffer hosting the L1 partitions under 
construction. The comparison between PBF1 and PBF2 on Figure 
4(i) shows the benefit of increasing the Flash buffer from 16 
pages for PBF1 (that is 4 L1 partitions of 4 pages each) to 64 
pages for PBF2 (16 L1 partitions of 4 pages each). Such increase 
does not impact metric R since the number of reads in L1 
partitions does not depend on the number of partitions but of their 
size (which we keep constant). The RAM impact sums up to 12 
more buffers for SKA, but this number can be reduced to only 3 
pages by organizing the buffers by sectors. Hence, PBF can 
accommodate gracefully rather large embedded files (a few 
millions tuples) assuming the RAM constraint is slightly relaxed 
(a co-design choice). 

                                                                
4 Note that the R cost for BFTL and BTree neglects the FTL 

address translation cost which may be high (usually a factor 2 to 
3).

5 For the sake of simplicity, the formulas of the cost model 
consider the granularity of buffers to be one page. 
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Table4. Basic formulas of the analytical model
Vars Annotations Expressions
Common formulas 
M Number of index units (IUs) in each page [Note1] Sr)*5Sp/(Sk  for BFTL1&2, Sr)Sp/(Sk for others
Formulas specific to Tree-based methods (Btree, BFTL1, BFTL2) 
ht Height of B+Tree NMfb 1*log

Nn Total number of B+Tree nodes after N insertions 
ht

i

iMfbMfb
1

1))1*)(*/((N

Ns Number of splits after N insertions Nn-ht

L Average number of buffer chunks that the IUs from 
the same B+Tree node are distributed to [Note2] 

Yao(N, N/(fb*M*B), fb*M) for BTree, 
Yao(N, *N/(M*B), fb*M) for BFTL1&2, 

Number of index units of a logical node stored in a 
same physical page [Note3] fb*M/L 

Nc Number of compactions for each node in BFTL2 )1C/()1L(
Formulas specific to PBF 
NKA Total number of pages in KA MN /

Sb Size of a bloom filter (bits) )*(log22 dM

Mb Number of bloom filters in a page SbSp /8*

M1 Number of <key, pinter> pairs contained by one 
bloom filter 

dSb /

Nr Total number of partition reorganizations [Note4] )*1/(/ sLMbNKA

Pf Number of last final partitions )/1/%((log22**1 sLSbNrsL , if Nr>0, else Pf =0 

NFB Number of pages occupied by the final valid blooms sssLMbNPfSbMSpN KA */))*1mod(/(*)1*8*/(

NE Total number of pages which can be erased 
)*1/(

2

)1(log )*1*2(*)1*8*/( 2

sLSb

i

i sLMSpN sLNrsL
sLSbNr

i

i *1*)*1*2(
)/1/%(

2

)1(log2

 [Note1]   In BFTL, there are five pointers in each Index Unit (data_ptr, parent_node, identifier, left_ptr, right_ptr), explaining   factor 5. 
 [Note2]   Yao’s formula is used here to compute how many buffer chunks (1 buffer chunk containing B pages) that fb*M records are distributed  

to, which is the average length of the lists in node translation table for BFTL1.                                              
 [Note3]  The IUs from the same logical node are stored in different physical pages, so we divide the total number of IUs (fb*M) by the total 

number of physical pages to get the average number of IUs stored in the same physical page.  
 [Note4]   L1 denotes the number of pages in  each initial L1 partition and L1*s is the size of the Flash buffer used to manage them.   

Table 5. Final formulas of the analytical model 
Metrics\Methods BTree BFTL1 BFTL2 PBF

R             [Note1] ht  (ht-1)*L+L/2 (ht-1)*C+C/2 R1+R2+ 2//1** MMNf KA
+ R3 

W            [Note2] N/ +2Ns *N/M + *Ns/2 W1 NKA + NFB +NE

IR           [Note3] IR1 IR2 IR3 NE

RAM       [Note4] B*Sp/1024 (Nn*L*Sr+B*Sp) /1024 (Nn*C* Sr+B*Sp) /1024 B*Sp/1024 
VP          [Note5] Nn W W NKA + NFB

OP          [Note5] W-Nn 0 0 NE

Where, IR1 = Ns*(fb*M/2)  + ))1*)(*((*)1()1))1*()1*)((*((* 2
2

1

1 ht
ht

i

ii MfbMfbNhtMfbMfbMfbi

IR2 = Ns*(fb*M/2) + ))1*)(*((**)1()1))1*()1*)((*((** 2
2

1

1 ht
ht

i

ii MfbMfbNLhtMfbMfbMfbLi

IR3 = Ns*(fb*M/2) + ))1*)(*((**)1()1))1*()1*)((*((** 2
2

1

1 ht
ht

i

ii MfbMfbNChtMfbMfbMfbCi

W1= *N/M + *Ns/2 + *Nn*
1

0
))1(*(

Nc

i
CiC /M

R1 = 2/)mod)1/((*/)( sLNNPfN FBFBFB  , R2= )k,/,/( sPfsSbYao  ,R3= )k,/,/(*M2)/2*8*N/(Sp sSbsSbYao
[Note1] For BTree, we did not consider the additional I/Os of going through the FTL indirection table. For BFTL1&2, loading a node requires 
traversing, in the node translation table, the whole list of IUs belonging to this node and accessing each in Flash. In PBF, the read cost comprises: the 
lookup in the final and initial partitions and the cost to access (KA), including the overhead caused by false positives.   
[Note2] For BTree, the write cost integrates the copy of the whole page for every key insertion (2 times more for splits). BFTL methods also need 
data copy when doing splits and the write cost of BFTL2 integrates the cost of periodic reorganizations. The write cost for PBF is self-explanatory. 
[Note3] For Tree-based methods, the IR cost integrates the cost to traverse the tree up to the target leaf and the cost to read the nodes to be split. For 
PBF, it integrates the cost to read the partitions to be merged at each iteration. 
[Note4] RAM comprises the size of the data structures maintained in RAM plus the size of the buffers required to read/write the data in Flash. 
[Note5] VP+OP is the total number of pages occupied by both valid and stale index units. In BFTL1&2, OP=0 simply because stale data are mixed 
with valid data. By contrast, stale data remain grouped in BTree and PBF. In BTree, this good property comes at a high cost in terms of OP. 
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Table 6. Average R in the experiments 

           Hash 
Distrib. 

Bob Jenkins Super-Fast Arash Partow 

Random 12.33 12.28 68.37 

Ordinal 12.34 12.32 41.06 

Normal 12.28 12.36 76.95 

Figure 4. Evaluation results 

5.1.4 About Frequent Deletions 
As shown is Figure 4(a), large number of random deletions or 
updates degrades the lookup performance of PBFilter because of 
the search in DA. Figure 4(j) shows more precisely the impact of 
random updates/deletions on metric R when there are 1 million 

valid tuples. It grows with the update rate (number of 
updates/number of valid tuples) slowly thanks to DA indexing 
(e.g., for an update rate of 100%, R = 22). This confirms the 
benefit to build a single DA area for the complete database if 
RAM buffers needs to be saved. 
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5.2 PBFilter Adaptability and Predictability 
Tuning parameters d and k used to build the Bloom filters in PBF 
determines the quality of the summarization (false positive rate), 
the size of the summary and then the partitioning cost with a direct 
consequence on metrics R, W, VP and OP. This makes PBF 
adaptable to various situations and brings high opportunities in 
terms of co-design, assuming the consequences of tuning actions 
can be easily predicted and quantified.  
Figure 4(k) shows the influence of d on R with the other 
parameters set to the previous values: N=1million, Sk=12, B=7, 
k=7. As expected, the bigger d, the smaller the false positive rate 
and then the better R. At the same time, larger Bloom filters 
increase the frequency of repartitioning and then increase W and 
OP in the proportion shown in Figure 4(l). The impact on VP is 
however very limited because of the small size of SKA compared 
to KA (e.g., for d=16 and k=7, |SKA|/|KA| = 0.1). Figure 4(m) 
shows the influence of k on R with d=16. The bigger k, the better 
R, up to a given threshold. This threshold is explained by the 
Bloom filter principle itself (see formula in Section 4.1 showing 
that there is an optimal value for k beyond which the false positive 
rate increases again) and by the fact that a bigger k means 
scanning more partitions in SKA, a benefit which must be 
compensated by lower accesses in KA. 
As a conclusion, d introduces a very precise trade-off between R 
and W, VP, OP, allowing adapting the balance between these 
metrics to the targeted application/platform tandem. The choice of 
k under a given d should minimize i*k+f*|KA|/2, where i is the 
number of pages in each final partition.  
To illustrate this tuning capability, let us come back to the 
management of large files. Section 5.1.3 presented a solution to 
increase PBF scalability in terms of W.  The scalability in terms of 
R can be also a concern for some applications. The decrease of R 
performance for large files is due to the increase of the number of 
pages in each final partition and of the average accesses to KA 
which is f*|KA|/2. The growth of the size of each final partition 
can be compensated by a reduction of k and a smaller f can still be 
obtained by increasing d.  For instance, the values d=24 and k=4 
produce even better lookup performance for N=5 million records 
(R=9) than the one obtained with d=16 and k=7 for N=1 million 
records (R=10). The price to pay in terms of Flash memory usage 
can be precisely estimated thanks to our cost model. 

5.3 Experimental Results on Real Hardware 
5.3.1 Platform Description 
PBFilter has been implemented and integrated in the storage 
manager of an embedded DBMS dedicated to the management of 
secure portable folders [1]. The prototype runs on a secure USB 
Flash platform provided by Gemalto, our industrial partner. This 
platform is equipped with a smartcard-like secure microcontroller 
connected by a bus to a large (Gigabyte-sized soon) NAND Flash 
memory (today the 128MB Samsung K9F1G08X0A module), as 
shown in Figure 5.
The microcontroller itself is powered by a 32 bit RISC CPU 
(clocked at 50 MHz) and holds 64KB of RAM (half of it 
preempted by the operating system) and 1MB of NOR Flash 
memory (hosting the on-board applications’ code and used as 
write persistent buffers for the external NAND Flash).  

Figure 5. Secure USB Flash device 
There are three nested API levels to access the NAND Flash 
module: FIL (Flash Interface Layer) providing only basic controls 
such as ECC, VFL (Virtual Flash Layer) managing the bad blocks 
and FTL (Flash Translation Layer) implementing the address 
translation mechanism, the garbage collector and the wear-leveling 
policies. We measured the cost of reading/writing one sector/page 
through each API level using sequential (seq.) and random (rnd.) 
access patterns. The numbers are listed in Table 7 and integrate the 
cost to upload/download the sector/page to the Flash module 
register and the transfer cost from/to the RAM of the 
microcontroller (masking part of the difference in the hardware 
cost). FIL and VFL behave similarly for sequential and random 
access patterns while the variation is significant with FTL. 
Random writes exhibit dramatic low performance with FTL (a 
behavior we actually observed in many Flash devices). 

Table 7. I/O Performance through different API levels 
API Levels R(μs) sector/page W(μs) sector/page 
FIL(seq. & rnd.) 100/334 237/410 
VFL(seq. & rnd.) 109/367 276/447 
FTL(seq.) 122/422 300/470 
FTL(rnd) 380/680  12000 

5.3.2 Experimental Results 
We ran our prototype under all the parameter settings used in 5.1 
and 5.2. We measured the I/Os and compares the results with those 
produced by the cost model. 
Unsurprisingly, the tests produced exactly the same numbers as 
those computed by the cost model for all metrics but R. Indeed, 
the sequential organization and the fixed size of all data structures 
make the insertion process and the number of repartition steps 
fully predictable for a given parameter setting, avoiding any 
uncertainty for IR, W, VP and OP metrics (In the prototype, 
transaction atomicity is guaranteed thanks to internal NOR Flash 
buffers and do not interfere with the NAND Flash management).  
The discrepancy related to the R metric deserves a deeper 
discussion. The cost model computes the false positive rate using 
the formula given in 4.1, assuming the k hash functions are totally 
independent, a condition difficult to meet in practice. Much work 
[7, 12] has been done to build efficient and accurate bloom filter 
hash functions. In our experiment, we compared Bob Jenkins’ 
lookup2, Paul Hsieh’s SuperFastHash, and Arash Partow hash 
over datasets of different distributions (random, ordinal and 
normal) produced by Jim Gray’s DBGen generator. The results 
show that the degradation of the false positive rate is quite 
acceptable for the former two hash functions but not for the latter. 
Table 6 shows the R metric measured for each hash function and 
data distribution under the setting: N=1 million, Sk=12, d=16, k=7 
(the cost model gives R=10 for this setting). About the efficiency 
of hash functions, Bob Jenkins and SuperFastHash are quite fast 
(6n+35 and 5n+17 cycles respectively, where n is the key size in 
bytes), and k independent hash values can be obtained by calling 
only three times the hash function [7]. 
We have done preliminary performance measurements in terms of 
response time for insertions and lookups on top of different API 
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levels. Today, we are not granted permission by our industrial 
partner to publish absolute performance numbers, other than those 
given in Table 7, due to a pending patent. However, the 
preliminary observations show that (1) the average insertion cost 
of PBFilter is low in every situations (even on top of FTL) due to 
its sequential write feature, (2) the lookup cost is very satisfactory 
on top of FIL and VFL with an increase of nearly 70% on top of 
FTL and (3) the CPU cost remains low (less than 15% of the total) 
despite the low frequency of the microcontroller. Further 
experiments are required to fully capture the behaviour of PBFilter 
on this hardware platform considering different NAND Flash APIs 
and variant datasets. We expect that real numbers would be made 
public soon.

6. CONCLUSION
NAND Flash has become the most popular stable storage medium 
for embedded systems and efficient indexing methods are highly 
required to tackle the fast increase of on-board storage capacity. 
Designing these methods is complex due to a combination of 
NAND Flash and embedded system constraints. To the best of our 
knowledge, PBFilter is the first indexing method addressing 
specifically this combination of constraints. 
The paper introduces a comprehensive set of metrics to capture the 
requirements of the targeted context. Then, it shows that batch 
methods are inadequate to answer these requirements and proposes 
a very different way to index Flash-resident data. PBFilter, 
organizes the index structure in a pure sequential way and speeds 
up lookups thanks to Summarization and Partitioning. A Bloom 
filter based instantiation of PBFilter has been implemented and a 
comprehensive performance study shows its effectiveness. 
PBFilter is today integrated in the storage manager of an 
embedded DBMS dedicated to the management of secure portable 
folders. Thanks to its tuning capabilities, PBFilter seems adaptable 
to various Flash-based environments and application requirements. 
Typically, PBFilter seems well adapted to any RAM constrained 
environment, embedded or not. Our future work is to complete 
performance measurements on real hardware, to propose an 
accurate management of secondary keys and to investigate new 
summarization and partitioning strategies to ever enlarge PBFilter 
application domain. 
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ABSTRACT
Privacy preservation has recently received considerable at-
tention for location-based mobile services. Various location
cloaking approaches have been proposed to protect the loca-
tion privacy of mobile users. However, existing cloaking ap-
proaches are ill-suited for continuous queries. In view of the
privacy disclosure and poor QoS (Quality of Service) under
continuous query anonymization, in this paper, we propose
a δp-privacy model and a δq-distortion model to balance the
tradeoff between user privacy and QoS. Furthermore, two
incremental utility-based cloaking algorithms — bottom-up
cloaking and hybrid cloaking, are proposed to anonymize
continuous queries. Experimental results validate the effi-
ciency and effectiveness of the proposed algorithms.

Categories and Subject Descriptors
H.2.m [DATABASE MANAGEMENT]: Miscellaneous-
performance measures]

General Terms
Algorithms, Performance, Information Privacy

Keywords
Privacy Protection, Continuous Queries, Location-Based Ser-
vices

1. INTRODUCTION
With advances in wireless communication and mobile po-

sitioning technologies, location-based services (LBSs) have
been gaining increasingly popularity in recent years. Re-
search efforts have been put into investigating how to pre-
serve the privacy of mobile users, while still ensuring high
quality of LBSs. In general, there are two types of privacy
issues: location privacy [6] (a sensitive location is protected
from being linked to a specific user) and query privacy [4]
(a query is protected from being linked to a specific user).
For example, suppose Alice issues the following continuous
query to the service provider (SP) (e.g., GoogleMap) via her
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not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
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Figure 1: Location privacy and query privacy

mobile phone: “where is the nearest dermatosis hospital for
next 30 minutes?”. Concerning the location privacy, Alice
wants to hide her exact location during her movement (e.g.,
being in a clinic or pub); concerning the query privacy, she
wants to hide the fact that the above query about dermatosis
hospital was issued by her.

To protect the location privacy, Gruteser and Grunwald
[6] proposed spatio-temporal cloaking based on a location
k -anonymity model, that is, the cloaked location is made in-
distinguishable from the location information of at least k -1
other users. To achieve location k -anonymity, each user lo-
cation is extended to a cloaking region such that each region
covers at least k users. Figure 1(a) illustrates an example
of location 3-anonymity (k=3), where the locations of A, B
and C are extended to region R(i.e., users A, B and C form a
cloaking set), such that the adversary cannot figure out their
genuine locations in R. Under some circumstances, the ad-
versary knows the users’ genuine locations [4]; thus, the lo-
cation contained in a query would become a quasi-identifier
(QI) [12] to link the query to a specific user. Fortunately,
the location k -anonymity model is also applicable to tackle
this query privacy issue. Consider the example shown in
Figure 1(b), by simply extending the locations contained in
the query to the same region R , the exact query locations
can be successfully hidden and hence the query privacy is
preserved.

Most of the existing cloaking algorithms focus on anonymiz-
ing snapshot queries [11, 5, 7]. As the cloaking sets for the
same user are different at different timestamps [4], directly
applying these algorithms to continuous queries is not suf-
ficient to protect the query privacy. Figure 2 depicts an ex-
ample where the query privacy is disclosed under continuous
queries. As shown, six users A∼F issue six different contin-
uous queries Q1 ∼ Q6, respectively, and A is successfully
cloaked as {A,B,D}, {A,B,F} and {A,E,C} at the times-
tamps ti, ti+1 and ti+2, respectively. Each of these cloaking
sets is consistent to the location 3-anonymity. However, as
their intersection contains A only, the adversary can easily
infer that A issued query Q1 and, hence, A’s query privacy
is disclosed.
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As can be observed from the above example, the privacy
disclosure is due to the use of different cloaking sets for the
same user at different timestamps. To conquer this problem,
queries issued from the same cloaking region should stick to-
gether at all timestamps [4]. In detail, under such a scheme,
the cloaking set of A in Figure 2 should always be kept as
{A, B, D} during ti through ti+2 (the cloaking regions are
represented as dashed rectangles in Figures 2(b) and 2(c)).
Although this scheme successfully protects the query pri-
vacy, it leads to new problems: 1) User location privacy
might be disclosed. As shown in Figure 2(b), the minimum
bounding rectangle (MBR) of {A, B, D} shrinks to a smaller
region at ti+1 which might violate the location privacy re-
quirement of A. In the worst case, it may shrink to a point,
thereby exposing the genuine user location. 2) The quality
of service becomes poor. As shown in Figure 2(c), the size of
the cloaking region {A, B, D} is significantly large at ti+2,
which would make the subsequent query processing much
more costly. In an extreme case, the users might scatter
over the entire space over time, forcing the cloaking region
to cover the whole area.

The reason behind the aforementioned new problems is
that, the algorithm exploits the proximity of current user
locations only, but ignores their future locations. As we
known, a user’s future location depends on the velocity of
her movement and the duration of the continuous query. In
an ideal case, all users within the same cloaking set move
with the same velocity such that the size of the cloaking
region remains the same at all timestamps. Unfortunately,
this is unlikely to happen in practice, and the location prox-
imity tends to change once the involved locations update.
Specifically, on one hand, queries whose locations are close
at the current timestamp may become far away from each
other at a future timestamp; on the other hand, queries
who are now far away from each other may meet at some
future timestamp. For a continuous query whose location is
dynamically changing, it is hard to find an optimal cloak-
ing region for all timestamps. The main challenge is how
to achieve a good QoS while still preserving query privacy
during the query period with frequent location updates.

In this paper, we consider protection of both location pri-
vacy and query privacy for both continuous queries. To ad-
dress this issue, we propose a δp-privacy model and a δq-
distortion model to balance the tradeoff between user pri-
vacy and QoS. The perimeter of a cloaking region is adopted
to evaluate the distortion of the location information. As
pointed out in [10], moving objects with similar patterns
would move in a cluster eventually. Motivated by this ob-
servation, we propose to map the location distortion to a
similarity distance of the queries, based on which queries are
clustered such that the distortion of location information in
each cluster is minimized. These clusters are incrementally
maintained as queries move in and out.

The contributions we make in this paper can be summa-

rized as follows:

• We propose a δp-privacy model and a δq-distortion
model to balance the tradeoff between user privacy and
QoS under continuous queries.

• We propose to map the location distortion to a tem-
poral similarity distance of the queries. Furthermore,
we propose two incremental utility-based cloaking al-
gorithms.

• A series of experiments is conducted to evaluate the
performance of our proposed algorithms. The experi-
mental results validate the efficiency and effectiveness
of our proposed algorithms.

The rest of the paper is organized as follows. We review
the related work in Section 2. The problem under investi-
gation is formally defined in Section 3. Several utility-based
cloaking algorithms are proposed in Section 4. Algorithms
for distortion and privacy verification are proposed in Sec-
tion 5. Section 6 presents the performance evaluation results
of our proposed algorithms. Finally, the paper is concluded
in Section 7.

2. RELATED WORK
Location privacy and query privacy are two types of pri-

vacy issues concerned in location-based mobile services. Lo-
cation k-anonymity is the most popular location privacy
metric. It was proposed by Gruteser and Grunwald [6], and
was later refined in [11, 1]. In terms of the techniques used
for protecting location privacy, existing approaches can be
classified into cloaking [6], dummy [8], and encryption [5].
However, all of the above work focuses on privacy protection
for snapshot queries.

Most of the prior research does not distinguish location
privacy and query privacy.The first work to distinguish them
and to explore privacy protection for continuous queries is
presented in [4]. Nonetheless, it has two drawbacks. First,
only the query locations at the issuing time are employed
to generate cloaking sets, which may lead to location pri-
vacy disclosures and poor QoS, as discussed in the previ-
ous section. Second, as the valid period of each query is
ignored, continuous queries may be cloaked with snapshot
queries. If any snapshot query moves out of the service area,
all continuous queries within the same cloaking set may no
longer meet the location k-anonymity privacy requirement.
Our work also employs location k -anonymity and memorizes
users, but it differs from [4] in the following aspects. First,
a temporal location distortion model is employed to find the
cloaking set. Second, the queries with similar expiration
times are clustered together, which guarantees that every
continuous query will always satisfy the privacy requirement
during its valid period.

Another work addressing location anonymity for continu-
ous queries is presented in [15]. It employs entropy to mea-
sure the anonymity level of a cloaking region by assuming
that the probabilities of users in a cloaking region are not
equal. However, as entropy does not consider whether the
user locations are really different or not, location privacy
might be disclosed when k different users are at the same
location. In [13], a mobility-aware cloaking algorithm is pro-
posed to defend trace analysis attacks. However, the privacy
metric employed in [13] is location granularity, rather than
location k-anonymity considered in this paper.
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Although most research on privacy protection in LBSs
does not discuss about the location data utility, some of
its measurements have been proposed in data publishing,
such as generalization height, discernibility, information loss,
classification metric and information-gain-privacy-loss ra-
tio [9]. Data utility in data publishing mainly focuses on
how the distribution of the original data is preserved for the
purpose of data mining, whereas in LBSs, we mainly focus
on how the generalized location approximates to the original
location. Therefore, in this paper, we employ information
loss, namely location distortion, as the utility measure. We
remark that our location distortion is different from that of
[14] in the following aspects. First, as QI attributes in data
publishing are independent, each attribute can be associated
with a weight to reflect its importance. Nevertheless, the in-
formation in LBSs, including location (x, y) and velocity v,
is dependent to each other w.r.t. time t. Second, the infor-
mation distortion in [14] is static as long as the anonymizing
table is given, while the location distortion in our paper is
a temporal function, which changes as time evolves.

3. PRELIMINARIES
3.1 System Architecture

Like most existing work [6, 11], we employ a centralized
system, which consists of mobile users, a trusted anonymiz-
ing proxy, and an un-trusted SP, as shown in Figure 3. Each
mobile user sends location-based queries to the anonymizing
proxy. There are two types of queries: new query and active
query. New query, as the name implies, is a query newly
issued by a user. Active query is a continuous query which
was issued at some previous time but not yet expired. For
example, a user issues a continuous query Q at ti, and its
valid period is Δt. Then, at ti, Q is a new query, while for
any t ∈ (ti, ti + Δt], it is regarded as an active query.

The anonymizing proxy consists of cloaking engine, cloak-
ing repository and answer refinement engine. Upon receiv-
ing a new query, cloaking engine replaces the user id with a
pseudonym id′. Meanwhile, it invokes the location cloaking
algorithm to generate a cloaking region in accordance with
the user’s privacy requirement. This cloaking set is saved in
the cloaking repository in the form of (CID, Qset, RL,t, Rv,t)

1.
Upon receiving an active query, cloaking engine searches for
the original cloaking set, which was generated at the is-
suing time, in the cloaking repository and then computes
the new cloaking region RL,t. Later on, the anonymizing
proxy forwards the cloaked query to the SP. By maintaining
a cloaking repository, the anonymizing proxy can incremen-
tally compute the cloaking set (i.e., by updating the original
cloaking region) for the active queries and thereby achieving
a higher efficiency.

Finally, candidate results generated by SP are first refined
by answer refinement engine, and then relayed to the mo-

1The meanings of these parameters will be explained later
in Definition 2.

Figure 4: Boundary ve-
locities

Figure 5: WB

bile user. In this paper, we focus on the location cloaking
algorithm, which considers the location data utility as well
as the user-specified privacy requirements.

To facilitate our study, we further make the following as-
sumptions. 1) Every mobile user is trusted — this is a com-
mon assumption in the conventional location privacy pre-
serving techniques [6, 11, 1]. 2) The movement velocity of a
user remains unchanged during the query period. Under this
assumption, the movement function of every query is linear.

3.2 Preliminaries

Definition 1. (Location-based query) Query Q is repre-
sented as Q = (l, v̄, t, Texp, con), where (l, v̄, t) implies Q is
at location l=(x, y) with velocity v̄ = (vx, vy) at the times-
tamp t, Texp is the timestamp when the query expires, and
con is the content of this query.

Definition 2. (Cloaking set) Each cloaking set CS is for-
malized as:

CS = (CID, Qset, RL,t, Rv,t),

where CID is the identifier of this cloaking set, Qset is the
set of queries contained in CS, RL,t = (Lx−,t, Ly−,t, Lx+,t, Ly+,t)
is the location MBR for the queries in Qset at t, and Rv,t=
(vxmin,t, vymin,t,vxmax,t, vymax,t) is the BVR (Boundary Ve-
locity Rectangle). vxmin,t=min(vx+,t, vx−,t), vxmax,t=max(vx+,t,
vx−,t), vymin,t=min(vy+,t, vy−,t), vymax,t=max(vy+,t, vy−,t),
where vx−,t (vx+,t) is the boundary velocity of the query at
Lx−,t (Lx+,t) on the x dimension, and vy−,t (vy+,t) is the
boundary velocity of the query at Ly−,t (Ly+,t) on the y
dimension at time t.

Note that vxmax,t (vymax,t) and vxmin,t (vymin,t) may not
be the maximum and minimum velocity in Qset on the x (y)
dimension. Hence, the queries on the boundary of a cloaking
set change with users movements. Thus, Rv,t and RL,t are
both piece-wise functions w.r.t. t, i.e.:

(Lx−,t, Ly−,t) = (Lx−,ti−1 , Ly−,ti−1) + (vx−,t, vy−,t) × [t − ti−1]

(Lx+,t, Ly+,t) = (Lx+,ti−1 , Ly+,ti−1) + (vx+,t, vy+,t) × [t − ti−1]
(1)

where t ∈ [ti−1, ti]. Taking Figure 4 as an example, queries
Q1 ∼ Q5 constitute a cloaking set CS at time ti. The
number in parenthesis is the query’s velocity and the ar-
row indicates the movement direction. CS.RL,ti=(1,1,4,2)
and CS.Rv,ti = (−1,−3, 1, 2). Here the maximum speed is 3
on the x dimension (for Q5), but it is not a boundary speed
at time ti. If Q5 overtakes Q3 at time tj , vxmax will change
to 3 at tj .

Definition 3. (Width/Height of boundary) For a cloaking
set CS with MBR RL,t, its width at time t, denoted as WBt,
is

WBt = Lx+,t − Lx−,t (2)

Similarly, its height at time t, denoted as HBt, is
HBt = Ly+,t − Ly−,t (3)
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WBt/HBt is also a piece-wise linear function. For the ex-
ample in Figure 4, the changing trend of WB is shown in
Figure 5. The changing trend of HB is similar; so we omit
it here.

Recall that privacy is protected by reducing the resolution
of the location information. Obviously, the more does the
privacy preserve, the less is the utility of the location data.
In this paper, we use distortion to measure the utility of
anonymized location. In other words, distortion reflects the
location information loss, i.e., how much is sacrificed for
privacy preserving. The smaller is the distortion value, the
higher is the data utility.

Definition 4. (Distortion of a query) Let query Q ∈ CS,
whose MBR (BVR) at time t is denoted as RL,t (Rv,t). Let
Awidth (Aheight) be the width (height) of the whole space.
The distortion for a query Q at time t is defined as

DistortionRv,t(Q, RL,t) =
(Lx+,t − Lx−,t) + (Ly+,t − Ly−,t)

Aheight + Awidth

.

Thus, the distortion of Q during its valid period can be
represented as∫ Texp

Ts

DistortionRv,t(Q, RL,t)dt (4)

where Ts is the timestamp when Q is cloaked successfully.

For the sake of convenience, let PA = Aheight + Awidth,
PL,t = (Lx+,t − Lx−,t) + (Ly+,t − Ly−,t), Pv,t = (vx+,t −
vx−,t) + (vy+,t − vy−,t). Let TSet denote the set of times-
tamps {t1, t2, · · · , tn} (t1 = Ts, tn = Texp) when the bound-
ary queries change. Then, Equation (4) can be rewritten as

∫ Texp

Ts

DistortionRv,t(Q, RL,t)dt

=
1

PA

{
∫ t2

t1

[PL,t1 + Pv,t1(t − t1)]dt+

· · · +
∫ ti

ti−1

[PL,ti−1 + Pv,ti−1(t − ti−1)]dt+

· · · +
∫ tn

tn−1

[PL,tn−1 + Pv,tn−1(t − tn−1)]dt}

Definition 5. (Distortion of a cloaking set) Let CS be a
cloaking set with MBR RL,t and BVR Rv,t at time t. The
distortion of CS at time t is defined as

DistortionRv,t(CS, RL,t) =
∑

Qi∈CS

DistortionRv,t(Qi, RL,t)

Thus, the distortion of CS during its valid period is de-
fined as ∫ maxT

Ts

DistortionRv,t(CS, RL,t)dt (5)

where Ts is the timestamp when CS is generated and maxT =
maxQi∈CS(Qi.Texp).

For any two queries, if their states (i.e., initial locations
and velocities) are similar, their future locations tend to be
near to each other. In extreme cases, if two queries are on
the same initial location with the same velocity, they will
have the same location during their common valid periods.
This implies that if queries with similar states are cloaked

together, their distortions during the valid period are likely
to be small. This observation inspires us to map the dis-
tortion with the similarity distance of queries, as defined as
follows:

Definition 6. (Temporal similarity distance between two
queries) Let Q1 and Q2 be two queries, and they constitute a
cloaking set CS12 with MBR (BVR) RL12,t (Rv12,t) at time
t.

The temporal similarity distance between Q1 and Q2 is
defined as

SimDis(Q1, Q2) =

∫ maxT

Ts

DistortionRv12,t(CS12, RL12,t)dt

where maxT=max(Q1.Texp, Q2.Texp).

The similarity distance possesses the following properties:

• SimDis(Q1,Q1)=0

• SimDis(Q1, Q2)=SimDis(Q2, Q1)

• SimDis(Q1, Q2)≤ SimDis(Q1, Q3)+SimDis(Q3, Q2)

The proof is obvious. Due to space limitations, we omit it
here.

Definition 7. (Temporal similarity distance between two
query sets) Let U1 and U2 denote two non-interleaved query
sets (i.e., U1 ∩ U2 = φ), and U = U1

⋃
U2. RL,t (Rv,t)

denotes the MBR (VBR) of U at time t.
The similarity distance between U1 and U2 is defined as

SimDis(U1, U2) =

∫ maxT

Ts

DistortionRv,t(U1, RL,t)dt+

∫ maxT

Ts

DistortionRv,t(U2, RL,t)dt

where maxT = maxQ∈U (Q.Texp). It is easy to know that
the similarity distance between two queries can be regarded
as the special case for two query sets where |U1| = |U2|=1.

3.3 Privacy Model
Recall that the queries within the same cloaking set are

required to stick together before they expire, which makes
it hard to strike a good balance between the user privacy
and QoS for continuous queries. In this section, two mod-
els, namely, δp-privacy and δq-distortion, are proposed to
formalize user privacy and QoS requirements.

The location and velocity of a query are projected to the
x and y dimensions. Now let us first discuss a one-dimension
case. Assume that a candidate cloaking set contains three
queries {Q1, Q2, Q3}, whose velocities on the x dimension
are shown in Figure 6(a). From the figure, we can see that
WB decreases in early stage and shrinks to a point at Tw;
after that, WB increases again. Similar observations can be
drawn on the y dimension. In the worst case, two boundary
segments on the x dimension and y dimension would shrink
at same time, as shown in Figure 6(b). Consequently, the
cloaking region would shrink to a point, which leads to the
exposure of the genuine location.

Location disclosures are prohibited, regardless of how many
dimensions they are disclosed on. If neither WB nor HB

has the opportunity to shrink to a point, apparently, the
privacy would be preserved. A privacy model is designed to
formalize how much WB and HB are allowed to shrink.
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Figure 6: Location of query is disclosed

Definition 8. (δp-privacy model) Let WBt (HBt) be the
width (height) of the boundary segment on the x (y) di-
mension at time t, and δp be the privacy threshold specified
by the users. If for ∀t ∈ [Ts, maxT ], min(WBt, HBt)≥ δp,
δp-privacy is satisfied.

While Definition 8 guarantees the protection of user pri-
vacy, the following Definition 9 ensures the quality of ser-
vices. The distortion of a query set CS should not grow
larger than the user’s requirement δq, which is the user’s
tolerable worst service quality. Note that forcing the dis-
tortion to be smaller than δq at Ts cannot ensure that it
always meets the requirement δq during the entire period Ts

through maxT .

Definition 9. (δq-distortion model) Assume that the user’s
tolerable worst service quality is δq, the set of user queries is
CS with MBR RL,t and VBR Rv,t. If for any t ∈ [Ts, maxT ]
and any Q ∈ CS, DistortionRv,t(Q, RL,t) ≤ δq, then δq-
distortion is satisfied.

In summary, the requirements for a successful cloaking set
CS include:

• |CS| ≥ K;

• Let minT = minQ∈CSQ.Texp, maxT = maxQ∈CSQ.Texp,
maxT − minT ≤ δT ;

• CS satisfies δp-privacy and δq-distortion during [Ts,maxT ].

4. UTILITY-BASED ALGORITHMS
4.1 Greedy Cloaking Algorithm

The main idea of the greedy cloaking algorithm (GCA) is
as follows. For every newly arrived query r, we first compute
its temporal similarity distance with those existing queries
which have not yet been anonymized successfully. Then,
the one having the minimal similarity distance with r is put
into the cloaking set. The above steps repeat until no more
queries can be added into the cloaking set. We detail it in
Algorithm 1.

Specifically, when a new query r arrives, it is first inserted
into the candidate cloaking set U (see step 1∼2). Then each
query rm in the set of existing queries which are not yet
anonymized (denoted as RSet) is retrieved. If the difference
between rm.Texp and r.Texp is bigger than the value of δT ,
then rm cannot be clustered with r and therefore it is filtered
out (see step 5). Otherwise, the boundary queries during
its valid period are calculated and each boundary query is
stored in the boundary time queue (BTQ) bq, which would
be detailedly elaborated in Section 5.1. After all boundary
queries are captured, the δq-distortion requirement (the de-
tailed procedure is given in Section 5.2) is verified. If true,
the request rmin with the minimal temporal similarity dis-
tance is inserted into U . The above steps repeat until no
more queries can be put into U or |U | ≥ K. Finally, if U

Algorithm 1 : Greedy cloaking algorithm(GCA)

1: a candidate cloaking set U=null;
2: put r into U ;
3: while true do
4: for each query rm in RSet do
5: if |r.Texp − rm.Texp|>δT then
6: get the next query in RSet;
7: else
8: BoundaryObjectsComputing(rm, bq, U)
9: if DistortionDetection(rm, bq, U)=true then

10: dis=SimDis(rm, U);
11: if (mindis>dis) then
12: mindis=dis;
13: rmin=rm;
14: insert rmin into U ;
15: RSet = RSet - {rmin};
16: if |U | does not change or |U | ≥ K then
17: break;
18: if (|U | ≥ K) then
19: Check δp-privacy and return cloaking set;

covers more than K users, the δp-privacy is also verified (we
will present its detailed procedure in Section 5.3). If both
δq-distortion and δp-privacy are satisfied, U is returned as
the cloaking set.

4.2 Bottom-up Cloaking Algorithm
The drawback of GCA is that for every newly arrived

query, it needs to search the cloaking set from scratch, which
incurs expensive computational cost. Actually, intermediate
results computed in the previous iterations can be exploited.
The basic mechanism is to cluster those queries whose dis-
tortions are always less than δq together during their valid
periods, and then to incrementally maintain these clusters.
Obviously, the cloaking sets are the subsets of these clusters.
Before presenting our new cloaking algorithm, we give the
definition of continuous cluster:

Definition 10. (Continuous cluster) A query set C is a
continuous cluster during [t1, t2] if (1) C satisfies δq-distortion;
(2) maxTexp−minTexp ≤ δT , where maxTexp=maxQ∈C(Q.Texp)
and minTexp=minQ∈C(Q.Texp)

Based on the continuous clusters, the basic idea of bottom-
up cloaking algorithm (BCA) is as follows. When a new
query r arrives, r itself forms a cluster {r}, which naturally
satisfies δq-distortion. Then, among the existing continu-
ous clusters, the one with the minimal temporal similarity
distance with r, denoted as cr, is selected to merged with
{r}. If {cr, r} contains not less than K queries, it is verified
to see if it meets the δp-privacy requirement. If fails, this
cluster is kept in service space for merging future queries.
Algorithm 2 shows the pseudo-code of bottom-up cloaking
upon the arrival of a new query r.

In Algorithm 2, r is the newly arrived query, and CR is the
set of existing continuous clusters in service space. For each
cluster c in CR, it associates with a BTQ bqc, which main-
tains its boundary queries during the valid period. When r

arrives, each cluster c in CR is scanned and the following
steps are conducted. First, new boundary queries of c with r

inserted are computed (see step 5); Second, δq-distortion is
checked (see step 6); Third, the temporal similarity distance
between c and r is calculated (see step 8). After that, the
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Algorithm 2 : Bottom-up cloaking algorithm(BCA)

1: for each cluster c ∈ CR do
2: maxT=max(c.maxTexp, r.Texp);
3: minT=min(c.minTexp, r.Texp);
4: if maxT − minT ≤ δT then
5: BoundaryObjectsComputing(r, bqc, c);
6: if DistortionDetection(r, bqc, c)=false then
7: continue;
8: dist=SimDis(r, c);
9: if dcmin>dist then

10: dcmin=dist;
11: cmin = c;
12: else
13: if dc=dist and |cmin| < |c| then
14: dcmin=dist;
15: cmin=c;
16: if cmin not exists then
17: put {r} into CR;
18: else
19: cmin = cmin ∪ {r}; /*do the merging*/
20: if |cmin| ≥ K then
21: Check δp-privacy and return the cloaking set cmin;

cluster cmin which has the minimal temporal similarity dis-
tance with r is sought. If such cmin exists, cmin is updated
by merging it with {r}. Otherwise, r itself forms a cluster
and is added into CR. Note that if there exist two clusters
with the same minimal similarity distance with r, the one
with more queries is preferable to be chosen for {r} to be
merged with (see step 13∼15) so that more queries can be
cloaked.

Consider the example shown in Figure 7, where C1, C2, C3

and C4 are continuous clusters, whose distortions are always
smaller than δq before they expire. When a new query r

arrives, according to BCA, C4 is selected to be merged with
{r} as it has the minimal temporal similarity distance with
r. Then, C4 would have four queries after the merging is
conducted. If K ≤ 4, C4 is sent to check the δp-privacy
requirement, otherwise, it will stay in the service space to
merge with other arriving queries.

4.3 Hybrid Cloaking Algorithm
Many possible cluster merges are ignored in bottom-up

cloaking algorithm (BCA), which might decrease the success
rate of cloaking. Continue with the example in Figure 7, as
discussed previously, C4 cannot be returned as a cloaking
set if K=5. However, by merging some queries of other
cluster, e.g., C1, it is possible that C4 would successfully
become the cloaking set. In fact, C4 ∪{A} satisfies both δq-
distortion and δp-privacy requirements, and thus would be
returned as a cloaking set. However, such opportunities are
omitted in BCA. On the other hand, as cluster merges are
time-consuming, especially when the locations of queries are
frequently updating, conducting merges in the granularity of
queries surely deteriorates the performance of the cloaking
algorithms.

In order to resolve this problem, we propose hybrid cloak-
ing algorithm, which aims to combine the advantages of
BCA and GCA together. Specifically, BCA is used to search
the proper cluster for each newly arrived query, while GCA
is for cluster refinement. To further improve the searching
efficiency, a TPR-tree is adopted to index existing clusters,

Figure 7: BCA Figure 8: Location on x-
dimension

such that some clusters can be filtered out and thereby ac-
celerating the searching process. Before presenting the spe-
cific algorithm, for ease of exposition, we introduce nearest
neighbor cluster whose definition is as follows:

Definition 11. (Nearest neighbor cluster, NNC) A cluster
Cn is the NNC of C iff for any cluster Ci(Ci �= C and i �= n),
perimeter(MBR(Ci, C))> perimeter (MBR(Cn, C)).

With the help of TPR-tree, we can easily get the set of
nearest neighbor clusters (denoted as CSnn) for each newly
arrived query r during its valid period. The following theo-
rem shows that, if there exists a cluster C in CSnn and C’s
distortion with r violates δq-distortion, then the distortions
between other clusters and r must also violate δq-distortion.

Theorem 1. Let CSnn be query r’s CNN during its valid
period [Ts, Texp]. If ∃ Ci,ti,ti+1 ∈ CSnn,

distortion(Ci,ti,ti+1 , r, t) > δq

where t ∈ [ti, ti+1], Ts < ti < ti+1 < Texp, then for any
cluster C′(C′ �= Ci,ti,ti+1),

distortion(C′
, r, t) > δq.

Proof. For ease of presentation, without loss of gener-
ality, we assume every cluster has the same valid period as r.
CSnn is in the form of {(C1,t1,t2 , t1, t2), . . ., (Ci,ti,ti+1 , ti, ti+1),
. . ., (Cn,tn−1,tn , tn−1, tn)}, where t1 = Ts, tn = Texp, and
(Ci, ti, ti+1) represents that Ci,ti,ti+1 is r’s NN during [ti, ti+1].
For any cluster C′ which is not NN at timestamp t (t ∈
[ti, ti+1]), according to Definition 11, perimeter(C′, r) > perime-
ter (Ci,ti,ti+1 , r) at t. Apparently, if distortion (Ci,ti,ti+1 , r, t)
> δq, we have distortion (C′, r, t)> δq.

According to Theorem 1, for a newly arrived request r,
if its nearest neighbor cluster at any timestamp of its valid
period violates the δq-distortion requirement, other clusters
are filtered out from checking and thus some computational
cost can be saved. However, two new problems arise: 1) how
to efficiently find CNN of r during its valid period; 2) how
to find the cloaking set based on CSnn.

As the queries within a cluster are dynamically changing
in terms of their locations and velocities, under such circum-
stance, it is a complicated and time-consuming to identify
the CSnn for a query. However, since the purpose of CSnn

is just for filtering, instead of finding out the exact nearest
neighbor for a query, we turn to the approximate computing.
Before that, we first define the centroid of a cluster.

Definition 12. (Centroid of a cluster) The centroid Ocn

of a cluster C is represented as (x, y, vx, vy), where (1)x =∑
Q∈C Q.x

|C| and y =
∑

Q∈C Q.y

|C| ; (2) vx =
∑

Q∈C Q.vx

|C| and vy =∑
Q∈C Q.vy

|C|
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Algorithm 3 : Hybrid cloaking algorithm(HCA)

1: find the CNN cluster CSnn for r on TPR-tree;
2: invoke BCA on CSnn to find cluster cmin;
3: if cmin not found then
4: insert r into TPR-tree;
5: else
6: cmin = cmin ∪ {r}; /*do the merging*/
7: if |cmin| < K then
8: for each query o in CSnn − cmin do
9: maxT=max(cmin.maxTexp, o.Texp);

10: minT=min(cmin.minTexp,o.Texp);
11: if |maxT − minT | < δT then
12: if DistortionDetection(o, bq, cmin)=false then
13: insert o into cmin;
14: delete o from the cluster c it is in;
15: insert c into queue uq;
16: if |cmin| ≥ K then
17: break;
18: for each cluster c in uq do
19: update centroid of cluster c ;
20: update it in TPR-tree;
21: if |cmin| ≥ K then
22: Check δp-privacy and return the cloaking set cmin;
23: else
24: insert centroid of cmin into TPR-tree;

Now, each cluster can be simply represented by its cen-
troid, and a TPR-tree can be built on the centroids of clus-
ters. Also, the NNC for a query can be quickly discovered by
searching over this TPR-tree. In other words, the original
problem is successfully transformed to a traditional CNN
problem on moving objects, which has been well studied in
literature. We detail the proposed hybrid cloaking in Algo-
rithm 3. We employ best-first traversal using min metric [2]
to compute CSnn for r (step 1). Based on CSnn, BCA is
adopted to find the cluster cmin with minimum temporal
similarity distance first (step 2). If such cmin does not ex-
ist, r itself forms a cluster and its centroid is inserted into
TPR-tree (step 4). Otherwise, the merging of {r} and cmin

is conducted. Finally, if cmin has not less than K queries, it
is directly returned as a candidate cloaking set for privacy
verification (step 22). Otherwise, we invoke GCA to do the
cluster refinement (step 7∼17) — for each query o in CSnn

but not in cmin, if cmin ∪ {o} satisfies δq-distortion, then
o is moved into cmin and their centroids in TPR-tree are
updated correspondingly. Such process repeats until cmin

contains K queries.
Continue with the example shown in Figure 7. Suppose

that the set of clusters {C1, C2, C3, C4} is the CNN (denoted
as CSnn) found on the TPR-tree when r arrives, and K is
equal to 5. After invoking BCA, C4 is selected to merge
with {r}. As C4 only contains four queries after merging,
cluster refinement is conducted. Specifically, each query o in
{C1, C2, C3} is checked to see if it can be inserted into cmin.
Hence, in this example, A is found and is moved from C1 to
C4. Consequently, the centroid of C1 is updated and C4 is
removed from the TPR-tree. Finally, C4 ∪ {A} is returned
as a valid cloaking set.

5. DISTORTION AND PRIVACY VERIFICA-
TIONS

The proposed cloaking algorithms, namely, GCA, BCA
and HCA, involve three main steps: boundary query com-
puting, δq-distortion and δp-privacy verifications. We will
elaborate them in Section 5.1, Section 5.2 and Section 5.3,
respectively.

5.1 Boundary Query Computing
As discussed previously, each cluster is associated with

a queue BTQ2, which maintains the boundary queries at
different timestamps. Each item in BTQ is in the form
of <time, query>, where time is the timestamp when this
query becomes boundary. Inside BTQ, the boundary queries
are kept sorted in ascending order of the timestamp. As
queries are changing along with the movement of its issuers,
it is costly to track the boundary queries online.

Figure 8 shows five queries projected on the x-dimension.
For the timestamps ti ∼ tj , each query at the timestamp
t (t < tj) can be located by

x = xti + vx ∗ (t − ti) (6)

Hence, the crossed points of lines in Figure 8 can be easily
computed. Note that we only need to compute those crossed
points which can contribute to the width of the boundary’s
segments. In Figure 8, the crossed point P can be ignored.
Although we take the case on the x-dimension as an exam-
ple, the case on the y-dimension can be handled similarly.
For every cluster C, let V S + /V S− be the velocity sets of
boundary queries on positive/negative x-dimension during
its valid period. The main idea of boundary query com-
puting is as follows: when a query r is inserted into C, if
∀v+ ∈ V S+, r.vx < v+, and ∀v− ∈ V S−, r.vx > v−, r is im-
possible to be the boundary on the x-dimension. Otherwise,
the timestamp when r becomes the boundary is computed
by using equation (6). In addition, those crossed points are
inserted into BTQ. For the example in Figure 8, if Q3 is the
query to be inserted, as Q5’s velocity is larger than Q3’s,
it would be picked up to compute the crossed point P ′. In
this way, all boundary queries of a cluster can be calculated.
Due to space limitations, we omit the detailed algorithm.

5.2 δq-Distortion Verification
By maintaining BTQ, it is easy to get any boundary query

at any time for a cluster. Therefore, during two consecutive
timestamps [ti, ti+1] in BTQ, as each boundary movement
is a linear function with timestamp t, PL,t and Pv,t can
be computed. To satisfy δq-distortion, for any timestamp
t ∈ [ti, ti+1], the following inequation should be held:

1

PA

[PL,ti + Pv,ti(t − ti)] < δq. (7)

By setting the left side of the inequation (7) to be δq, we can
compute the upper bound of t, denoted as t+. If t+ locates
in [ti, ti+1], it is easy to know that δq-distortion is violated.
Otherwise, δq-distortion is satisfied. The algorithm is quite
straightforward and thus is omitted here.

5.3 δp-Privacy Verification
Like δq-distortion, δp-privacy can be verified during each

time interval between two consecutive timestamps in BTQ
by using equations (2) and (3). However, it is not necessary

2In the implementation, there are four queues, namely,
BTQx−, BTQx+, BTQy−, BTQy+, which maintain the
boundary queries on every direction of the cluster MBR.
For ease of presentation, we unify them as a queue BTQ.
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Figure 9: Exclusive objects on one dimension

Figure 10: Non-exclusive objects on one dimension

for δp-privacy to be checked during every time interval of
the valid period.

Let’s define exclusive first:

Definition 13. (Exclusive) Let dist be the distance be-
tween two queries r1 and r2. For any two timestamps ti,
tj , ti < tj , if dist(r1, r2, ti)≤dist(r1, r2, tj), we say these two
queries are exclusive to each other.

Intuitively, the distance between two exclusive queries would
increase as the time elapses. Moreover, two observations can
be drawn. First, if two boundary queries on each dimension
are exclusive and WB/HB is larger than δp at ti, it will
not be less than δp after ti. Second, for any two boundary
queries, even if they are not exclusive to each other at the
current timestamp, they will become exclusive at some fu-
ture time. Figure 9 shows the cases when two queries are
exclusive. (a) Two queries have the same velocity, thus the
distance between them remains constant. (b) The veloci-
ties of two queries A and B have the same direction, but B,
which is in front of A on the moving direction, has a larger
velocity. Apparently, (a) is a special case of (b). (c) Two
queries move on the opposite direction. Figure 10 demon-
strates the cases when two queries are not exclusive at the
early stage but become exclusive to each other after a cer-
tain timestamp. As shown, the queries A and B (C and D)
are not exclusive in (a). However, as time goes by, after A
and B converge in (b), they become exclusive to each other
(e.g., in (c)).

The main idea of δp-privacy verification is as follows. If
the boundary queries of a cluster on both dimensions are ex-
clusive, the actions are subject to different cases: when both
WB and HB are larger than δp, the cluster can be returned
as a cloaking set directly; when WB or HB is less than δp,
we can delay to the time to publish the cloaking set, until
both |WB| and |HB| are larger than δp. If the boundary
queries on any dimension are not exclusive, their information
are kept on tracking in the BTQ until they are exclusive or
all boundary queries in BTQ have been checked. The former
terminal condition implies this cluster is a successful cloak-
ing set, while the latter one indicates this cluster should re-
main in the service space and wait for anonymization. Due
to space limitations, we omit the specific algorithm here.

Figure 6(a) shows an example when the cloaking set needs
to be delayed for publishing. Assume Q1 ∼ Q3 constitute a
cluster at ts(K=3). As shown, WB shrinks to zero at Tw,
and it increases to δp at TΔ. Therefore, this cluster would
wait until TΔ is to be published as a cloaking set.

6. PERFORMANCE EVALUATION
In this section, the effectiveness and efficiency of our pro-

posed algorithms, including GCA, BCA, and HCA, are ex-
perimentally evaluated under various system settings. Al-
though the privacy technique proposed in [4] is the most

Table 1: Default system settings
Parameters Default values

Number of queries 10,000
Valid period Randomly chosen from [0,1440]

Privacy level K 10
δp 1% of min(Awidth,Aheight)
δq 10% of the space
δT 60s

Perimeter of road map ∼6,000km

representative approach for continuous queries, as discussed
in Section 2, it suffers from disclosing the location privacy
in some cases. Moreover, none of the existing cloaking algo-
rithms consider the temporal utility of the cloaking region
during the anonymization. Hence, we do not include any
existing cloaking algorithm for comparison. The evaluation
metrics include the cloaking success rate, the cloaking cost,
the cloaking time, and the processing time for successful
queries.

We use the well-known Thomas Brinkhoff Network-based
Generator [3] to generate the moving objects in the system.
The input of the generator is the road map of Oldenburg
County (with perimeter around 6,000km). Our algorithms
are implemented in Java and evaluated on a desktop running
Windows XP SP2 with an Intel 2.0GHz CPU and 2GB main
memory. A total of 10,000 moving objects are generated
at the beginning of the simulation. Each object issues a
continuous query, whose valid period is a random number in
the range of [0, 1440]. Meanwhile, we assume a new query
is not issued until the last query is successfully cloaked or
expired. By default, for each query, the privacy level K is
set to 10, δp is set to 1% of the min(Awidth,Aheight), δq is
set to 10% of the system service space, and δT is set to 60s.
We summarize the default parameter settings in Table 1.

6.1 Cloaking Success Rate
In this section, the average cloaking success rates of GCA,

BCA and HCA are evaluated under various settings of K,
δp and δq.

Increasing K implies the privacy requirement becomes
more constrained, which indicates more queries should be
covered by a cloaking set. From Figure 11(a), we can observe
that the success rate decreases when K increases. Among
the proposed algorithms, GCA is the best and its success
rate decreases slightly with K increasing. By contrast, BCA
is the worst. That is because every query in GCA finds its
cloaking set greedily in the entire query set, while the cloak-
ing set is found among cluster sets in BCA. As explained in
Section 4.3, BCA omits some possible cluster merges, and
hence a number of cloaking sets cannot be successfully cre-
ated. For HCA, it successfully resolves the problem of BCA
by introducing a post-step to refine the cluster. However,
as it insists to do the cluster merges on the granularity of
clusters in the pre-step, some possible merges are still miss-
ing, which harms its cloaking success rate. Therefore, the
success rate of HCA is between that of BCA and that of
GCA.

Increasing δp also implies a higher privacy requirement.
Figure 11(b) shows that the cloaking success rate slightly
decreases, with δp increasing. This indicates that δp has lit-
tle impact on the success rate. On the other side, increasing
δq implies the requirement for QoS is relaxed. Figure 11(c)
shows that the cloaking success rate increases when δq in-
creases. The success rate of BCA increases obviously, as
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(a) Different privacy levels
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(b) Different δp
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(c) Different δq

Figure 11: Cloaking success rate

more clusters can be cloaked together. Compared with BCA,
both the success rates of GCA and HCA increase slowly, in-
dicating that δq has smaller impact on their success rates.

6.2 Cloaking Cost
This section evaluates the average cloaking cost under dif-

ferent settings of privacy level K, δp and δq. The cloaking
cost concerned in this paper can be divided into two parts:
the anonymization cost and the postponed time.

The anonymization cost is the average perimeter of the
cloaking region, which indicates the distortion of location
information. As shown in Figure 12(a), for all cloaking al-
gorithms, the average anonymization cost increases when
the privacy level K increases. This is as expected because
each cloaking set is required to embrace more queries so as
to meet a higher privacy requirement. GCA has a lower
anonymization cost than BCA, because the cloaking region
is built by adding queries one by one in GCA, while in BCA,
the basic incremental unit is a cluster rather than a query.
HCA has the lowest anonymization cost among three algo-
rithms. This can be explained as follows. Different from
GCA, HCA finds the cloaking set for each newly arrived
query from its CNN clusters and thus it can guarantee that
those residing queries of the cloaking set are close to this new
query. As a result, HCA would have a lower anonymization
cost than GCA. In addition, though both HCA and BCA
seek for the cloaking set from CNN clusters, as there is a
post-step to refine the clusters in HCA, BCA has a rela-
tively higher anoymization cost than HCA.

Postponed time evaluates the cost of postponing Texp when
forming cloaking sets. As the expiration time of a cloaking
set is the largest Texp among all residing queries, queries
whose Texp are prolonged are regarded as dummies after
they expire. Postponed time is defined as the ratio of the
prolonged time over the valid period for each successful query.
As shown in Figure 12(b), the postponed time increases as
K increases. The rationale behind is that, as more queries
are covered by a cloaking set, the expiration time of the
cloaking sets becomes larger and therefore the queries can
be prolonged for a longer period. As can be observed from
Figure 12(b), HCA increases very slightly, and it has the
smallest postponed time among the proposed algorithms.
This is due to the benefits of the cluster refinement, which
enables each cluster to have more queries and thus accelerate
the procedure of forming the cloaking sets. In addition, its
processing time is relatively longer (see Figure 15(b)), there-
fore, every query would have more chances to be clustered
with those queries which hold a similar expiration time. As
can be observed from the figure, GCA has a smaller post-
poned time, when comparing with BCA. The reason is two-
folded. First, same as HCA, GCA has a longer processing
time, which provides more chances for those queries with
similar expired time to be anonymized together. Second,
for BCA, as each query becomes fixed in a cluster once it is

inserted, queries within a cluster cannot be merged with the
queries of other clusters, even if they have the same expired
time.

4

(a) Anonymization cost (b) Postponed time

Figure 12: Different privacy levels K

Along with the increment of δp, the lower bound of the
width/height of the cloaking boundary grows larger, which
makes the newly arrived query to find farther queries for
cloaking. As a result, the anonymization cost increases with
δp increasing, just as shown in Figure 13(a). From Fig-
ure 13(b), we observe that each successful query has to be
postponed for a longer period when δp grows larger. When
δp is smaller (i.e., 0.01∼0.03), HCA is the best, and BCA
is the worst. When δp grows beyond 0.03, as each query
needs to be clustered with much farther queries for cloak-
ing, their postponed time increases to a half of their valid
periods. Meanwhile, their difference on the postponed time
is overshadowed.

As shown in Figure 14(a) and Figure 14(b), δq has little
effect on both of the anonymization cost and the postponed
time. They are stable when δq increases.

p

4

(a) Anonymization cost

p

(b) Postponed time

Figure 13: Different δp

4

q

(a) Anonymization cost

q

(b) Postponed time

Figure 14: Different δq

6.3 Cloaking Time and Processing Time
The average cloaking time and the processing time are

evaluated in this section. The cloaking time of a query is
the elapsed time between the moment when the query is re-
ceived and the moment when it is successfully cloaked. It
includes the computational time for maintaining the data
structure (e.g., TPR-tree in HCA), boundary query com-
puting, δq-distortion verification and δp-privacy verification.
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From Figure 15(a), we can see that cloaking time increases as
K increases. This can be explained: the bigger is the value of
the privacy level K, the more is the queries of each cloaking
set. As a result, a longer cloaking time is needed. Among the
proposed algorithms, BCA has the shortest cloaking time.
This is because BCA finds the cloaking sets from the exist-
ing continuous clusters directly, and incurs little overhead for
data structure maintenance. We can also observe that, GCA
performs better than HCA when K is small (e.g., < 9). The
reason is that, a query can easily find its cloaking set under
a small value of K, thus few queries are maintained in the
service space to wait for anonymization which weakens the
advantage of TPR-tree. Meanwhile, HCA has the overhead
to maintain TPR-tree and clusters. Nonetheless, when K

grows larger (e.g., ≥ 9), the cloaking time of GCA increases
exponentially, while the advantage of TPR-tree in HCA be-
comes obvious. Consequently, HCA outperforms GCA after
the value of K reaches 9. Note that such performance gap
becomes bigger with the increment of K.

The processing time includes the cloaking time and the
time waiting for cloaking. As shown in Figure 15(b), the
waiting time dominates the overall processing time, and the
average processing time increases when K increases. Based
on the results shown in the figure, we can have the following
observations: (1) BCA has the shortest processing time; (2)
when K is small (e.g., < 6), GCA requires less processing
time than HCA. However, when K grows larger (e.g., ≥ 6),
the processing time of GCA increases exponentially, and the
performance improvement of HCA over GCA becomes much
larger. The rationales behind these observations are similar
as described in the last paragraph.

(a) Cloaking time (b) Processing time

Figure 15: Different privacy level K

7. CONCLUSIONS
In this paper, we investigated utility-based cloaking al-

gorithms which protect both location privacy and query
privacy for continuous queries. We observed that most of
the existing location cloaking algorithms cannot effectively
prevent from privacy disclosure or poor QoS for continu-
ous queries. To address this problem, we proposed a greedy
cloaking algorithm (GCA) and two incremental utility-based
cloaking algorithms, called bottom-up cloaking (BCA) and
hybrid cloaking (HCA). A series of experiments has been
conducted to evaluate these algorithms under various sys-
tem settings. Experimental results show that, GCA has the
highest success rate, but suffers from a long cloaking time
especially when the privacy level is high; BCA has the best
efficiency, but its anonymization cost, cloaking success ratio
and postponed time are relatively worse; HCA achieves the
best overall performance in terms of various performance
metrics.
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ABSTRACT 

In pervasive computing environments, wide deployment of 
sensor devices has generated an unprecedented volume of atomic 
events. However, most applications such as healthcare, 
surveillance and facility management, as well as environmental 
monitoring require such events to be filtered and correlated for 
complex event detection. Therefore how to extract interesting, 
useful and complex events from low-level atomic events is 
becoming more and more important in daily life. Due to the 
increasing importance of complex event detection, this paper 
proposes a framework of Complex Event Detection and Operation 
(CEDO) in pervasive computing. It gives an event model and 
extends current detection by incorporating temporal and spatial 
settings of events and different levels of granularity for event 
representation. We first show research issues, related works, and 
main research problems in this area. Then our current research 
works and the preliminary results are introduced. Finally, the 
research plan of my PhD project is presented for discussion. 

Keywords 
pervasive computing, atomic events, complex events, 

complex event detection 

1. INTRODUCTION 
In pervasive computing environments, sensors are deployed 

in everything from IT networks to enterprise software systems 
and physical world devices (through RFID readers, bar code 
scanners, manufacturing equipment sensors, and others). As these 
systems continue to proliferate, they generate events at a growing 
rate. Usually there are thousands of data records in a normal 
sensor device, which make it difficult for operators to find 
exceptional events by checking every record. While operators 
should find the relative records timely when analyze the 
exceptional events afterwards. However, the traditional detection 
methods are short of intelligent analysis and the data records are 
unable to be indexed efficiently. People must search artificially 
according to the rough time interval, so the data analysis waste a 
lot of time and energy.  

In order to solve these problems, the efficient method is to 
do intelligent analysis on events atomically, and extract the 
centralized and interesting events timely. So it can give an alarm 
in time and index data efficiently based on the stored event  
 

 

 

 

 

action can be found timely by integrating a sequence of atomic 
events into a complex event. The complex event can address both 

information. For a concrete example, in a retail store, a 
occurrences and non-occurrences of events, and impose temporal 
constraints over these events. When there is a scenario where an 
item was picked up from a shelf and then taken out of the store 
without being checked out, the system could give an alarm 
atomically. Today, significant improvements in operational 
business decisions await those organizations to capture and 
process these events into meaningful business insight. 

At present many applications need to extract complex 
events (often user-specified) from these flows of low-level atomic 
events. Such applications include supply chain management, 
financial services [1], business activity monitoring, elder care [2], 
and various pervasive computing applications. In it, the 
applications of indoor environment include: 1) checking 
“Whether the patient has already been taken care of” which 
contains a series of checks “Did the patient take his medicine?” 
“Did he have his lunch?” “Was his symptom normal or not?” and 
so on. 2) The security system might decide whether to take some 
precautionary action by comparing the complex events at the 
same time of different days. The applications of outdoor 
environment include: in the airport, station, or district, it can be 
used to detect and follow the people, the vehicles, or other 
suspicious objects. It also can be used to judge whether there are 
exceptional actions of people or vehicles in the restricted area.  

All the above applications require such events to be filtered 
and correlated for complex event detection and transformed to 
new events that reach a semantic level appropriate for end 
applications [3]. These requirements need to perform real time 
translation of data describing a physical world into information 
useful to end applications. So this paper proposes a framework of 
Complex Event Detection and Operation (CEDO), which 
provides a rich, declarative environment for the development of 
event processing applications that may process and act on 
thousands of events per second. CEDO will be integrated into 
standard middleware architectures and be embedded in any 
standard enterprise application. It can be deployed as a 
stand-alone offering on third party application severs or as an 
integrated service engine. The main contribution of the 
framework is to address modeling, representation, and detection 
of events, where the focus is to detect about events rather than 
about the changes in objects’ states.  

The remainder of the paper is organized as follows. Section 
2 introduces the related works. The event model and our 
framework of CEDO are shown in section 3. Section 4 presents 
the research plan of my PhD project. 

2. RELATED WORKS 
In pervasive computing environments, events distribute in 

nodes scattered, some of which are mobile nodes. If we use a 
central node to detect atomic events and form complex event 
expressions, this node will become the bottleneck of event 
detection. Therefore, in order to detect events effectively, we 
should choose the appropriate detection method according to 
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personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
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requires prior specific permission and/or a fee. 
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characteristics of pervasive computing environments and system 
requirements. The current existing complex event detection 
methods include: (1) based on the event tree [5] complex event 
detection; (2) based on the diagram detection method [6]; (3) 
based on automata [7] complex event detection; (4) based on Petri 
nets [4] complex event detection; (5) pipeline operation [8] 
detection methods. The above complex event detection methods 
all have their own advantages and weak points: GEM [5] 
considers the delay between events occurrence and detection, and 
handles events disorder by assigning the biggest tolerant delay. 
But it assumes there is a perfect global synchronous clock, which 
is unsuitable for no-centralized management and distributed 
systems of clock drift and loose coupling. Due to the lack of 
consideration of unpredictable delay, it cannot make breaking and 
mobile detection in mobile database efficiently. Snoop [6] only 
provides the simple time model, in which every event is regarded 
as a certain time point. Atomic events are based on definitions, 
while complex events are based on semantic. This method is 
suitable for centralized system or LAN. ODE [7] uses Finite 
Automata to express events, which can express real-world events 
intuitively, establish automata and detect complex events. But 
pure automata can neither detect parameter-events nor express 
event-disorder, so it cannot meet requirements of distributed 
systems. In addition, the above complex event detection methods 
don’t consider uncertainty at all, which is the essential 
characteristic of pervasive computing environments. 

As mentioned above, the existing complex event detection 
methods all cannot satisfy the requirements of pervasive 
computing environments. Therefore, based on the characteristics 
of pervasive computing environments, we summarize the current 
research works mainly from the three characteristics of complex 
event detection. Current researches on complex event detection 
generally include the following aspects: from the angle of 
event-type, describing the representation of complex events; from 
the angle of time, describing all kinds of sequential 
representations; from the precision degree of data, analyzing and 
handling the probabilistic data. Current research works emphasize 
particularly on different aspects. 

According to the above three characteristics of complex 
event detection, the existing research works can be classified and 
summarized as in figure 1. In it, three axes correspond to three 
characteristics: time (time point and time interval), data (precise 
and uncertain), and events (atomic and complex). Three axes 
divide the space into eight quadrants (as shown in figure 1), and 
each quadrant corresponds to different attribute values of the 
three characteristics.  

 

complex 

atomic 

uncertain precise 

time point 

time interval 

event 

data 

time 

1

2 
3 

4 

5

6 
7 

8 

1 Indicates the first quadrant  
Figure 1 the summary of current research works 

As in figure 1, the cube region in quadrant 7 stands for 
researches about precise atomic events at time point. At present, 
there are many research works about it [9]. The cube regions in 
quadrant 3, 4, 6 and 8 indicate separately the precise atomic 
events in time interval, the precise complex events in time 
interval, the uncertain atomic events at time point, and the precise 
complex events at time point. There are some research works 

about them [10, 8, 11, 12, 13, 14 and 20]. The cube regions in 
quadrant 1, 2, 5 are mainly about uncertain data, including the 
uncertain atomic events at time point, the uncertain complex 
events in time interval, and the uncertain complex events at time 
point. As far as we know, there is merely related research works 
about them. As shown in table 1, in quadrants 3, 4, 6 and 8, [9] is 
about time point, atomic events and precise data; [10, 8] is about 
time point, complex events and uncertain data; [11, 12 and 19] is 
about time interval, atomic events and precise data; [13] is about 
time interval, complex events and precise data; [14] is about 
uncertain data. 

Table 1 the comparison of current research works 
Research works Time 

interval 
Complex 
events 

Uncertain 
data 

[9] No No No  
[10,8] No  Yes No  
[11, 12, 19] Yes No No  

[13] Yes Yes No  
[14] No No Yes  

3. FRAMEWORK 
In this section, we present the framework of CEDO, and 

illustrate how this framework can be used to support application 
requirements. Before that, we give some preliminaries and an 
event model, which are the basis of the following. 
3.1 Preliminaries 

Events are defined as something that users are interested in. 
Events are happening all around us all the time. Detection of a 
person in a room, the firing of a CPU timer, and a Denial of 
Service (DoS) attack in a network are example events from 
various application domains. All events signify certain activities; 
however their complexities can be significantly different. For 
instance, the firing of a timer is instantaneous and simple to detect, 
whereas the detection of a DoS attack is an involved process that 
requires computation over many simpler events. So events can be 
divided into two types: atomic events and complex events [10]. In 
the following we will give definitions of them. 

Definition 1 (atomic event): An atomic event is defined as 
a thing that happens instantaneously at a specific time point.  It 
can be expressed as

iiiatomic tpoActionE
i

,, . In it, 
io stands for 

certain object; 
ip indicates some place, which is the current 

location of object
io ; 

it expresses a certain time point; Action 
means the activity of object 

io  at time 
it  in place

ip . An atomic 
event

iatomicE corresponds to something in the physical world. For 
example, Coffee (‘Mary’, ‘Room 301’, 10:00am) is an atomic 
event, which means “Mary is getting coffee in Room 301 at 
10:00am”. 

Definition 2 (complex event): A complex event often 
happens in a continuous time interval, which is assigned by users 
(called case 1) or abstract directly from atomic events (called case 
2). It can be expressed as

iiicomplex TEQE
i

,, . In it 
iQ  

stands for a certain query, which is only useful in case 1 and be 
used to indicate the query condition, while in case 2, its value is 
null; 

iE  expresses the set of atomic events, which 
is }|1{

iatomici EniE . The atomic events in the set are 
connected and some relational operators exist among them (such 
as positive correlation, negative correlation, parallelism, serial, 
and so on); 

iT  means a time interval. Querying or abstracting on 
a series of correlated atomic events in a time interval

iT  is the 
process of getting complex events. For example, “Mary is getting 
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coffee” can be extracted from a series of atomic events “Mary is 
in her office”, “Mary is in coffee room”, “Mary is in her office”, 
and so on. Complex events are generated by composing atomic or 
other complex events using a set of event detection operators. 
3.2 Event Model 

In this paper, we consider events in the context of 
spatio-temporal databases. As introduced in section 3.1, our 
model includes atomic events and complex events. Here we use a 
model like data cube which is a three- (or higher) dimensional 
array of values. The three dimensions are separately object, time 
and place. As in figure 2, a snapshot of the model taken at time i 
contains all objects’ current positions. For simplicity, we call each 
such snapshot a world W and it can be expressed as 
W= },|1{ ii poni  (the meaning of

io and
ip can be found in 

section 3.1). A stream shows the same place where different 
people are in at different time. A flow of objects is a set of places 
in which the object is at distinct timestamps. An event database 
consists of several flows of objects in the time interval T. We call 
each such event database a complex event, and denote it as a 
sequence of sets of tuples:

complexE = ),,,( 1 in TEE where 
}|1{

iatomici EniE (see section 3.1). The start time, the end time, 
and the duration of complex events can be showed in the time 
dimension. In addition, the choice of granularity for time 
dimension is very important. When the granularity of time is too 
small (e.g., milliseconds), an event query such as “What did he do 
during the first three days of May, 2008?” lead to a massive 
amount of uncertain (3 24 60 60 1000) possibilities.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 the event model 

3.3 Complex Event Detection and Operation 
Our framework has two sub-processes: complex event 

detection and complex event operation, which are the inverse 
procedures (as shown in figure 3). In the following, we will 
introduce every block of our framework. 
The terminal layer 

This is the source of raw data, including mobile devices, the 
smart phone, PDA, PC, and so on. Every created data has two 
elements: the data itself and a timestamp [15]. 
The application layer 

The applications include healthcare, security monitoring, 
people tracker, and so on. These applications need high-level 
complex events oriented to clients. 
Smart device bus 

According to the two sub-processes, the smart device bus 
has two functions. In the process of complex events detection, the 
smart device bus is in charge of feeding raw data to CEDO; while 
in the process of complex events operation, it translates the 

message into the commands that can be recognized by a physical 
reader. 

Figure 3 the framework of CEDO 

3.3.1 Complex event detection 
The goal of complex event detection is to enable 

information contained in the events flowing through all of the 
layers of the framework to be discovered, understood in terms of 
its impact on high-level management goals and business 
processes, and acted upon in real time (as shown in the right side 
of figure 3). Here we consider as an example a database that 
handles typical behaviors of occupants in a smart home. Table 2 
shows raw data collected from physical devices.  

Table 2 raw data stream (RDS) 
RID Obj  Time Place  Probability 
1 O1 6:40:00am Kitchen 1.0 
2 O1 6:40:01am Bedroom 1.0 
3 O1 6:50:00am Kitchen 1.0 
4 O1 7:00:20am Kitchen 1.0 
5 O1 7:10:00am Dining-hall 1.0 
6 O1 7:20:35am Dining-hall 1.0 

Ps:  RID (Record ID), Obj (Object). 
Atomic events buffer 

Many types of applications generate data streams as 
opposed to data sets. Managing and processing data for these 
types of applications involves building buffer storage and forming 
atomic events with a strong temporal focus. Atomic events 
outputted from the buffer have context, that is, timing (when it 
happened, both in absolute terms and relative to other events), 
sequence, and linking relationships to other events.  

In the above example, the raw data are inputted to “atomic 
events buffer” through “smart device bus”. After a certain time 
interval, some atomic events are outputted from “atomic event 
buffer”, which are shown in Table 3.  

Table 3 atomic events (AE) 
RID Obj  Time Place  Probabil

ity  
1 O1 6:40:00am Kitchen 1.0 

io

…
io no  

io 1o  io

…

io io  

io 1t  
io it  

io nt  
io 1p  

io ip  

io np  

io

…
io

… 

io

… 

io

… 
Stream 
(by place) 

World (by time) 

Flow (by object)
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2 O1 6:40:01am Bedroom 1.0 
3 O1 6:40:02am~ 

7:09:59am 
Kitchen < 1.0 

4 O1 7:10:00am~ 
7:29:59am 

Dining-hall < 1.0 

Preprocessing unit 
CEDO looks at events in the context of other events rather 

than in isolation. So the preprocessing unit classifies large volume 
of atomic events into compound units, according to the 
incorporating temporal and spatial settings of the incoming events. 
In order to get meaningful compound units, a pattern matching 
capability is typically included in the preprocessing unit.  
 The above atomic events are inputted into “preprocessing 
unit” intermittently, and be classified into compound unit. This 
process often needs some extra information which is stored in 
“database management”. In this example, the probability of 
record 2 is reduced based on the rules of spatial information 
(shown in table 6). O1 may be cooking or washing in the kitchen 
(based on the knowledge base in table 5), so we integrate the two 
atomic events into one compound unit. Because O1 went to the 
dining-room after that, we guess O1 was more likely cooking in 
the kitchen and the probability of record 1 is set 0.7 (as shown in 
table 4). 

Table 4 compound units (CU) 
CU RID Obj Time 

duration 
Place Action Probability 

1 1 O1 6:40:00am~ 
7:09:59am 

Kitchen cooking  
0.75 

2 O1 7:10:00am~ 
7:29:59am 

Dining 
hall 

eating 

2 3 O1 6:40:00am~ 
7:09:59am 

Kitchen washing  
0.24 

4 O1 7:10:00am~ 
7:29:59am 

Dining 
hall 

eating 

Data management 
The data management infrastructure of CEDO supports the 

notion of streams of structured data records together with stored 
relations. Many modern applications require long-running queries 
over continuous unbounded sets of data [18]. So there are two 
kinds of event records stored in the database. One is called 
“real-time event record”, which is the processing of events as they 
arrive; the other is called “historical event record”, which is the 
use of a sophisticated and optimized storage mechanism. CEDO 
is really an integration of historical event record coupled with 
real-time event record. A knowledge base also should be stored in 
the data management, which includes the extra information, such 
as the spatial location information, and the possible actions in 
certain place. Relations identify the relationships between 
incoming atomic events in CEDO. In CEDO the instantaneous 
relation is used to denote a relation in the traditional bag-of-tuples 
sense, and relation to denote a time-varying bag of tuples.  

As in the above example, both data records and 
relationships are stored in the “database management” as shown 
in table 6. In addition, there should be a knowledge base used to 
store extra information (shown in table 5).  

Table 5 the knowledge base in database management 
Place  Time interval Action  Probability
Kitchen  6:00am-7:30am or 

11:00am-12:30am or 
18:00pm-19:30pm 

cooking 0.75 

washing 0.25 
Kitchen  7:30am-8:00am or cooking 0.75 

12:30am-13:00pm or 
19:30pm-20:30pm 

washing 0.25 

Table 6 rules in database management 
Place1  Place2 Distance  Cost time 
Kitchen Bedroom  20 meters 15 seconds 

Table 7 complex events chain (CEC) 
CE 
Identity/Name 

Sequence Atomic 
Event 

Probability 

  
Dinner 

1 Cooking  
0.75 2 Eating 

3 Washing 
Self-tuning 

Filtering the complex events outputted from the data 
management according to the people’ profile, the context, the 
historical records and so on. So the complex events reported to 
end users must be meaningful. The final results of self-tuning are 
also stored in the database. 

In the above example, through “self-tuning”, complex 
events in table 7 will become more and more precise, which are 
useful to end applications. The complex events chain can be 
shown intuitively in figure 4. 

 
Figure 4 the complex event chain 

3.3.2 Complex event operation 
The goal of complex event operation is to resolve complex 

events into a set of corresponding atomic events, which can be 
recognized and performed by physical devices through semantic 
analysis (as shown in the left side of figure 3).  
User interface 

CEDO provides a graphical user interface (GUI).  It differs 
from traditional graphical user interface technologies in that they 
are designed to display and manipulate time-based information 
typically found in event processing systems.  
Event resolver 

Resolve the complex event into a set of relative atomic 
events, which are stored in a buffer temporarily. This is the 
inverse process of complex event detection. 
Resource management 

It includes device management and state management. 
Device management schedules physical devices and decides 
which device should be used. State management defines state 
situations of physical devices. Each physical device has four 
statuses: undefined, unrequest, request and active. “Undefined” 
means this kind of physical device does not exist; “unrequest” 
indicates there is such physical device but no event requests it; 
“request” implies there is at least one event that wants to use this 
physical device; “active” signifies this device is being used now. 
Event schedule and performer 

Decide which one in the resolved atomic events buffer 
should be performed first and check whether the performance 
conditions of the relative event are satisfied. If all relative 
physical devices are available, then the event performance 
succeeds and sends instructions to corresponding devices. 
Otherwise, it fails and returns the failing reason to the user. 

4. RESEARCH WORKS 
In my PhD project, I plan to focus on a few key problems in 

kitchen 
cooking 
30minutes

Dining-hall 
eating 
25minutes 

kitchen 
washing 
10minutes

0.75 1.0 0.75 

5s 5s 
CE ID/
Name
(eg. 
Dinner)

Probabilit
y 
0.5625 
(0.75*0.7
5) 
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CEDO. To make our work based on a strong foundation, we 
would like to fully implement CEDO and build the experimental 
platform of complex event detection in pervasive computing 
based on our framework. This section will introduce our main 
work on event probability, event disorder, and event relationship 
in CEDO.  
1) Event probability 

Uncertainty is one of the most important challenges of 
complex event detection (such as RFID data). However, there are 
many reasons for producing probabilistic data. For example: 1) 
conflicting readings, e.g. Alice is read by two adjacent antennas, 
what is her true location? [17]; 2) missed readings, e.g. readers 
commonly detect only about 60%-70% of tags in their vicinity 
[17]; 3) granularity mismatch, an application queries about offices, 
but the system only provides information about sensors. 

Complex event detection on probabilistic data can be 
divided into two types: local uncertainty detection and global 
uncertainty detection. When event detection only concern with 
the uncertainty of the tuple / object itself, and are independent 
from other objects/ tuples, we call them local uncertainty 
detection. Let’s think the example of getting coffee in section 3.1, 
when and where does Mary want to get coffee, and the time 
duration of getting coffee are all uncertain. As shown in table 8 
(a), the time when Mary gets coffee may be at 10:15 am or at 
9:55am; the place where she gets coffee may be in No.1 cafe or in 
No.2 café; the time duration may be 15 minutes or 17 minutes. 
But these factors are only based on Mary’s own willing, and 
independent of others’, so it is called local uncertainty. 

On the other hand, when the event detection must consider 
the uncertainty of combinations of objects / tuples, we call such 
detection global event detection. We still take getting coffee as an 
example. Suppose that Mary likes to get coffee together with Joe, 
then the time, place and duration of getting coffee are not only 
based on Mary’s own willing, but be decided by many uncertain 
factors, such as Joe’s willing and the actions of others. As shown 
in table 8(b), in July, due to the influence of Joe, the time that 
Mary got coffee is earlier and the duration are shorter than in 
March. But their coffee time and duration in different dates are 
still uncertain. Generally, when whether an object / tuple satisfies 
a detection condition depends on other objects or tuples not 
involved in the same generation rule, global uncertainty has to be 
considered. Semantically, we have to examine the possible worlds 
one by one and count the probability that a combination of objects 
/ tuples is an answer. 

Table 8(a) the event local uncertainty 
Date  Name  Coffee 

time 
Café ID Time duration 

March 1st Mary 10:15am 1 15 minutes 
March 2nd Mary 9:55am 2 17 minutes 
March 1st Joe 8:55am 1 10 minutes 
March 2nd Joe 9:05am 1 8 minutes 

Table 8(b) the event global uncertainty 
Date  Name  Coffee 

time 
Café ID Time duration 

July 1st Mary 9:35am 1 12 minutes 
July 2nd Mary 9:25am 1 10 minutes 
July 1st Joe 9:35am 1 12 minutes 
July 2nd Joe 9:25am 1 10 minutes 

Most of the current researches on complex event detection 
suppose events are precise, however, they are imprecise in many 
real applications. Probability is the essential problem in pervasive 

computing, even in complex event detection. For example, in the 
application scenario of “smart home”, the sensor data, the 
behavior pattern and customers of the occupants are all 
probabilistic. So how to extract meaningful and precise 
information according to these imprecise data is a challenge 
problem. Probability has become a hot research problem in resent 
years, but there are still many problems should be further 
researched in probabilistic complex event detection, such as the 
probabilistic sensor data, the local uncertainty detection and 
global uncertainty detection. With the appearance of large volume 
of probabilistic events, the probabilistic complex event detection 
will become more and more important and demand prompt 
solution. 
2) Event disorder 

The tuples in an event flow may or may not be in order by 
some desired attribute of those tuples. When such an ordering 
exists, some operations become easier and can be performed 
without the need for arbitrary storage; however, when this 
ordering is violated, this is called "event disorder." Poset 
processing consists of performing operations on a set of tuples 
that may not be related by a total ordering. Any partially ordered 
set of tuples can be processed in arbitrary ways within an event 
flow processing system by storing those tuples and retrieving as 
needed to match desired patterns. Most of current researches 
suppose events are ordering, that is to say, they don’t consider the 
concurrent and overlapping events. However, in many real 
applications this assumption is unacceptable. Take the healthcare 
in section 1 for example; the atomic events (such as toothbrushing 
and taking temperature) may happen currently in the process of 
detecting complex events (eg. healthcare). In addition, atomic 
events and complex events in this process are possible disorder 
because of different habits of different people. Future research on 
complex event detection must take disorder events into account. 
3) Event relationship 

Current researches on complex event detection usually 
suppose events are isolate, but actually they have a thousand and 
one links. So in complex event detection, we must consider the 
relationships of the same object in different times, the interaction 
of different objects, and the factors of identity, position, and so on. 
Here we use an example in [14] to explain. The location of Joe at 
T=7 and T=8 are separately shown in Figure 5(a) and 5(b). [14] 
use sampled distributions produced by the particle filter to 
express the location probability. Each particle represents a guess 
about Joe’s location and the locations are uncertain. Figure 5(c) 
shows the location of Joe and Sue are connected, that is to say, we 
can guess approximately the location of Sue according to Joe’s 
location. In figure 5(c) the probabilities of Joe in H1 and in O2 
are both 0.4 at T=7. If we know Sue is the secretary of Joe and 
they are almost together. We can guess Joe was more likely to be 
in O2 at T=7 based on the probability that Sue was in O2 at T=7 
is 0.6. Figure 5(d) shows the location of Joe at T=7 and at T=8 are 
also connected. If Joe was in O2 at T=7, he was more likely to be 
still in O2 at T=8. However, current researches don’t consider 
these connective factors. 

In addition, most current research works only consider 
converting atomic events to complex events, few studies convert 
complex events to more complex ones. The input of the latter is 
the output results of the former, so the former research is an 
important step of more complex event detection. However, with 
wide applications in real world, more complex event detectionwill 
become increasingly important. Take the health-care in section 1 
as an example, checking “Whether the patient has already been 
taken care of” contains a series of checks “Did the patient take his 
medicine?” “Did he have his lunch?” “Was his symptom normal 
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Figure 5 the relationships of events 

or not?” and so on. In this example, we can regard the whole 
process of health-care as a more complex event. The actions 
involved in it can be atomic events, or complex events. For 
example, checking “Did the patient take his medicine?” is a 
complex event, because it includes the following atomic events: 
“pick up a cup of water ", "take up the medicine bottle”, and “take 
water”. While checking "whether the reading of blood pressure 
and body temperature is normal or not" are atomic events. We use 
figure 6 to express the ranked events intuitively.  
 
 
 
 
 
 

Figure 6 the ranked complex events 
The specific solution approaches for the various challenges 

listed are our future research works, and maybe we will consider 
tree-based complex events.  

5. CONCLUSION 
This paper presents the sketch of my research plan on PhD 

project. Firstly, we summarize the current research status in this 
area. Then our framework of complex event detection and 
operation in pervasive computing is introduced. It gives an event 
model and extends current detection by incorporating temporal 
and spatial settings of events and different levels of granularity 
for event representation. Based on this framework, the 
unprecedented volume of atomic events can be filtered and 
correlated to get interesting, useful and complex events. In 
conclusion, the main works of my PhD project are to build a 
complex event detection system and to address several key issues 
in this area. 
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Abstract Recent advances in wireless sensor networks and positioning technologies
have boosted new applications that manage moving objects. In such applications, a
dynamic index is often built to expedite evaluation of spatial queries. However, the
development of efficient indexes is a challenge due to frequent object movement. In
this paper, we propose a new update-efficient index method for moving objects in
road networks. We introduce a dynamic data structure, called adaptive unit, to group
neighboring objects with similar movement patterns. To reduce updates, an adaptive
unit captures the movement bounds of the objects based on a prediction method,
which considers road-network constraints and the stochastic traffic behavior. A
spatial index (e.g., R-tree) for the road network is then built over the adaptive unit
structures. Simulation experiments, carried on two different datasets, show that an
adaptive-unit based index is efficient for both updating and querying performances.

Keywords Spatial-temporal databases · Moving objects · Index structure ·
Road networks

1 Introduction

Recent advances in wireless sensor networks and positioning technologies have
enabled a variety of new applications such as traffic management, fleet management,
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and location-based services that manage continuously changing positions of moving
objects [25], [27]. In such applications, a dynamic index is often built to expedite
evaluation of spatial queries. However, existing dynamic index structures (e.g.
B-tree and R-tree) suffer from poor performance due to the large overhead of keep-
ing the index updated with the frequently changing position data. The development
of efficient indexes to improve the update performance is an important challenge.

Current work on reducing the index updates of moving objects mainly contains
three kinds of approaches. First, most efforts [9], [18], [19], [36] focus on the
update optimization of the existing multi-dimensional index structures especially
the adaptation and extension of the R-tree [12]. To avoid the multiple paths search
operation in the R-tree during the top-down update, some recent works propose
the bottom-up approach [18], [19] and memo-based [36] structure to reduce the
updates of the R-tree. Another method [9] exploits the change-tolerant property
of the index structure to reduce the number of updates that cross the minimized
boundary rectangle (MBR) boundaries of the R-tree.

However, the indexes based on MBRs exhibit high concurrency overheads during
node splitting, and each individual update is still costly. Therefore, some index meth-
ods based on a low-dimensional index structure (e.g. B+-tree) are proposed [14], [37],
which construct the second category of index methods. They combine the dimension
reduction and linearization technique with a single B+-tree to efficiently update the
index structure.

The third kind of approaches use a prediction method with a time-parameterized
function to reduce the index updates [27], [29], [32]. They describe a moving object’s
location by a linear function and the index is updated only when the parameters
of the function change, for example, when the moving object changes its speed or
direction. The MBRs of the index vary with the time as a function of the enclosed
objects. However, it is hard for the linear prediction to reflect the movement in
many real applications and therefore leads to a low prediction accuracy and frequent
updates.

Though these index structures solve the problem of index updates to some
extent, they are designed to index objects performing free movement in a two-
dimensional space. We focus on the index update problem in real life environments,
where the objects move within constrained networks, such as vehicles on roads.
In such a setting, the spatial property of objects’ movement is captured by the
network and the static information can be separated from the dynamic information.
Therefore, the spatial location of moving objects can be indexed by means of the
road-network index structure. For example, moving objects can be accessed by each
road segment which is indexed by the R-tree. Since the road network seldom changes
and objects just move from one part to the other part of the network, the R-tree
in this case remains fixed. Existing index work that handles network-constrained
moving objects [3], [11], [25] is based on this feature. These works separate spatial
and temporal components of the moving objects’ trajectories and index the spatial
aspect by the network with an R-tree. However, they are mostly concerned with
the historical movements and therefore they do not consider the problem of index
updates.

In this paper, we address the problem of efficient indexing of moving objects in
road networks to support heavy loads of updates. We exploit the constraints of the
network and the stochastic behavior of the real traffic to achieve both high updating
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and querying efficiency. We introduce a dynamic data structure, called adaptive
unit (AU for short) to group neighboring objects with similar movement patterns
in the network. A spatial index (e.g., R-tree) for the road network is then built
over the AUs to form the index scheme for moving objects in road networks. The
index scheme optimizes the update performance for the following reasons. (1) An
AU functions as a one-dimensional MBR in the TPR-tree [29], while it minimizes
expanding and overlaps by considering more movement features. (2) The AU
captures the movement bounds of the objects based on a prediction method, which
considers the road-network constraints and stochastic traffic behavior. (3) Since the
movement of objects is reduced to occur in one spatial dimension and attached to
the network, the update of the index scheme is only restricted to the update of the
AUs. Since the AU is approximated by its center object for efficiency, the query
will possibly has false negative result. For improving it, we refine the prediction
accuracy by simulating two trajectories based on different assumptions on the traffic
conditions and revising the trajectory bounds when prediction accuracy decreases
over time. We have carried out extensive experiments based on two datasets. The
results show that an adaptive-unit based index not only improves the efficiency of
each individual update but also reduces the number of index updates and is efficient
for both updating and querying performance.

The main contributions of this paper are:

• The introduction of the graph of cellular automata (GCA) model and the
simulation-based prediction (SP) model which capture traffic features and re-
duce the index updates.

• The introduction of AUs that optimize for frequent index updates and support
the predictive query on moving objects in road networks.

• An experimental evaluation and validation of the efficient update as well as
query performance of the proposed index structure.

The rest of the paper is organized as follows. Section 2 surveys related work.
Section 3 introduces our data model and trajectory prediction method. Section 4
describes the structure and algorithms of AUs for efficient updates and query
processing. Section 5 contains algorithm analysis and experimental evaluation. We
conclude and propose the future work in Section 6.

2 Related work

Many efforts have been made on reducing the need for index updates of moving
objects. In summary, they can be classified into three categories.

First, most work focuses on updating optimization of existing multi-dimensional
index structures especially in the adaptation and extension of the R-tree [12]. The
top-down update of an R-tree is costly since it needs several paths for searching the
right data item considering the MBR overlaps. In order to reduce the overhead,
Kwon et al. [18] develop the Lazy Update R-tree, which is updated only when
an object moves out of the corresponding MBR. With adding a secondary index
on the R-tree, it can perform the update operation in a bottom-up way. Recently,
by exploiting the change-tolerant property of the index structure, Cheng et al.
[9] present the CTR-tree to maximize the opportunity for applying lazy updates
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and reduce the number of updates that cross MBR boundaries. Lee et al. [19]
extends the main idea of [18] and generalizes the bottom-up update approach.
However, they are not suitable to the case where consecutive changes of objects
are large. Xiong and Aref [36] present the RUM-tree that processes R-tree updates
in a memo-based approach, which eliminates the need to delete the old data item
during an index update. Therefore, its update performance is stable with respect
to the changes between consecutive updates. In our index structure, however, the
R-tree remains fixed since it indexes the road network and only the AUs are
updated.

The second type of methods are based on the dimension reduction technique [25]
and a low-dimensional index [14], [37] (e.g. B+-tree). The Bx-tree [14], [37] combines
the linearization technique with a single B+-tree to efficiently update the index
structure. It uses space filling curves and a pre-defined time interval to partition the
representation of the locations of moving objects. This makes the B+-tree capable
of indexing the two-dimensional spatial locations of moving objects. Therefore,
the cost of individual updating of index is reduced. However, the two-dimensional
locations of objects are linearized by a space-filling curve and the time is also
partitioned by a pre-defined time interval. Therefore, the Bx-tree imposes discrete
representation and may not keep the precise values of location and time during
the partitioning. For our setting, the two-dimensional spatial locations of moving
objects can be reduced to the 1.5 dimensions [16] by the road network where objects
move.

The techniques in the third category use a prediction method represented as
the time-parameterized function to reduce the index updates [27], [29], [32]. They
store the parameters of the function, e.g. the velocity and the starting position of
an object, instead of the real positions. In this way, they update the index structure
only when the parameters change (for example, the speed or the direction of a
moving object changes). The Time-Parameterized R-tree (TPR-tree) [29] and its
variants (e.g. TPR*-tree) [27], [32] are examples of this type of index structures.
They all use a linear prediction model, which relates objects’ positions as a linear
function of the time. Actually, these methods also can support predictive queries
that are usually processed by the dual transformation technique in some index
methods [2], [23]. However, the linear prediction is hard to reflect the movement
in many real application especially in traffic networks where vehicles change their
velocities frequently. The frequent changes of the object’s velocity will incur repeated
updates of the index structure. Moreover, other prediction models with non-linear
prediction proposed by Aggarwal et al. [1] using quadratic predictive functions and
by Tao et al. [34] based on recursive motion functions for objects with unknown
motion patterns improve the precision in predicting the location of each object, but
they ignore the correlation of adjacent objects and may not reflect accurately some
complex and stochastic traffic movement scenarios. Our techniques also fall into this
category and apply an accurate prediction method when updating index structure
by considering more transportation features. Our prediction method also can be
applied to update policy of objects [8], a different research issue, which focuses
on how to minimize the number of location updates sampled by sensors or GPS
periodically from moving objects to the server database. However, for comparisons
with the TPR-tree in our experiments, we use the same update policy and location
representation of objects, but different prediction method in the index structure.
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Compared to the TPR-tree, our technique will reduce the indexing update costs when
the same amount of updated locations of one object are stored in a database in the
server.

There is some work on data models, indexing and query processing for moving
objects in road networks, which is also related to our work. Data models for network
constrained moving objects have been a focus of recent study [10], [28], [35] because
they form a foundation for data storage and query processing. Indexing techniques
for objects moving in road networks also become a focus of study [3], [11], [17], [25].
Pfoser et al. [25] propose to convert a 3-dimensional problem into two sub-problems
of lower dimensions through certain transformation of the networks and trajectories.
Another approach, known as the fixed network R (FNR)-tree [11], separates spatial
and temporal components of the trajectories and indexes time intervals that each
moving object spends on a given network link. The MON-tree approach [3] further
improves the performance of the FNR-tree by representing each edge by multiple
line segments (i.e. polylines) instead of just one line segment. However, they all
focus on the historical movement and cannot support frequent index updates.
There are also other work [22], [24], [31], all based on 3-dimensional variations of
R-trees [12] and R*-trees [4], to index the historical trajectory in Euclidean spaces.
Their goal is to minimize storage and query cost, which does not consider the index
update problem. Similar to our index structure, the IMORS method [17] focuses
on reducing the number of index updates on a road network with the same idea of
separating dynamic and static parts of an index structure. However, moving objects
are indexed by a static small road sector blocks and may move to different sectors
very soon, therefore their coordinates and bi-directional pointers to the road sector
are likely to be updated frequently when their locations especially velocity have been
changed. While the update performance can be improved by enlarging the length of
a road sector, it may result in a degradation of the query processing performance.
Instead, considering more traffic features, our AU index, a dynamic structure, groups
objects having similar moving patterns and can dynamically adapt itself to cover
the movement of the objects it contains by a more accurate prediction method.
Therefore, it reduces more index updates both by road-network features and by a
new prediction method. In addition, the AU index can also support the efficient
predictive queries on road networks, which is not implemented in the IMORS
method.

Query processing algorithms in spatial network databases have been developed
using network distance [6], [13], [15], [26], [30]. Most of them only work for static data
objects and do not monitor queries over moving objects in road networks. Mouratidis
et al. [20] study the continuous monitoring of nearest neighbors in highly dynamic
scenarios, where queries and data objects move frequently in the network. Similar
to our work, they target frequent data updates to support the NN queries on moving
objects in road networks. However, they store the network, objects and queries in
three memory-resident data structures: a spatial index on the network edges, an edge
table maintaining network and moving objects, and a query table with expansion tree
for each query. To incrementally monitor the NN queries, only updates from objects
falling in the expansion tree can alter the NN set of query. The expansion tree is
based on a query point and used to facilitate handling of query movements while
our AU structure is used to index the moving objects and predict their movement to
reduce the index updates.
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3 Data model and trajectory prediction

We use the GCA model we proposed in [7] to model the network and moving objects.
A road network is modeled as a GCA, where the nodes of the graph represent road
intersections and the edges represent road segments with no intersections. Each edge
consists of a cellular automaton (CA), which is represented, in a discrete mode, as a
finite sequence of cells. GCA is based on the work of [21] and adapts the CA model
for free traffic to represent the objects movement in road networks. Figure 1 shows
an example of a road network and its GCA model. Each node has a label which
represents an intersection of the road network. The wide lines represent edges and
each edge is treated as one CA connecting many cells.

We first recall the definition of CA in this context.

Definition 1 A CA consists of a finite oriented sequence of cells. In a configuration,
each cell is either empty or contains a symbol. During a transition, symbols can move
forward to subsequent cells, symbols can leave the CA and new symbols can enter
the CA.

An example of CA corresponding to edge (N1, N2) in Fig. 1b with a transition
between two configurations is given in Fig. 2. We now formally define a GCA.

Definition 2 The structure of a GCA is a directed weighted graph G = (V, E, l)
where V is a set of vertices, E is a set of edges and l : E → is a function which
associates to each edge the number of cells of the corresponding CA.

We assume a countably infinite alphabet � : {a, b , c, · · · }, denoting moving ob-
ject’s names. Cells are denoted by the edge name and their indices in the edge. Let C
be the set of cells of a GCA. A configuration or an instance of a GCA, is a mapping
from the cells of the GCA to constants in � together with a given velocity. Intuitively,
the velocity is the number of cells an object can traverse during a time unit.

N1

N2

N3

N4

a
b

N5

N6

N7
c

d

e

CA

CA

(a) A Road Network (b) An instance of GCA

Fig. 1 An example of a road network and its GCA model
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Fig. 2 Transition of the GCA
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Definition 3 An instance I of a GCA is defined by two functions of the following
types:

μ : C → �
⋃{ε} (1-1 mapping)

v : � → .

A moving object is represented as a symbol attached to a cell in the GCA and
it can move several cells ahead at each time unit. A moving object lies on exactly
one cell of an edge and its location can be obtained by computing the number of cells
relative to the starting node. For instance, object a lies on the edge (N1, N2) and there
are two cells away from N1 along the edge. Therefore, its position can be expressed
by (N1, N2, 2).

The motion of an object is represented as some (time, location) information.
Representing such information of a moving object as a trajectory is a typical ap-
proach [35]. In the GCA model, the trajectory of a moving object can be divided into
two types: the in-edge trajectory for the object’s movement in one edge (CA) and
the global trajectory for the object that may move cross several edges (CAs) during
its movement. The in-edge trajectory of an object is a polyline in a two-dimensional
space (one-dimensional relative distance, plus time), which can be defined as follows:

Definition 4 The in-edge trajectory of a moving object in a CA of length L is a piece-
wise function f : T → , represented as a sequence of points (t1, l1), (t2, l2), . . . ,

(tn, ln)(t1 < t2 < . . . < tn, l1 < l2 < . . . < ln ≤ L), where li is the relative distance to
the starting node at the time of ti.

When an object moves across multiple edges, its global trajectory is defined as
functions mapping the time to the corresponding edge and the relative distance to
the starting node.

Definition 5 The global trajectory of a moving object in different CAs is a piece-
wise function f : T → (E, ), represented as a sequence of points (t1, e1, l1), . . . ,

(ti, e j, lk), . . . , (tz, em, ln)(t1 < t2 < . . . < tz).

Let i be an object moving along an edge. Let v(i) be its velocity, x(i) its position,
gap(i) the number of empty cells ahead (forward gap), and Pd(i) a randomized
slowdown rate which specifies the probability it slows down. We assume that Vmax

is the maximum velocity of moving objects. The position and velocity of each object
may change at each transition as shown in Definition 6.

248



Geoinformatica

Definition 6 At each transition of the GCA, each object changes velocity and
position in a CA of length L according to the rules below:

1. if v(i) < Vmax and v(i) < gap(i) then v(i) ← v(i) + 1
2. if v(i) > gap(i) then v(i) ← gap(i)
3. if v(i) > 0 and rand() < Pd(i) then v(i) ← v(i) − 1
4. if (x(i) + v(i)) ≤ L then x(i) ← x(i) + v(i)

The first rule represents linear acceleration until the object reaches the maximum
speed Vmax. The second rule ensures that if there is another object in front of the
current object, it will slow down in order to avoid collision. In the third rule, Pd(i)
models an erratic movement behavior. Finally, the new position of object i is given
by the fourth rule as sum of the previous position and the new velocity if the object is
in the CA. Figure 2 shows the simulated movement of objects on a CA of the GCA
in two consecutive timestamps. We can see that at time t, the speed of the object a
is smaller than the gap (i.e. the number of cells between the object a and b). On the
other hand, the object b will reduce its speed to the size of the gap. According to the
fourth rule, the objects move to the corresponding positions based on their speeds at
time t + 1.

We use GCAs not only to model road networks, but also simulate the movements
of moving objects by the transitions of the GCA. Based on the GCA, the SP method
to anticipate future trajectories of moving objects is proposed. The SP method treats
the objects’ simulated results as their predicted positions to obtain its future in-
edge trajectory. To refine the accuracy, based on different assumptions on the traffic
conditions we simulate two future trajectories in discrete points for each object on its
edge. Then, by linear regression and translating, the trajectory bounds that contain
all possible future positions of a moving object on that edge can be obtained. When
the object moves to another edge in the GCA, another simulation and regression
will be executed to predict new future trajectory bounds. The SP method is shown
in Fig. 3.
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movement

road

cars t

d

AU
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lower bound

road
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Fig. 3 The simulation-based prediction
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Most existing work uses the CA model for traffic flow simulation in which the
parameter Pd(i) is treated as a random variable to reflect the stochastic, dynamic
nature of a traffic system. However, we extend this model for predicting future tra-
jectories of objects by setting Pd(i) to values that model different traffic conditions.
For example, laminar traffic can be simulated with Pd(i) set to 0 or a small value,
and the congestion can be simulated with a larger Pd(i). By giving Pd(i) two values,
we can derive two future trajectories, which describe, respectively, the fastest and
slowest movements of objects. In other words, the object future locations are most
probably bounded by these two trajectories. The value of Pd(i) can be obtained by
the experiences or by sampling from the given dataset. Our experiments show one of
methods to choose the value of Pd(i).

Through the SP model, we obtain two bounds of objects’ future trajectory. In the
sequel, we apply this technique in our index to a set of moving objects that have
similar movements and are treated as one object.

4 The adaptive unit

4.1 Structure and storage

Conceptually, an AU is similar to a one-dimensional MBR in the TPR-tree, which
expands with time according to the predicted movement of the objects it contains.
However, in the TPR-tree, it is possible that an MBR may contain objects moving in
opposite directions, or objects moving at different speeds. As a result, the MBR may
expand rapidly, which may create large overlaps with other MBRs. The AU avoids
this problem by grouping objects having similar moving patterns. Specifically, for
objects in the same GCA edge, we use a distance threshold and a speed threshold to
cluster the adjacent objects with the same direction and similar speed. The thresholds
are set according to the average length of road segments, the average maximum
speed on the segment and also the adaptation in the experimental data sets. In
comparison, the AU has no obvious enlargement because objects in the AU move in
a cluster.

We now formally introduce the AU. An AU is a 7-tuple:

AU = (auID,objSet,upperBound,lowerBound,

edgeID,enterTime,exitTime)

where auID is the identifier of the AU, objSet is a list that stores objects belonging
to the AU, upperBound and lowerBound are upper and lower bounds of predicted
future trajectory of the AU. The trajectory bounds are derived from the trajectory
bounds of the objects in the AU. We assume the functions of trajectory bounds as
follows:

upperBound : D(t) = αu + βu · t

lowerBound : D(t) = αl + βl · t

edgeID denotes the GCA edge that the AU belongs to, enterTime and exitTime
record the time when the AU enters and leaves the edge.
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In the GCA, multiple AUs are associated with a GCA edge. Since AUs in the
same edge are likely to be accessed together during query processing, we store
AUs by clustering on their edgeID. That is, the AUs in the same edge are stored
in the same disk pages. To access AUs more efficiently, we create a compact
summary structure called the direct access table for each edge, which is treated as
a secondary index of AUs can be accessed by a in-memory buffer. A direct access
table stores the summary information of each AU on an edge (i.e. number of objects,
trajectory bounds) and pointers to AU disk pages. Each AU corresponds to an entry
in the direct access table, which has the following structure (auID, upperBound,
lowerBound, auPtr, objNum), where auPtr points to a list of AUs in disk
storage and objNum is the number of objects included in the AU. Similar to AUs,
the entries of the same direct access table and of the different direct access table but
in the adjacent edge are grouped together so that we can get them into the buffer
more efficiently. For the simple network with small amount of AUs, we can keep all
direct access tables in the main memory since it only keeps the summary information
of AUs.

4.2 The index scheme

We build a spatial index (e.g., R-tree) for the GCA (road network) over the AUs
to form the index scheme for the network-constrained moving objects. The AU
index scheme is a two-level index structure. At the top level, it consists of a 2D
R-tree that indexes the spatial information of the road network. On the bottom
level, its leaves contain the edges representing multiple road segments (i.e. polylines)
included in the corresponding MBR of the R-tree and point to the lists of AUs.
Each of entry in a leaf node consists of a road segment, i.e., a line segment in
the polyline. The top level R-tree remains fixed during the lifetime of the index
scheme (unless there are changes in the network). The index scheme is developed
with the R-tree in this paper, but any existing spatial index can also be used without
change.

Figure 4 shows the structure of the AU index scheme, which also includes a direct
access table. The R-tree, the direct access table and AUs are stored in the disk.
However, the direct access table stores the summary information of some AUs on
the edge and is similar to a secondary index of AUs. In the index scheme, each leaf
node of the R-tree can be associated with its direct access table by its edgeID and
the direct access table can connect to corresponding AUs by auPtr in its entries.
Therefore, we only need to update the direct access table when AUs change, which
enhances the performance of the index scheme.

4.3 Optimizing for updates

When the updated locations are stored in a database in the server, the index structure
of moving objects may be updated frequently with the update of locations. Our task
is to reduce the cost of such indexing updates by a one-dimensional dynamic AU
structure and an accurate prediction method.

An important feature of the AU is that it groups objects having similar moving
patterns. The AU is capable of dynamically adapting itself to cover the movement of
the objects it contains. By tightly bounding enclosed moving objects for some time
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Fig. 4 Structure of the AU
index scheme
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in the future, the AU alleviates the update problem of MBR rapid expanding and
overlaps in the TPR-tree like methods.

For reducing updates further, the AU captures the movement bounds of the
objects based on the SP method, which considers the road-network constraints and
stochastic traffic behavior. Since objects in an AU have similar movements, we then
predict the movement of the AU by the SP method, as if it were a single moving
object. The specific locations of the individual objects inside AUs can be similar
and obtained by trajectory bounds of the AU. Through the SP method, we obtain
two predicted future trajectory bounds of objects. When an object’s position exceeds
the AU, the index needs to be updated to delete the object from the old AU and
insert the object to another AU. The accurate prediction of an AU’s movement
and expanding with objects’ movement makes it possible that the updated location
of each object seldom affects the changing of the AU structure (e.g. deleting and
inserting objects, creating and dropping AUs). Therefore, the SP method helps to
reduce the index updating costs.

The future trajectory bounds are predicted at each GCA node when an AU is
created. The trajectory bounds will not be changed along the edge that the AU
moves on until the objects in the AU move to another edge in the GCA. It is
evident that the range of predicted bounds of an AU will become wider with the
time, which leads to lower accuracy of future trajectory prediction. However, if we
issue another prediction when the predicted bounds are not accurate any more, the
costs of simulation and regression are high. Considering that the movement of objects
along one GCA edge is stable, we can assume the same trends of the trajectory
bounds and adjust only the initial locations when the prediction is not accurate.
Specifically, the AU treats its actual locations (the locations of the boundary objects)
at that time as the initial locations of the two trajectory bounds and follow the
same movement vector (e.g. slope of the bounds) as the previous bounds to provide
more accurate predicted trajectory bounds. In this way, the predicted trajectory
bounds can be effectively revised with few costs. Figure 3b shows the adaptation
of the trajectory bounds. tq is the adaptation time of future trajectory bound and
the d1,d2 are the actual locations of the first object and last object respectively in
the AU. The trajectory bounds are revised according to the actual locations and the
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original bounds’ slopes. Therefore, without executing more prediction, the prediction
accuracy of the objects’ future trajectories can be kept high.

Since the R-Tree indexes the GCA, it remains fixed, and the update of the AU
index scheme restricts to the update of AUs. Specifically, an AU is usually created
at the start of one edge and dropped at the end of the edge. Since the AU is a one-
dimensional structure, it performs update operations much more efficiently than the
two-dimensional indexes. We will describe these operations in details.

4.4 Update operations

The update of an AU can be of the following form: creating an AU, dropping an AU,
adding objects to an AU and removing objects from an AU.

Creating an AU To create an AU, we first compose the objSet - a list of objects
traveling in the same direction with similar velocities (velocity difference is not larger
than a speed threshold), and in close-by locations (location difference is not larger
than a distance threshold). We then predict the future trajectories of the AU by
simulation and compute its trajectory bounds. In fact, we treat the AU as one moving
object (the object closest to the center of the AU) and predict its future trajectory
bounds by predicting this object. The prediction starts when the AU is created and
ends at the end the edge. Finally, we write the created AU to the disk page and insert
the AU entry to its summary structure. Factually, AU is created in two cases: 1) at
the initial time with on bulk-loading at each network edge and 2) when the objects
leave original edge with a single object described in Algorithm 1.

Dropping an AU When objects in an AU move out of the edge, they may change
direction independently. So we need to drop this AU and create new AUs in adjacent
edges to regroup the objects. When the front of an AU touches the end of the edge,
some objects in the AU may start moving out of the edge. However, the AU cannot
be dropped because a query may occur at that time. Only after the last object in the
AU enters another edge and joins another AU, can the AU be dropped. Dropping an
AU is simple. Through its entry in direct access table, we find the AU and delete it.

Adding and removing objects from an AU When an object leaves an AU, we
remove this object from the AU and find another AU in the neighborhood to check
if the object can fit that AU. If it can, the object will be inserted into that AU,
otherwise, a new AU is created for this object. Specifically, when adding an object
into an AU, we first find the direct access table of the edge that the object lies and,
by its AU entry in the table, access the AU disk storage. Finally, we insert into the
objects list of the AU and update the AU entry in the direct access table. Removing
an object from an AU has the similar process.

Therefore, when updating an object in the AU index scheme, we first determine
whether the object is leaving the edge and entering another one. If it is moving to
another edge, we delete it from the old AU (if it is the last object in the old AU, the
AU is also dropped) and insert it into the nearest AU to the object in terms of the
network distance or create a new AU in the edge it is entering. Otherwise, we do not
update the AU that the object belongs to unless its position exceeds the bounds of
the AU. In that case, we execute the same updates as those when it moves to another
edge. When the AU is not updated, we check whether the object is the boundary
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object of the AU and whether its actual position exceeds the predicted bounds of the
AU to a precision threshold ε (explained in the experiments of prediction accuracy),
for the purpose of adapting the trajectory bounds of the AU. Factually, we find, from
the experiment evaluation, that the chances that objects move beyond the trajectory
bounds of its AU on an edge are very slim. The algorithm 1 shows the update
algorithm when updating an object in the AU. Like the node capacity parameter in
the index tree, MAXOBJNUM in the algorithm 1 is also used to restrict the number
of object entries in an AU. It is set according to the object entry storage size and AU
storage size.

In summary, updating the AU-based index is easier than updating the TPR-tree.
It never invoke any complex node splitting and merging. Moreover, thanks to the
similar movement features of objects in an AU and the accurate prediction of the SP
method, the objects are seldom removed or added from their AU on an edge, which
reduces the number of index updates.

4.5 Query algorithm

In this part, we propose an algorithm for predictive range query in the AU index
scheme. It can also be extended to support the (K) Nearest Neighbor query
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and continuous query. A predictive range query captures all objects moving in a road
network whose locations are inside a specified region R during time interval [T1, T2]
in the future. Given a spatiotemporal window range with (X1, Y1, X2, Y2, T1, T2),
the query algorithm on the AU index scheme consists of the following steps:

1) We first perform a spatial window range search (X1, Y1, X2, Y2) in the top level
R-Tree to locate the edges (e.g. e1, e2, e3, . . .) that intersect the spatial query
range.

2) For each selected edge ei, we transform the original 3D search (X1, Y1, X2, Y2,

T1, T2) to a 2D search (S1, S2, T1, T2) (S1 ≤ S2, T1 ≤ T2), where S1 and S2 are
the relative distances from the start vertex along the edge ei. Figure 5a gives
an example when the query window range only intersects one edge e1. In the
case of multiple intersecting edges, we can divide the query range into several
sub-ranges by edges and apply the transformation method to each edge. The
method is also applicable to the various modes the query and edges intersect.
For space limitation, we only illustrate the case in Fig. 5a and compute its
relative distances S1 and S2. It can be easily extended to other cases. Suppose
Xstart, Ystart, Xend, Yend are the start vertex coordinates and the end vertex coor-
dinates of the edge e1. According to Thales Theorem about similar triangles, we
obtain S1 and S2 as follows:

r =
√

(Xstart − Xend)
2 + (Ystart − Yend)

2

S1 = X1 − Xstart

Xend − Xstart
r

S2 = Y1 − Ystart

Yend − Ystart
r

3) We further find the adjacent edges of e1 on which objects are possible to move
into the window range during the future period [T1, T2]. For supporting future
spatio-temporal range queries, the TPR-tree expands MBRs towards every
direction according to the maximum speed of objects, which, when applied to
the network, will result in large candidate result set including some objects that
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Fig. 5 Window range query in the AU index scheme
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are impossible to move into the query range due to network constraint. There
are limited possibilities of objects’ movement in the road network. Therefore, we
filter the candidate AUs in the adjacent edges possibly intersecting the window
range by expanding along the network according to the maximum speed allowed
in the network, adjacent table of edges and future query time. Figure 6 gives an
example of network expanding in the query processing where arrow denotes the
direction of edge. Let Vmax the maximum speed and T0 (= 0 in our example)
the current time, it expands the network from the point of edge e1 intersecting
the spatial window (e.g. locations of S1 in Fig. 6a) towards the reverse direction
of e1 and then continue to the adjacent edges obtained from the reverse adjacent
table of e1 until a expanded distance Vmax ∗ (T2 − T0) is reached. The traversed
edges e2, e3 in this example are returned. The AUs on these edges (e.g. AU3
on e2 and AU4, AU5 on e3 in Fig. 6a) will be further checked whether they are
possible to intersect the query range during [T1, T2]. In this way, we can avoid
the false negative for objects in the other edges during the query processing.

4) The transformed query (S1, S2, T1, T2) is executed in each of the AUs in the
direct access table of the corresponding edge e1. As illustrated by Fig. 5b, an
AU is suitable to the query only if the 2D window range intersects the area
between the upper and lower trajectory bounds of the AU. Otherwise when the
query is below the lower bound (e.g. βl ∗ T1 + αl > S2) or above the upper bound
(e.g. βu ∗ T2 + αu < S1) of the AU, the query cannot contain objects in this AU.
The computations of transformed queries in adjacent edges e2 and e3 are also
together showed in Fig. 6b. For the adjacent edge e2 with the length of l(e2),
we revise the transformed query to (S1 + l(e2), S2 + l(e2), T1, T2) and filter AUs
suitable to the query by linking e2 and e1, which is showed in the t′-d coordinate
plane of Fig. 6b. We use the same method to filter AUs on the adjacent edge e3

by linking e3 and e1, which is showed in the t′′-d coordinate plane of Fig. 6b. This
is reasonable to treat these AUs as candidates since the objects in them are also
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likely to move to the query range in the future time. In our example, the query
returns AU2 in edge e1 and AU4 in adjacent edge e3. By the trajectory bounds
of the AU, we can determine whether the transformed query intersects the AU,
thus filtering out the unnecessary AUs quickly.

5) Finally, we access the selected AUs in disk storage and return the objects
satisfying the predictive query window.

Future spatio-temporal queries in a road network are more difficult to compute when
considering the objects cross the different road segment edge because the future
movement of objects in the road intersection is complex, but has limited possibilities
due to the network constraint. We compute the query results which are likely to move
to the road segment edge and location range in the near future that query intersects.

5 Performance analysis

In this section, we analyze the performance of the AU index scheme. We first analyze
the I/O cost of the query and update algorithm, and then perform experimental
evaluation.

5.1 Algorithms analysis

We follow the main assumptions of [33] in our analysis, in particular we assume that
rectangles, including the whole map, are square. Let M be the total number of edges
of the GCA, W be the width of the map, N be the total number of objects and n be
the average number of objects in an AU. The average number of AUs in an edge is
N/(nM). We assume that B is the maximum number of objects in a disk page. The
average number of AUs in a page is ceiling(B/n).

For a spatio-temporal query window (X1, Y1, X2, Y2, T1, T2), a spatial search
is first performed in the top level R-tree to locate the edges that intersect the
spatial window. Let Nr be the number of data rectangles of the R-tree, f be its
average fanout, h = 1 + �log f

Nr
f � its height, and Sl,x, Sl,y the average extents of node

rectangles at level l on X and Y coordinates. Assume that each node is in one disk
page, the average number of disk accesses for the spatial search (X1, Y1, X2, Y2) is
given by [33]:

h−1∑
l=1

Nr

f l

(
Sl,x + |X2 − X1|

) (
Sl,y + |Y2 − Y1|

)
W2

Since each entry in the leaf node of the R-tree only contains one edge, the average
number of edges intersecting the spatial query is given by:

M

(
S1,x + |X2 − X1|

) (
S1,y + |Y2 − Y1|

)
W2

For each selected edge, we scan its direct access table for the purpose of only
accessing relevant AUs. We compute the average number of AUs intersecting the
transformed query (S1, S2, T1, T2). In Fig. 3b, the two trajectory bounds of one AU
divide the coordinate plane into three parts: upper area (above the upper bound),
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middle area (between the upper and lower bounds) and lower area (below the
lower bound). We assume that the upper and lower areas represent respectively
the percentage of μu, μl of the total area of the plane. Factually, μu and μl are
the probabilities that a transformed point query is respectively above and below the
trajectory bounds of the AU. The probability that the query intersects the AU is
(1 − μ2

u − μ2
l ). It is not difficult to compute the average probabilities μu, μl of the

AUs on the edge using their bound functions and the length of the edge. Here we use
the same analysis method for the computations of transformed queries in adjacent
edges and ignore the cost of network expanding for simplicity. Now, we can get the
average number of relevant AUs as follows:

(
1 − μ2

u − μ2
l

) N
nM

Finally, for each relevant AU, we need to find the moving objects satisfying the
predictive query range. Since the AUs on the same edge are likely clustered in the
same disk page, the average I/O cost of accessing relevant AUs and moving objects
on each selected edge is given by:

(
1 − μ2

u − μ2
l

) N
MB

Therefore, the total I/O cost for a spatiotemporal window query in the AU index
scheme is given by:

1

W2

(
h−1∑
l=1

Nr

f l

(
Sl,x + |X2 − X1|

) (
Sl,y + |Y2 − Y1|

)

+ N
B

(
S1,x + |X2 − X1|

) (
S1,y + |Y2 − Y1|

) (
1 − μ2

u − μ2
l

))

For improving the efficiency of the prediction of AU, the trajectory bounds of
AU are computed based on the simulation not of all objects in it but of the object
closest to the center of the AU. In this way, it seems that the query processing in
the AU index will possibly not return correct query results (false negative) since
the extrapolated position of the object at the query time will be outside of the
bounds of the AU. However, this seldom happens for the following three reasons.
1) AU is constructed by a group of moving objects with similar moving pattern
and maintained by tightly bounding enclosed moving objects for some time in the
future. It is reasonable to approximate the AU by its center object. 2) In the SP
method, to refine the prediction accuracy, we simulate two trajectories based on
different assumptions on the traffic conditions (e.g. laminar and congested traffic)
and translate the regressed lines outside to contain all possible future position
of the object as soon as possible. 3) The adaptation of the trajectory bounds of
AU also further improves the accuracy of trajectory prediction over time. From
the experiments in Section 5.2.3, it is proved that such the approximation of AU
simulation by its center object can achieve high efficiency improvement by causing
very slim possibility of incorrect query results.

We then analyze the cost of updates in the AU index scheme. In order to update
an object, we first scan AUs from the entries in the direct access table corresponding
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to its edge. The average number of disk accesses to find the AU page that the object
belongs to (scan the pages of AUs on an edge) is N/2MB. If the object is entering
a new edge or exceeds bounds of its AU, it will be inserted into the nearest AU and
deleted from the old AU. This needs 1 disk accesses to read the nearest AU and 2
disk access to write the pages of the old AU and the new AU. If the object is the last
object in the old AU, the old AU with the last object will be dropped which costs
1 disk access to write the page of the old AU. If the object cannot be inserted into
the existing AU, a new AU will be created with 1 disk access. Therefore, the average
cost of an update is N/2MB + 3.

5.2 Experimental evaluation

Since the R-tree in our structure only indexes the static spatial information of
road networks, we compare it in the experiments with the TPR-tree-like method
(taking the most popular TPR-tree for example) in which the R-tree is used to index
the continuously changing moving objects. We measure the update performance
with the individual update, update frequency and total update costs and the query
performance of AU index scheme (denoted as “AU index”), the TPR-tree and the
AU index scheme when the direct access table is not used (denoted as “AU index
without DT”). We then study the effect of parameter Pd on the SP and finally
compare the prediction accuracy of the SP method with that of the linear prediction
method.

5.2.1 Datasets

We use two datasets for our experiments. The first is generated by the CA simulator,
and the second by the Brinkhoff’s Network-based Generator [5]. We use the CA
traffic simulator to generate a given number of objects in a uniform network of size
10000 × 10000 consisting of 500 edges. Each object has its route and is initially placed
at a random position on its route. The initial velocities of the objects follow a uniform
random distribution in the range [0, 30]. The location and velocity of every object is
updated at each time-stamp. The Brinkhoff’s Network-based Generator is used as a
popular benchmark in many related work. The generator takes a map of a real road
network as input (our experiment is based on the map of Oldenburg including 7035
edges). The positions of the objects are given in two dimensional X-Y coordinates.
We transform them to the form of (edgeid,pos), where edgeid denotes the edge
identifier and pos denotes the object relative position on the edge. The generator
places a given number of objects at random positions on the road network, and
updates their locations at each time-stamp. We implemented both the AU index
scheme and the TPR-tree in Java and carried out experiments on a Pentium 4,
2.4 GHz PC with 512 MB RAM running Windows XP. To improve the performance
of the index structure, we employed a LRU buffer of the same size (200K) as the one
used in the TPR-tree [29]. Especially, for the AU index with DT, the LRU buffer
is used for the R-tree nodes, AU pages, and DAT pages. The same amount of main
memory is allocated to buffers for all of the three compared index structure. Since
the map of Oldenburg is a relatively small network and the direct access tables are
frequently accessed, most of them are kept in the main memory in our experiments.
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Table 1 Parameters and their
settings Parameters Settings

Page size 4K
Node capacity 100
Numbers of queries 200
Numbers of mo(cars) 10K, ... , 50K, ... , 100K
Numbers of updates 100K, ... , 500K, ... , 1M
Dataset generator CA simulator, network-based generator

We summarize workload parameters in Table 1, where values in bold are default
values.

5.2.2 Update cost

We compare the cost of index update for the AU index and the TPR-tree in terms of
the average individual update cost, update frequency and total update cost.

Individual Update Cost We study the individual update performance of the index
while varying the number of moving objects and updates. Figure 7 shows the average
individual update cost when increasing the data size from 10K to 100K. Figure 8
shows how the performance varies over time. Clearly, updating the TPR-tree tends
to be costly, and the problem is exacerbated when the data size increases. In each
case of different data size and different number of updates, the AU index has much
lower update cost than the TPR-tree. The main reason can be explained as follows.
Each update of the TPR-tree involves the search of an old entry and a new entry,
as well as the modification of the index structure (node splitting, merging, and the
propagating of changes upwards). The cost increases with larger data size due to
more overlaps among MBRs. The changes of index structure with the increase of
data updates also affect the performance of the TPR-tree. However, the AU index
has better performance because its update only restricts to the AU’s update and
as a one-dimensional access structure, the AU has few overlaps and incurs no cost
associated with node splitting and the propagation of MBR updates.
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Fig. 7 Individual update cost with different datasize
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Fig. 8 Individual update cost over time

The direct access table of the AU index has a significant contribution in improving
update performance. This is because searching the specific AU is accelerated by the
secondary index structure.

Update Frequency Frequent updates of moving objects (a.k.a. data updates) may
lead to frequent updates of index. All data updates (that are received according
to some object update policy) should be recorded in the index, but may lead to
different numbers of “index update” for the AU and TPR-tree respectively. In our
experimental evaluations, “index update” for AU denotes an update of an object
that invalidates the objects AU. For example, when an object’s position exceeds
the bounds of AU, the index needs to be updated to delete the object from the
old AU and insert it to another one. For the TPR-tree, the bounding rectangles are
recomputed even if they are not invalidated. We did not count such re-computations
as “index update” and only counted the updates which invalidated the bounding
rectangles of TPR-tree. In this experiment, we measure the “index update rate”,
which is the ratio between number of such index update and number of data update,
for every 100K data updates and different data size. Figures 9 and 10 show that the
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Fig. 10 Index update frequency over time

update rate of the TPR-tree is nearly 4 to 5 times more than that of the AU index.
The index update rate depends on the prediction method. In the AU index, the future
positions of the object are predicted more accurately, so the object is likely to remain
in its AU, which leads to fewer index updates. As to the reduction in the object
update frequency when the SP method is used, we also evaluate the performance in
paper [8].

Total Update Costs The total update costs depend on the update frequency and the
average individual update cost, and it can reflect the index update performance more
accurately. From both Figs. 11 and 12, we can see that although the AU index has to
deal with the creation and dropping of AUs, the TPR-tree incurs much higher update
costs than the AU index and its performance deteriorates dramatically as data size
increases. This is mainly due to the inaccuracy of the linear prediction model and the
complex reconstruction of the TPR-tree (e.g. splitting and merging).

For each data size, the update costs of the two indexes in the Brinkhoff’s dataset
are both higher than those in the CA dataset due to the higher complexity of road
network and skewed spatial distribution of objects in the Brinkhoff’s dataset.

5.2.3 Query cost

Effect of Data Size We study the window range query performance of the TPR-
tree and the AU index while varying the number of moving objects from 10k to 100k.
Figure 13 shows the average number of I/O per query with query window size 50. In
each case, the query cost increases as the data size increases. However, the AU index
has much lower cost than the TPR-tree. This is because the AUs in the AU index
have much less overlaps than the MBRs in the TPR-tree, and the overlaps to a large
extent determine the range query cost.

The AU index with the direct access table achieves better performance than the
AU index without it. This is because the secondary index structure enables us to filter
some unnecessary AUs during the search of AUs that intersect the range query.
However, for the Brinkhoff’s dataset the benefit of the direct access table is not
obvious because the large number of small edges in the network reduces chances of
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Fig. 11 Total update cost with different datasize

filtering the AUs not included in the range query. The search costs of the two indices
in different datasets are also quite different for the same reasons as mentioned in
update performance.

Effect of Update We then study the window range query performance of the TPR-
tree and the AU index with different update settings. We increase the number of
updates from 100K to 1M to examine how query performance is affected. We issued
200 range queries with window size 50 for every 100K updates in a 1M dataset.
Figure 14 shows that the cost of the TPR-tree increases much faster as the number
of updates increases. The cost of the AU index is considerably lower and is less
sensitive to the number of updates. This is because as objects move apart, the amount
of dead space in the TPR-tree increases, which makes false hits more likely. Also,
updates lead to the expanding and overlaps of MBRs, which further deteriorate the
performance of the TPR-tree. For the AU index, the increase of the updates hardly
affect the total number of AUs, and the chances of overlaps of different AUs are
very slim.
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Fig. 13 Query performance with data size

Effect of Query Window Size To study the effect of query window size on per-
formance, we increase the window size from 10 to 100 (the fraction of the total
space from 1/1000 to 1/100) for 100K data size with a workload of 200 range queries.
Figure 15 shows the query cost as a function of the query window size. It is clear
that for all the indexes, query cost increases with the query window size. This is
so because larger windows contain more objects and therefore lead to more node
accesses. However, this effect is more obvious on the TPR-tree.

Query Recall With the same dataset and the window size 50, we measure the
query recall in AU index with the approximation of AU simulation by its center
object. By referencing the query results in the TPR-tree, we compute the false
negative and compare the efficiency of the AU index with approximation and without
approximation. The results show that the approximation of AU simulation by its
center object can achieve high efficiency improvement (average 25% increase of
efficiency) by causing very slim possibility (average 5% possibility) of incorrect query
results (average 6% false negative).
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5.2.4 Prediction accuracy

The SP method can be used in the AU index structure to reduce the indexing updates
cost in that it is more accurate in predicting the future trajectories of AU with some
similar objects than the linear prediction method. For simplicity, we study the effect
of simulation parameter and evaluate the prediction accuracy by applying prediction
method to the location update policy of object [8].

The Slowdown Rate Pd The simulation has an important effect on the prediction
accuracy and therefore affects the efficiency of query and update. We study the
effect of the choice of different Pd, which determines the two predicted trajectories
corresponding to the fastest and slowest movement. We test on the Brinkhoff’s
dataset with different data size and use Pd from 0 to 0.5 and measure the average
prediction accuracy by “average error” and “overflow rate”. The average error is the
average absolute error between the predicted and actual positions, and the overflow
rate represents the probability of predicted positions exceeding the actual positions.
The purpose of this metric is to find the closest two trajectories binding the actual one

 9.7

 9.8

 9.9

 10

 10.1

 10.2

 10.3

0.50.40.30.20.10

A
v
e

ra
g

e
 e

rr
o

r

Pd

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0.50.40.30.20.10

O
e

rf
lo

w
 r

a
te

v

Pd

Fig. 16 Prediction accuracy with Pd

265



Geoinformatica

 0

 2

 4

 6

 8

 10

 12

 14

252015105

A
v
e

ra
g

e
 e

rr
o

r

Threshold

LP
SP

 0

 2

 4

 6

 8

 10

 12

 14

252015105

A
v
e

ra
g

e
 e

rr
o

r

Threshold

LP
SP

Fig. 17 Prediction accuracy with threshold

as future trajectories. In this way, we can choose the Pd both with lower average error
and overflow rate. Figure 16 shows the prediction accuracy of the SP with different
slowdown rates. We can see that when Pd is set to 0 and 0.1, both the average error
and overflow rate are lower than others. Therefore, we use the value 0 and 0.1 as
slowdown rates for the fastest movement bound and the slowest movement bound to
obtain better prediction results.

Prediction Accuracy and Cost Finally, we compare the precision of the SP method
with the LP method. We measure the prediction accuracy by “average error” but with
different threshold ε. The threshold ε represents the maximum deviation between
the predicted locations of an object and its real locations allowed in the prediction.
That means when the deviation exceeds the threshold ε, we make another predic-
tion. From Fig. 17, we observe that average error will increase when threshold
increases. This is because the larger the threshold is, the larger the deviation
becomes, which leads to the more errors. It is tenable in both the LP and SP method.
However, the SP method predicts more accurately than the LP method with any
threshold ε.

To measure the time cost of the prediction, we compute the average CPU time
when simulating and predicting the movement of one object along the edge with
length 1000 in different dataset sizes. The results show that the average cost of one
SP is about 0.25 ms. This is quite acceptable.

6 Conclusions and future work

Indexing objects moving in a constrained network especially the road network is
a topic of great practical importance. We focus on the index update issue for the
current positions of network-constrained moving objects. We introduce a new access
structure, AU that exploits as much as possible the characteristics of the movements
of objects. The updates of the structure are minimized by an accurate prediction
method which produces two trajectory bounds based on different assumptions on
the traffic conditions. The efficiency of the structure also results from the possible
reduction of dimensionality of the trajectory data to be indexed. Our experimental
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results performed on two datasets show that the efficiency of the index structure is
one order of magnitude higher than the TPR-tree.

We will extend the query algorithms to support the KNN query and continuous
query for moving objects in the road network.
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17. A. Behm, S. Ji, C. Li, J. Lu: Space-Constrained Gram-Based Indexing for Efficient 
Approximate String Search. IEEE International Conference on Data Engineering (ICDE 
2009):604-615, March, 29- April, 3, 2009, Shanghai, China. 

18. J. Lu, Z. Bao, T. W. Ling, X. Meng: XML keyword query refinement. Proceedings of the 
First International Workshop on Keyword Search on Structured Data.(KEYS 2009):41-42, 
June 28, 2009, Providence, Rhode Island, USA. 

19. Shaoyi Yin, Philippe Pucheral, Xiaofeng Meng, PBFilter: A Sequential Indexing Scheme 
for Flash-Based Embedded Systems, In Proceedings of 12th International Conference on 
Extending Database Technology (EDBT2009): 588-599, March 23-26 2009, 
Saint-Petersburg, Russia. 

20. , , : XML .
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)

21. , , , : Transform .
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3 6 585-593, 2009.11.( ,

)
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26. , , , , .
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1. XML (Key Techniques on XML Query Processing)
2009.5.8

2. Deep Web (Key Techniques on Query 
Processing in Deep Web Data Integration) 2009.5.8

3. (Research on Fast Approximate Membership 
Checking) 2009.5.12

4. XML (Research on XML Keyword Search Techniques)
2009.5.12

5. XML (Research on XML Approximate Query Processing 
Techniques) 2009.5.12

6. XML (Research on Key Techniques of XML Query Processing)
2009.5.12

7. (Research on Recovery Techniques for Flash-based 
DBMS) 2009.5.12

274



275



  2009   1    2012  12  

DBMS

276



(863 )

-

  2009   3    2010  12  

——

 WAMDM

277



IBM IBM SUR

Cloud-based Database Systems

2009  9   2010   9 

TB PB

(Big Data)

278



2010  1    2012  12  

PDA WAP 

WEB WAP

3G

1

(2)

(3)

279



(863 )

XML

2009  9  2010  12 

eXtensible Markup Language XML Internet

XML 1.0 1998 2

 XML XML

XML

 XML

XML

XML

XML

280



281



Prof. Xiaofeng Meng: 

DB Vice Co-chair, ACM 18th Conference on Information and Knowledge Management 
(CIKM2009), October 27-31, 2009, Hong Kong 

Program Committee Co-Chair, The Fifth International Conference on Advanced Data 
Mining and Applications(ADMA2009), August 17-19,2009, Beijing

General Vice Chair, 25th International Conference on Data Engineering( ICDE2009 ),
March 29 - April 4, 2009, Shanghai, China 

Workshop Chair, The 3rd International Workshop on Privacy-Aware Location-based Mobile 
Services (PALMS2009), May 18-21, 2009,Taipei, Taiwan 

Regional Chairs, The 14th International Conference on Database Systems for Advanced 
Applications(DASFAA2009), April 21-23, 2009, Brisbane, Australia 

Program Committee member, MDM2009 The 10th International Conference on Mobile 
Data Management: Systems, Services and Middleware(MDM2009), May 18-21, 2009,Taipei, 
Taiwan 

Program Committee member, PAKDD2009 The 13th Pacific-Asia Conference on 
Knowledge Discovery and Data Mining. 27-30 April 2009 Bangkok, Thailand 

Program Committee member, MCPC 2009 The international Conference on Mobile 
Communications and Pervasive Computing (MCPC 2009), 23-25 March 2009 , Leipzig , 
Germany 

Program Committee member, DEXA2009 The 20th International Conference on Database 
and Expert Systems Applications(DEXA2009), 31 August - 4 September 2009, Linz, Austria 

Program Committee member, APWeb-WAIM2009 The joint conference on Asia-Pacific 
Web and Web-Age Information Management(APWeb/WAIM 2009), 1-4 April, 2009, Suzhou, 
China

Program Committee member, WI2009 IEEE/WIC/ACM International Conference on Web 
Intelligence (WI2009), 15-18 September, in Milano, Italy 

Dr. Jiaheng Lu 

Program Committee member, APWeb-WAIM2009 The joint conference on Asia-Pacific 
Web and Web-Age Information Management(APWeb/WAIM 2009), April 1-4, 2009, Suzhou, 
China

Program Committee member EDT2009 The First International Conference on Emerging 
Databases(EDT 2009), August 27-28,2009, Bexco(Pusan),Korea 

Program Committee member, IDAR2009 The 3rd SIGMOD PhD Workshop on Innovative 
Database Research(IDAR2009), June 28, 2009,Providence,Rhode Island,USA
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Program Committee member, WISE2009 The Tenth International Conference on Web 
Information Systems Engineering(WISE2009), October 5-7, 2009 ,Poznan,Poland 

Local Arrangement Co-Chairs,CloudDB2009 The First Internationa Workshop on Cloud 
Data Management(CloudDB2009), october 19, 2009, Hong Kong 
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Data Integration with Uncertainty
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schema mappings, probabilistic mediated schemas, semantic schema mapping probabilistic 
functional dependencies
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SQL join ranking spatial
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2009 6 3 :

Efficient Query Processing over Uncertain Databases
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China Cloud Computing Symposium CCCS2009 2009
10 26
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2009.12.26  Venue: FL1, Meeting Room, Information Building

Rui Zhang Continuous Intersection Join on Moving Object 
Abstract:
The continuous intersection join query is computationally expensive yet 
important for various applications on moving objects. No previous 
study has specifically addressed this query type. We can adopt a naive 
algorithm or extend an existing technique (TP-Join) to process the 
query. However, they compute the answer for either too long or too 
short a time interval, which results in either a very large computation 
cost per object update or too frequent answer updates, respectively. This 
motivates us to optimize the query processing in the time dimension. 
In this study, we achieve this optimization by introducing the new 
concept of time-constrained (TC) processing. 

Jinchuan Chen Data Integration with Uncertainty 
Abstract:
A survey of data integration with uncertainty. This report introduced 
existing methods of data management with uncertainty. 

2009.12.19  Venue: FL1, Meeting Room, Information Building

Haiping Wang 
(Cloud Computing 
Group)

cassandra and sigmod contest
Abstract:
Cassandra is a highly scalable second-generation distributed database, 
bringing together Dynamo's fully distributed design and Bigtable's 
ColumnFamily-based data model.The task of sigmod programing 
contest 2010 is to implenment a simple distributed query executor built 
on top of the last year's main-memory index.

Ying Lu (Mobile 
Group)

Hammer & Nail
Abstract:
"Research is actually a process of hammers(methods) hammer 
nails(problem)". This report first presents three hammers, i.e.three 
kinds of hash functions, which are signature, OPMPHF(Order 
Preserving Minimal Perfect Hash Function) and LSH(Location 
Sensitive Hashing).Then it introduces a nail using the hammers above.It 
is called Reveser k Spatial and Textual Nearest Neighbor(RkSTNN).

2009.12.12  Venue: FL1, Meeting Room, Information Building

Yingjie Shi (Web 
Group)

Survey on Data Management in the Cloud
Abstract:
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With the development of computer and communication technology, a 
large scale of data are produced. Cloud-based database is one solution 
to efficiently store and analyze these data. In this talk, we present some 
cloud-based database and summarize them from different aspects.

Bingbing Liu 
(Cloud Computing 
Group)

Hive – A Warehousing Solution Over a MapReduce Framework 
Abstract:
Introduce a system which support managing and querying structured 
data and builded on the top of hadoop and the query language.

2009.12.05  Venue: FL1, Meeting Room, Information Building

Ruxia Ma (Web 
Group)

Trust Metric on Social Network
Abstract:
This report introduces five trust metric mechanisms on social network, 
such as: Advogato, Appleseed and TidalTrust, etc. We mainly describe 
the main ideas of those algorithms and their realization. 

Wei Chen (Web 
Group)

Data Fusion-Resolve Data Conflicts in Integration
Abstract:
In this talk we gave a brief introdution to data fusion, including data 
conflict types, conflict resolution strategies, the role played by data 
fusion in integration programs and current approaches to data fusion. 
Then we addressed some challenges and open problems in data fusion 
research. Finally we presented a brief summary to this talk.

2009.11.28  Venue: FL1, Meeting Room, Information Building

Xian Tang (mobile 
Group)

ACR: an Adaptive Cost-Aware Buffer Replacement Algorithm for 
Flash Storage Devices
Abstract:
In this talk, we propose an adaptive cost-aware buffer replacement 
algorithm--ACR, which adapt to various access patterns on flash disks.

Yulei Fan (Mobile 
Group)

Multi-version Concurrency Control of Database Based on Flash 
Memory
Abstract:
Data may have multiple versions as because of the feature of 
not-in-place update and in-page logging store mechnism in flash 
memory. Multi-version concurrency control has to be implented based 
on the Serialization theory, and it includes MV2PL(multi-version 2PL), 
MVTO(multi-version TO), MVSGT(multi-version SGT), TW(time 
warp) and ROMV(read-only multi-version). We evaluated the 
performance of these algorithms by implementing experiments on 
existing DBMS such as MS SQLServer, MySQL and Postgres. Finally, 
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we proposed some future work in Multiple-version Concurrency 
Control.

2009.11.21  Venue: FL1, Meeting Room, Information Building

Junjing Xu (XML 
Group)  

Efficient String Similarity Search Using Synonyms  
Abstract:
This report introduces the gram_based string matching functions and 
the new similarity funcion.

Lizhen Fu (XML 
Group)  

Reachability Queries on Large Directed Acyclic Graphs  
Abstract:
In particular, graph reachability has attracted a lot of research attention 
as reachability queries are not only common on graph databases, but 
they also serve as fundamental operations for many other graph queries. 
In this reprot, I introduce my new graph label to speed up the 
processing of reachablity queries on DAG which index is small and 
which can be constructed easily 

Jinzeng
Zhang(XML
Group)

Information Retrieval Model and Relevance Feedback  
Abstract:
This report first introduces four classic information retrieval models. 
Based on those models, we present two methods of improving retrieval 
results

2009.11.14  Venue: FL1, Meeting Room, Information Building

Yukun Li(Web 
Group)

Review our studies on dataspace  
Abstract:
Reviewed our works on dataspace research, and introduced a 
work we are doing.

Xiangyu
Zhang(Web 
Group)

Dataspace Research Report
Abstract:
Introduced research and system implementation progress on Dataspace 
research.

Yubo Kou(Web 
Group)

Leveraging Feature Context to Facilitate Sub-graph Query in 
Graph Database
Abstract:
Previous techniques focus on feature selection strategy to filter false 
graphs as more as possible. This approach has met a bottleneck, that as 
the feature is becoming more and more complicated, precision is still 
low. Thus we propose to investigate into how feature context could help 
improve pruning power in sub-graph query.
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2009.11.08  Venue: FL1, Meeting Room, Information Building

Yukun Li(Web 
Group)

About CIKM2009 Story
Abstract:
Give a short summary on CIKM 2009 based on my impression on this 
conference, especially introduced the three keynotes.

Da Zhou(Mobile 
Group)

Review of CIKM 2009
Abstract:
CIKM is a high level international conference. There are three tracks

Zhongyuan 
Wang(Web 
Group)

Summary of CIKM2009
Abstract:
In this talk, I presented three papers and one tutorial related to Web data 
management and click log mining in CIKM2009. Then give some 
summary of CIKM2009.

Xiangyu
Zhang(Web 
Group)

IR is Interesting-CIKM 2009 Report
Abstract:
In this presentation, I gave a brief summary and introduction to the 
CIKM 2009 conference and some of my own experience on this 
conference.

2009.10.31  Venue: FL1, Meeting Room, Information Building

Xiangyu
Zhang(Web 
Group)

An Efficient Multi-Dimensional Index for Cloud Data Management
Abstract:
In this presentation, I introduced our work of multi-dimensional index 
structure for Cloud Computing platforms.

Yukun Li (Web 
Group)

Supporting Context-based Query in Personal DataSpace
Abstract:
Many users need to refer to content in existing files (pictures,tables, 
emails, web pages and etc.) when they write documents(programs, 
presentations, proposals and etc.), and often need to revisit these 
referenced files for review, revision or reconfirmation. In this paper, we 
propose an efficient solution for this problem. We firstly define a new 
personal data relationship

Da Zhou(Mobile 
Group)

Pre-Report for CIKM 2009
Abstract:
Solid State Drive (SSD), emerging as new data storage media with high 
random read speed, has been widely used in laptops, desktops, and data 
servers to replace hard disk during the past few years. However, poor 
random write performance becomes the bottle neck in practice. In this 
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paper, we propose to insert unmodified data into random write sequence 
in order to convert random writes into sequential writes, and thus data 
sequence can be flushed at the speed of sequential write.

2009.10.24  Venue: FL1, Meeting Room, Information Building

Xiangye
Xiao (Web&Mobile 
Group)

Overview of Talks in NDBC 2009
Abstract:
Dr. Xiangye Xiao gave a brief review of invited talks in NDBC 2009 
which includes Dr. Xin Dong from AT&T, Prof. Weiyi Meng from 
Binghamton Univ., Haixun Wang from MSRA and Lei Chen from 
HKUST.

Yukun Li(Web 
Group)

Report on SKG2009
Abstract:
Give an introduction on SKG2009, and focusing on introducing the two 
keynotes of this conference.

Zheng
Huo(Mobile
Group)

A new topic: queries with geo-information
Abstract:
Discovering users' specific and implicit geographic intention in web 
search can greatly help satisfy users' information needs. Research on 
queries with geo-information has becoming hot these years. There are 
several methods. First, the training data based methods, these methods 
need big data of query logs; another is spatial and texual information 
retrieval methods, but these methods can only deal with local 
geo-informaiton. The challege is how to discover users' implicit 
geo-information in queries.

Xiangmei 
Hu(Web Group) 

Trajectory pattern mining
Abstract:
The pervasiveness of mobile devices and location based services is 
leading to an incresing volume of mobility data.This side effect 
provides the opportunity to analyse the behaviors of movements.With 
this background,trajectory pattern mining has been a popular topic.This 
report mainly introduces some representative work about this topic and 
points out some defects.

2009.10.11  Venue: FL1, Meeting Room, Information Building

Jing Ai(Web 
Group)

C-Rank -- A Credibility Evaluation Method for Deep Web Records
Abstract:
How to identify and evaluate information credibility ranking has 
become an increasing important problem. To address the issue, an 
effective credibility evaluation method called C-Rank to compute trust 
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values of records in Deep Web databases is proposed, which constructs 
an S-R Credibility Graph for each record.

Xing Hao(Mobile 
Group)

Privacy Preserving towards Continuous Query in Location-based 
Services
Abstract:
With advances in wireless communication and mobile positioning 
technologies, location-based mobile services have been gaining 
increasingly popularity in recent years. Privacy preservation, including 
location privacy and query privacy, has recently received considerable 
attention for location-based mobile services. A lot of location cloaking 
approaches have been proposed for protecting the location privacy of 
mobile users. However, they mostly focus on anonymizing snapshot 
queries based on proximity of locations at query issued time. Therefore, 
most of them are ill-suited for continuous queries. In view of the 
privacy disclosure (including location and query privacy) and poor 
quality of service under continuous query anonymization, a p-privacy
model and a q-distortion model is proposed to balance the tradeoff 
between privacy preserving and quality of service. Meanwhile a 
temporal distortion model is proposed to measure location information 
loss during a time interval, and it is mapped to a temporal similar 
distance between two queries. Finally, a greedy cloaking algorithm 
(GCA) is proposed, which is applicable for both anonymizing snapshot 
queries and continuous queries. Average cloaking success rate, cloaking 
time, processing time and anonymization cost for successful requests is 
evaluated with increasing privacy level (k). Experimental results 
validate the efficiency and effectiveness of the proposed algorithm.

Wei Wang(XML 
Group)

Algebra-based Transform query optimization strategy  
Abstract:
XQuery/Update defines a special Transform query, which is similar to 
be hypothetical query in relation databases, and can be expressed as“Q 
when {U}”. In other words, the results of query Q are the same as the 
results after executing hypothetical update {U} on the original 
database, without actually updating database. The Transform queries 
need to copy the nodes in XML database and then update copied nodes, 
so it doesn’t affects the database. But Transform queries will usually 
copy and update a lot of nodes which are useless for query Q and result 
in high cost. It is critical for query optimization to decrease the number 
of copied nodes and the update operation. In this paper, we propose a 
set of rules for Transform query optimization techniques based on 
OrientXA. Which are implemented in OrientX3.0. 

Da Zhou(Mobile HF-Tree--An Update-Efficient Index for Flash Memory
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Group) Abstract:
Due to the expensive write cost of flash memory, traditional disk-based 
indexes have a poor update performance when directly applied to flash 
drives. In this talk, Da Zhou proposed a novel index called HF tree to 
improve the update performance of Flash memory, which integrates BF 
-tree with Tri-hash.

Zhichao
Liang(Mobile
Group)

Sub-Join--A Query Optimization Algorithm for Flash-based 
Database
Abstract:
Compared with Hard Drive Disk (HDD), SSD has a lot of advantages, 
such as high random read performance, low power consumption and 
lightweight form. Therefore it is envisioned to be next generation data 
storage instead of HDD. However, the enhancement of query 
performance for flash-based database is not the same as the IO ratio of 
SSD to HDD. The reason is existing databases which are designed for 
HDD can not take full advantage of high IO performance of SSD. In 
this paper, a new join algorithm, Sub-Join, is proposed. Sub-Join first 
projects the column of join and primary key as Sub-Table, and then 
executes join operations on Sub-Tables. Finally results are gotten from 
original table according to the result of join on Sub-Tables. The 
compared experiments with Oracle Berkeley DB show Sub-Join 
outperforms original indexed nested-loop join at the ratio of about 
40%~100%. The result strongly shows the high efficiency of this 
method.

2009.09.28  Venue: FL1, Meeting Room, Information Building

Xin(Luna)
Dong(AT&T 
Research) 

Data Integration with Uncertainty
Abstract:
Dr. Xin (Luna) Dong from Data Management Department at AT&T 
Research visited Web And Mobile Data Management (WAMDM) lab 
and gave an invited talk about Data Integration with Uncertainty. Her 
talk mainly focused on some important and valuable topics in uncertain 
data integration.

Xiangye
Xiao(Web&Mobie 
Group)

Efficient Co-Location Pattern Discovery
Abstract:
Dr. Xiangye Xiao gave a brief talk about her research topics when she 
was a PHD candidate in the Hong Kong University of Science and 
Technology. Her talk included efficient co-location pattern discovery 
and Web browsing on mobile devices. Besides, Dr. Xiangye Xiao 
proposed some ideas about future research.
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Jiaheng Lu(XML 
Group)

Keyword Search Techniques in Mobile Web
Abstract:
Dr. Jiaheng Lu received an a funding award about "keyword search in 
mobile web" from National Science Foundation China (NSFC). He 
gave a detailed demonstration about the project and proposed some 
possible topics.

2009.07.25  Venue: FL1, Meeting Room, Information Building

Qingsong
Guo(XML 
Group)

OrientX4.0 - Supproting Keyword Search
Abstract:
With the developing of xml technology, more and more pepole using 
xml data. In traditional, we use the standard query lanaguage XQuery to 
find the data we need, but we need to learn the "XQuery" and we must 
know the structure and content of the xml document. It is great 
challenge of naive users. For this popose, in the new 
edition-OrientX4.0, we supporting the xml keyword-search , which can 
solve the problem we meet by using XQuery and make pepole using 
xml more easier.

Wei Wang(XML 
Group)

OrientX4.0 System Development Report
Abstract:
the implement of XML keyword search

2009.07.18  Venue: FL1, Meeting Room, Information Building

Xing
Hao(Mobile
Group)

Probabilistic kNN Query in Road Network
Abstract:
Queries for moving objects in road network, especially kNN(k Nearest 
Neighbor) queries are very important and have received considerable 
attention. This speech discusses how to model the uncertainty data and 
process kNN queries in road network.

Yi Huang(Mobile 
Group)

Report on Privacy Protection Demo Appplication Development
Abstract:
In order to apply the current privacy protection algorithms and integrate 
them in the 863 Pervasive Computing project, we decided to develop a 
demonstration application.This report introduced the technical and 
functional characteristics of the application as well as the development 
plan.

Chunjie
Zhou(Mobile 
Group)

Query Processing over Interval-based Out-of-order Event Streams
Abstract:
Complex event processing has become increasingly important in 
modern applications, ranging from supply chain management for RFID 
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tracking to real-time intrusion detection. A key aspect of complex event 
processing is to extract patterns from event streams to make informed 
decisions in real-time. However, network latencies and machine failures 
may cause events to arrive out-of-order at the event processing engine. 
In addition, existing temporal pattern mining assumes that events do not 
have any duration. However, events in many real world applications 
have durations, and the relationships among these events are often 
complex. In this work, we propose solution to process both sequence 
and parallel pattern queries on out-of-order event streams. First, we 
analyze the preliminaries and the problems caused by out-of-order data 
arrival. We then propose a method to detect out-of-order event patterns. 
A new solution including time-interval to solve out-of-order problems 
is also introduced. Lastly, we conduct an experimental study 
demonstrating the effectiveness of our approach.

2009.07.11  Venue: FL1, Meeting Room, Information Building

Zhichao 
Liang(Mobile 
Group)

System Development Report of Flash Group
Abstract:
Our target is to develop a special flash-based DBMS,and we decide to 
do some changes on an existing open source DBMS to work it out. 
However, as a matter of fact,there are lots of open source systems. 
Which one is the best choice? After a detailed analysis, we believe 
MySQL,which contains the Berkeley DB as one of its storage 
engines,is the answer to our problem.

2009.07.04  Venue: FL1, Meeting Room, Information Building

Yukun Li (Web 
Group)

SIGMOD2009 Overview
Abstract:
Analyze the current hot research issues based on the accessed papers of 
SIGMOD2009, and introduce two papers of this conference.

Da Zhou (Mobile 
Group)

Flash Research Report
Abstract:
Flash-based database systems research becomes more and more hot. In 
sigmod2009 and VLDB2009, we are glad to see that there are some 
papers about the indexing, query processing and transaction processing. 
This report gives a coarse overview to the motivations and ideas of 
these papers.

Lizhen Fu (XML 
Group)

XML Labeling and Query Optimization in Sigmod09
Abstract:
Optimization of complex XQueries combining many XPath steps and 
joins is currently hindered by the absence of good cardinality 
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estimation and cost models for XQuery.Labeling schemes lie at the core 
of query processing for many XML database management systems. 
Designing labeling schemes for dynamic XML documents is an 
important problem that has received a lot of research attention. This 
presention introduce a new labeling scheme DDE and a new Runtime 
Optimization approach ROX in sigmod09.

2009.06.27  Venue: FL1, Meeting Room, Information Building

Zeping Lu 
(Mobile Group) 

Logging in Flash-based Database Systems
Abstract:
Synchronous transactional logging is the central mechanism for 
ensuring data persistency and recoverability in database systems. In this 
report,we discussed the solutions about exploiting different kinds of 
flash drives for synchronous logging and the recovery processing 
technologies related with them.

Xiangmei Hu 
(Web Group) 

Location-based Database Selection
Abstract:
Location_based database selection is a new topic,This report mainly 
gives an introducton about this topic,including why we choose this 
topic,what the problem is,some related work and how to solve the 
problem.

Jing Zhao (Web 
Group)

Snippet of Structured Data
Abstract:
It is expected that more and more people will search the web when they 
are on the move. But there are many limitations when we browsing the 
web page in mobile devices, especially small screen. A record in 
database usually contain lots of information, which is not useful for 
user and is so much for small screen. So we try to extract the most 
useful attributes to return to user.

2009.06.20  Venue: FL1, Meeting Room, Information Building

Qingsong Guo 
Wei Wang(XML 
Group)

XML Keyword-Search engine
Abstract:
XML has already became the de-facto of data exchange. So, how to 
query XML data is becoming very important. We can use the query 
language XQuery and XPath, which is the standard query language of 
XML recommended of W3C, to get what we need. But the user must be 
familiar with the query languages, and know the content and structure 
of XML data at first, so that the users can write the accurate query. It is 
not easy for most users, and it forcing the study of XML 
keyword-search, With it, we needn't learn the XML query language, 

322



and also, we needn't known the content and structure of XML. It make 
the query easier. The main features of next edition of OrientX(edition 
4.0) is to supprot the keyword-search, in the presentation, qingsong guo 
analized the existing XML keyword-search engine and made a 
comparison and get their features in common . And based it, we defined 
the main features of OrientX 4.0 . Wei wang analized the key 
technologies of xml keyword-search, such as the priciple and 
algorithms of computing SLCA, the ranking of query results.

2009.06.13  Venue: FL1, Meeting Room, Information Building

Lizhen Fu 
(XML)

Query Processing over Graph-structured XML Data
Abstract:
When XML documents are modeled as graphs, many research issues 
arise. In particular, there are many new challenges in query processing 
on graph-structured XML documents because traditional query 
processing techniques for tree-structured XML documents cannot be 
directly applied.

Yulei Fan 
(Mobile Group) 

MVCC on Flash Memory
Abstract:
First, Flash has the characteristic of Out-of-Place Updating, which lead 
to multiple version of data on Flash. Second, I introduce the basic 
priciple and some protocols of MVCC, such as MVSR, MVCR, 
MVTO, MV2PL and so on. Finally, I present some information of 
transaction in BDB and PG.

2009.06.06  Venue: FL1, Meeting Room, Information Building

Xiao Pan (Mobile 
Group)

Location,Location, Location
Abstract:
This talk focuses on the dicussion of Keynote of Christian S. Jensen on 
MDM2009.

Yukun Li (Web 
Group)

C-Query: Context-based Query in Personal DataSpace
Abstract:
Many users need to refer to content in existing files (pictures,tables, 
emails, web pages and etc.) when they write documents(programs, 
presentations, proposals and etc.), and often need to revisit the 
referenced files for review, revision or reconfirmation. In this paper, we 
propose an efficient method for users to revisit these refferenced files 
by identifying a context-based refference relationship.

2009.05.23  Venue: FL1, Meeting Room, Information Building
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WangWei 
GuoQingsong
(XML Group) 

OrientX system development report
Abstract:
The main features of OrientX3.5 version and its implementation.

2009.05.16  Venue: FL1, Meeting Room, Information Building

Da zhou (Mobile 
Group)

Random Write Optimization for SSD
Abstract:
Random write of SSD has low IO performance when compared with 
sequential/random read and write. This paper propose a novel method 
to avoid the low performance of random write.

Xian Tang 
(Mobile Group) 

buffer management policy
Abstract:
In this talk, I introduced several interesting buffer management 
algorithms, including some algorithms which work well on disk-based 
DBMS, others are buffer management algorithms on flash-based 
DBMS.

2009.04.25  Venue: FL1, Meeting Room, Information Building

Zhongyuan Wang 
(Web Group) 

An Indexing Framework for Efficient Retrieval on the Cloud
Abstract:
The emergence of the Cloud system has simplified the deployment of 
large-scale distributed systems for software vendors. The Cloud system 
provides a simple and unified interface between vendor and user, 
allowing vendors to focus more on the software itself rather than the 
underlying framework. Existing Cloud systems seek to improve 
performance by increasing parallelism. This paper explores an 
alternative solution, proposing an indexing framework for the Cloud 
system based on the structured overlay. Its indexing framework reduces 
the amount of data transferred inside the Cloud and facilitates the 
deployment of database back-end applications.

Xiangyu Zhang 
(Web Group) 

Data Management in the Cloud - Limitations and Opportunities
Abstract:
Analysed data management applications that are suitable to move to the 
cloud platform and discussed remaining challenges of such movement.

2009.04.18  Venue: FL1, Meeting Room, Information Building

Junfeng Zhou 
(XML Group) 

MCN: A New Semantics Towards Effective XML Keyword Search
Abstract:
In this talk, We propose a new XML Keyword Search Semantics aiming 
at capturing meaningful results while avoiding returning meaningless 
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results. This contribution is based on the observation that when talking 
about relationship between data elements, users query intension is 
always based on the relationship of real word entities.

Fangjiao Jiang 
(Web Group) 

Selectivity Estimation for Exclusive Query Translatio in Deep Web 
Data Integration
Abstract:
In Deep Web data integration, some Web database interfaces express 
exclusive predicate,which permits only one predicate to be selected at a 
time. Accurately and efficiently estimating the selectivity of each Qe is 
of critical importance to optimal query translation. In this paper, we 
mainly focus on the selectivity estimation on infinite-value attribute 
which is more difficult than that on key attribute and categorical 
attribute. We start with two observations

2009.04.11  Venue: FL1, Meeting Room, Information Building

Yukun Li (Web 
Group)

Summary of ICDE2009 keynotes
Abstract:
This slides give a summary on three keynotes of ICDE2009.

Da Zhou (mobile 
Group)

ICDE 2009 Introduction
Abstract:
ICDE is a very important international meeting about data 
management. In this conference, there are a lot of works related to 
flash-based database. transaction becomes an important topic in this 
field.

Zhichao Liang 
(Flash Group) 

Demo in ICDE 2009 Conference
Abstract:
WEST(Web Entity Search Technologies),instead of returning webpages 
that are related to any people who happened to have the queried name,is 
to output a set of clusters of webpages,one cluster per each distinct 
person.Fa is a new system for automated diagnosis of system failures 
that is designed to address the SLO violations.UQLIPS is a Web-based 
integrated platform which performs online detection of near-duplicate 
occurrences over continuous video streams,as well as retrieval of 
near-duplicate clips from segmented video collections.

2009.04.04  Venue: FL1, Meeting Room, Information Building

Xiao Pan 
(Mobile Group) 

Distortion-based Anonymity towards Continuous Query in Mobile 
Services
Abstract:
Privacy preservation has recently received considerable attention for 
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location-based mobile services. A lot of location cloaking approaches 
have been proposed for protecting the location privacy of mobile users. 
In this paper, we present continuous query privacy disclosed and worst 
QoS resulting from anonymizing continuous query.

Chunjie Zhou 
(Mobile Group) 

Complex Event Detection in Pervasive Computing
Abstract:
In pervasive computing environments, wide deployment of sensor 
devices has generated an unprecedented volume of atomic events. 
However, most applications such as healthcare, surveillance and facility 
management, as well as environmental monitoring require such events 
to be filtered and correlated for complex event detection. Therefore 
how to extract interesting, useful and complex events from low-level 
atomic events is becoming more and more important in daily life. Due 
to the increasing importance of complex event detection, this paper 
proposes a framework of Complex Event Detection and Operation 
(CEDO) in pervasive computing. It gives an event model and extends 
current detection by incorporating temporal and spatial settings of 
events and different levels of granularity for event representation. We 
first show research issues, related works, and main research problems 
in this area. Then our current research works and the preliminary results 
are introduced. Finally, the research plan of my PhD project is 
presented for discussion.

2009.03.28  Venue: FL1, Meeting Room, Information Building

Fangjiao Jiang 
(Web Group) 

Deep Web Integration:Querying Structured Data on the Deep Web
Abstract:
In this report, I will introduce the background of Deep Web, the key 
technologies of Deep Web data integration and the active research 
groups. Then I will compare the metaquerier with metasearch engine. 
Finally I will give the research problems in the future.

Xiangmei Hu 
(Web Group) 

Database selection
Abstract:
Database selection is a important topic,this report gives an introduciton 
to database selection and then introduces our new problem.

2009.03.21  Venue: FL1, Meeting Room, Information Building

Yukun Li (Web 
Group)

CoreSpace: A personal dataspace framework based on user 
activity
Abstract:
Present a new framework of personal dataspace by hightlighting 
relationship between users and average objects, which provides more 
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effective approaches of querying personal dataspace.

Yubo Kou (Web 
Group)

An efficient method to Identify personal task
Abstract:
Present a new method to identify personal task based on user access 
activity.

2009.03.14  Venue: FL1, Meeting Room, Information Building

Fei Huang 
(Cloud
Computing) 

Research Report on Map/Reduce Framework Based on Hadoop
Abstract:
Map/Reduce is the crucial algorithm of Hadoop. It is a easy but 
powerful algorithm that can solve the problems based on mass data. In 
this report,I will introduce the concept of Hadoop and Map/Reduce, 
then the detail of how the Map/Reduce framework do jobs.

Yi Hu (Web 
Group)

Introduction to HBase
Abstract:
As sub-project of Hadooop, HBase focus on providing storage for the 
Hadoop Distributed Computing Environment. HBase is a table 
coloum-oriented operating. Its three-layer file system provides the 
feasible scheme for the distributing data storage while its three-layer 
architecture solves the problems of region assignment and region 
location. To get intuitionistic understanding of HBase, comparison with 
MySQL has been made in the test.

Wei Chen (Web 
Group)

The Progress of C-DBLP's Development and Future Plans
Abstract:
The develop team of C-DBLP system has added some attractive 
functions and features to the site based on user's feedback and 
researching demand since the release of C-DBLP. Besides, we are 
working on some interesting problems such as Name Disambiguation 
and Mining of Relations among Authors. This report presented the 
progress of C-DBLP's development and showed intuitive approaches to 
the research problems in C-DBLP. Also, we made a detailed plan for 
future work in C-DBLP.

2009.03.07  Venue: FL1, Meeting Room, Information Building

Linlin Jia (Web 
Group)

Study on Fast Approxmate Membership checking
Abstract:
Introduce ISH for approximate membership checking and analyze its 
disadvantage. We propose a new index and a corrresponding algorithm, 
the experiments indicate that the new method is more efficient than 
ISH.
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Junjin Xu (XML 
Group)

String Similarity
Abstract:
This report introduces the methods about counting string similarity, 
including edit distance and gram_based similarity.

2009.02.28  Venue: FL1, Meeting Room, Information Building

Jing Zhao (Web 
Group)

Faceted Search
Abstract:
A introduction to faceted search, including the evolution of faceted 
search, the differences between faceted search and navigational search, 
direct search, and differences between cluster, tag and facet.

Wei Chen (Web 
Group)

Automatic Construction of Facet Hierarchies
Abstract:
Facet hierarchies are the main forms of data organization in facet search 
system. They are used to support facet-based navigation and refine the 
search results through different facets. The construction of facet 
hierarchies is one of the most important research topics in facet search. 
Since most facet hierarchies in current systems are built mannually, the 
automatic construction method is in great need. This presentation 
addressed W. Dakka and P. G. Ipeirotis's research progress in automatic 
construction of facet hierarchies.

2009.01.11  Venue: FL1, Meeting Room, Information Building

Junfeng Zhou 
(XML Group) 

Survey of XML Database Technology
Abstract:
In this talk, I give the main topics about XML database and explain the 
existing solutions using simple examples.

Lizhen Fu (XML 
Group)

Graph DataBases
Abstract:
This presentation introduces some rearch hotspots on Graph 
DataBases including the construction of the index, the processing of 
containment queryquery and reachability query answering.
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