
www.scichina.com
info.scichina.com

www.springer.com/scp
www.springerlink.com

Efficient processing of partially specified twig
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As huge volumes of data are organized or exported in tree-structured form, it is quite necessary to
extract useful information from these data collections using effective and efficient query processing
methods. A natural way of retrieving desired information from XML documents is using twig pattern
(TP), which is, actually, the core component of existing XML query languages. Twig pattern possesses
the inherent feature that query nodes on the same path have concrete precedence relationships. It
is this feature that makes it infeasible in many actual scenarios. This has driven the requirement of
relaxing the complete specification of a twig pattern to express more flexible semantic constraints in a
single query expression. In this paper, we focus on query evaluation of partially specified twig pattern
(PSTP) queries, through which we can reap the most flexibility of specifying partial semantic constraints
in a query expression. We propose an extension to XPath through introducing two Samepath axes to
support partial semantic constraints in a concise but effective way. Then we propose a stack based
algorithm, pTwigStack, to process a PSTP holistically without deriving the concrete twig patterns and
then processing them one by one. Further, we propose two DTD schema based optimization methods
to improve the performance of pTwigStack algorithm. Our experimental results on various datasets
indicate that our method performs significantly better than existing ones when processing PSTPs.

XML database, query processing, partially specified twig pattern, holistic twig join, XPath

1 Introduction

As a de facto standard for information represen-
tation and exchange over the Internet, XML has
been used extensively in many applications. Query
capabilities are provided through twig patterns
(TPs), which are the core components for standard
XML query languages, e.g. XPath (http://www.

w3.org/TR/xpath20/) and XQuery (http://www.
w3.org/TR/xquery/). A TP can be natu-
rally represented as a node-labeled tree, where
each edge denotes either Parent-Child (P-C) or
Ancestor-Descendant (A-D) relationship. For ex-
ample, the TP written in XPath format, Q1:
“//book[.//author/name= ‘Mike’]/title”, selects

Received January 18, 2008; accepted November 5, 2008

doi: 10.1007/s11432-009-0152-3
†Corresponding author (email: xfmeng@ruc.edu.cn)

Supported partially by the National Natural Science Foundation of China (Grant No. 60833005), the National High-Tech Research & De-

velopment Program of China (Grant Nos. 2007AA01Z155, 2009AA011904), and the National Basic Research Program of China (Grant No.

2003CB317000)

Citation: Zhou J F, Meng X F, Ling T W. Efficient processing of partially specified twig pattern queries. Sci China Ser F-Inf Sci, 2009,

52(10): 1830–1847, doi: 10.1007/s11432-009-0152-3



title elements which are children of some book ele-
ments written by an author named “Mike”. While
many existing algorithms[1−4] can efficiently pro-
cess a given TP, an inherent restrictive feature of
TP is that a concrete precedence order between
the nodes in every path of the query expression
should be clearly specified. In Q1, for example,
book should be an ancestor of author; thus Q1 can
only be used to retrieve information from D2 in
Figure 1, not D1.

Figure 1 An example data organization of different hierarchical

structures.

In fact, XQuery and XPath allow no concrete
precedence order between query nodes. For exam-
ple,
Q2: //author[child::name=“Mike”]/descendant-
or-self::*/ancestor-or-self::book/child::title,
can also be used to find title elements which are
children of book elements which are written by an
author named “Mike” from D2. Although book
and author should be on the same path, we know
nothing about which one is the ancestor of the
other or vice versa. The benefits of using Q2 is ob-
vious; it can be used to retrieve useful information
from both D1 and D2 without considering their
structural heterogeneity. However, such a query
cannot be easily evaluated. Although Olteanu et
al.[5,6] show that using special rules, XPath queries
with reverse axes, e.g. Q2, can be equivalently

rewritten as a set of TPs, they also show that this
transformation may lead to an exponential blowup
of the number of TPs. Further, Gottlob et al.[7]

show that the combined complexity of XPath is
P-hard (i.e., hard for polynomial time).

Usually in many scenarios, we cannot specify
the precedence relationships of query nodes when
we formulate query expression. 1) The document
structure is not available. 2) Extracting desired in-
formation from XML documents of structural het-
erogeneity. It is complex to use TPs in conjunc-
tion with data integration mapping rules between
a global schema and local schema, and may cause
errors since maintaining the mapping relationship
may involve extensive manual intervention. 3) The
change of business strategy and corporate environ-
ments may cause the data to be organized with
a different structure, which makes existing path
expression that depends on particular hierarchical
structure no longer feasible.

Although keyword based methods[8,9] can be
used freely without schema knowledge, only lim-
ited semantic constraints can be contained in
such a query expression. Query relaxation based
methods[10,11] will also produce a large number of
relaxed query expressions by relaxation operations,
which will further result in too many approximate
answers.

In ref. [12], the notion of partially specified twig
pattern (PSTP) was proposed to tackle this prob-
lem. Compared with TP, PSTP provides us with
the most flexibility: 1) we can specify the full struc-
tural constraints if the schema or document struc-
ture is available; 2) we can specify just keywords to
retrieve desired information if the schema or docu-
ment structure is not available; and 3) we can make
full use of whatever partial knowledge we have to
specify more flexible semantic constraints.

As a PSTP may correspond to multiple TPs, a
naive evaluation method[12] for PSTP is as follows:

Let Q be a PSTP, Q1, Q2, . . . , Qn be TPs de-
rived from Q, R,R1, R2, . . . , Rn be the answer sets
of Q,Q1, Q2, . . . , Qn on an XML document D, re-
spectively. Then R =

⋃
i∈[1,n] Ri.

While PSTP can express more flexible semantic
information, it is not feasible to directly apply it
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in practice, because n may be too large and thus
has great impact on query performance. Our con-
tributions are as follows:

1. We propose an extension to XPath by intro-
ducing two Samepath axes to enhance the expres-
siveness of XPath.

2. We give a detailed analysis of the challenges
of evaluating PSTP, and then propose an efficient
algorithm, pTwigStack, to process a PSTP holis-
tically. Our method possesses the following three
features: scanning only once; no redundant output;
and bounded space complexity.

3. We implemente related algorithms and make
comparison between our methods and existing
ones. Experimental results demonstrate that our
method is efficient in terms of various evaluation
metrics.

2 Preliminaries

2.1 Data model and numbering schemes

An XML document can be modeled as a node-
labeled tree, where nodes represent elements, at-
tributes and text data, while edges represent direct
nesting relationship between nodes in the tree. For-
mally, tree T = (V,E,Σ ,M), where V is the node
set and there is a unique root node R in V , E is
the edge set, and no cycle among the edges is per-
mitted, Σ is an alphabet of labels and text values,
M is a function that maps each node to its label.

Most XML query processing algorithms use a
special positional representation to represent an
element; we use pre(v), which is compatible with
preorder numbering, to denote the numerical id as-
signed to node v, in the sense that if a node v1 pre-
cedes a node v2 in the preorder left-to-right depth-
first traversal of the tree, then pre(v1) <pre(v2).
This positional representation can be easily imple-
mented using either region encoding[13] or Dewey
ID[14]. In the first case, pre(v) equals a tuple of
three fields: (start; end; level). We say that el-
ement u is an ancestor of element v if and only
if u.start < v.start < u.end. u is the parent
of v if and only if u.start < v.start < u.end

and u.level = v.level − 1. In the second case,
if u is the root node, label(u) = 1, otherwise,

label(u) = label(v).x, where u is the xth child of v,
and “.” in “label(v).x” is the concatenation opera-
tor which is different from the “.” in u.start, u.end

and u.level in the previous sentences.

2.2 Twig pattern (TP) matching

TPs are used to match data fragments from XML
data. The edges in a TP indicate either Parent-
Child (P-C) or Ancestor-Descendant (A-D) rela-
tionship of query nodes. For convenience, we use
“node” to denote query node and “element” to de-
note data element in an XML document.

Matching a TP against an XML document is to
find all occurrences of the TP in the database. For-
mally, given a TP Q and an XML document D, a
match of Q in D is identified by a mapping from
nodes in Q to elements in D, such that: i) the query
node predicates are satisfied by the corresponding
database elements; ii) the structural relationships
(P-C or A-D) among query nodes are satisfied by
the corresponding database elements. The answer
to query Q with n nodes can be represented as a
n-array tuple (e1, e2, . . . , en) which consists of the
database elements that identify a distinct match of
Q in D.

3 The Samepath axis

Definition 1 (SamepathStep). A SamepathStep

returns a sequence of nodes that are reachable from
the context node via a specified axis (PC-samepath
or AD-samepath axis). The SamepathStep has
two parts: an axis, which defines the “direction
of movement” for the step, and a node test, which
selects nodes based on their kind and name. The
resulting node sequence is returned in document
order.

Definition 2 (PC-samepath axis (“→”)). The
PC-samepath axis contains the set of data elements
that are children and parent of the context node.

Definition 3. (AD-samepath axis (“⇒”)).
The AD-samepath axis is the transitive closure of
the PC-samepath axis; it contains the set of data
elements that are descendant and ancestor of the
context node.

There are totally 82 rules in the current XPath
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grammar, among which only rules 26th and 28th
have to be modified. As shown in Figure 2,
SamepathStep is further defined by the new rules
[n1] and [n2]. It consists of two axes, i.e. PC-
samepath and AD-samepath. Except the two axes,
we also introduce two separators, “→” and “⇒”,
to indicate the semantic constraints of being on
the same path. Thus a path expression consisting
of a series of step expressions may be separated
by “→” or “⇒”. For example, “book⇒author” is
short for “child::book/AD-samepath::author” and
will return all authors that are descendant or ances-
tor of book. As a result, there are totally 84 rules
in the extended XPath grammar with two of them
modified and two newly added. This extension to
XPath provides users with the ability to specify
the semantic constraints of two nodes on the same
path in a very simple way. The Samepath axis is
similar to the current XPath axes insofar as it re-
turns a set of nodes corresponding to the context
node. We can use a node test and predicates to
filter those undesired nodes.

Figure 2 EBNF grammar for the extended XPath.

If both A and B are query nodes, we use “A →
B” to denote that A is the parent node of B or
vice versa, “A ⇒ B” denotes that A and B are on
the same path. If eA and eB are data elements of
tag A and B, “eA → eB” or “eA ⇒ eB” denotes
that eA and eB satisfy the structural constraints of
“A → B” or “A ⇒ B”, respectively.

Figure 3 Two partially specified twig patterns.

Example 1. Consider query Q3: “find
the title of the books that have an author

named ‘John’ from the two documents in Fig-
ure 1”. For D1, the query should be Q4: //au-
thor[.//name=“John”]//book//title; for D2, the
query should be Q5: //book[.//author//name=
“John”]//title. With Samepath axis, Q4 and
Q5 can be replaced by a PSTP with Samepath
axis in either Figure 3(a) or Figure 3(b), which
can be written in extended XPath format as
Q6: author[.//name=“John”]⇒book//title or Q7:
book[.⇒author//name=“John”]//title. Further,
PSTP expression can be seamlessly incorporated
into XQuery. For Q3, our solution using the
Samepath axis is as follows.

for $a in doc()//author,

$t in $a⇒book//title

where $a//name=“John”

return $t

Although the Samepath axis can be used to spec-
ify the semantic constraints of two nodes on the
same path, it only involves the relationship of two
nodes. Considering the PSTP in Figure 4(a), we
can easily understand that the semantics of A ⇒ B

equals A//B or B[.//A]. Further, considering the
PSTP expression A ⇒ B ⇒ C and its derived TPs
in Figure 4(b), where A and B should be on the
same path and B and C should be on the same
path, but not necessary for A and C. A ⇒ B ⇒ C

may correspond to B[.//A]//C since elements with
tag A and C are not required to be on the same
path. The PSTP in Figure 4(c) has not been spec-
ified with a concrete root node, and the related
TPs are not shown due to limited space. A prob-
lem we should notice is that node B in the PSTP
in Figure 4(c) should be on the same path with A,
and D should be on the same path with C, which
means that either B or D or both of them may be
ancestors of A and C.

4 Problems and our solutions

As we know from the above description that some
PSTPs may not have been specified with a con-
crete root node, like the one in Figure 4(c), which
corresponds to a keyword-like query, the difference
is that each part of the PSTP is also a path expres-
sion that may contain partial semantic constraints.
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Such a query can be evaluated easily by extend-
ing existing keyword based methods. We present
in this paper only query processing method for
PSTPs that are specified with concrete root nodes,
like the ones in Figure 4(a) and (b). Moreover, all
results presented in this section are based on A-D
and AD-samepath relationships. In this section,
we first analyze existing stack based TP matching
method, and then show challenges of evaluating
PSTP.

Figure 4 Three PSTPs and their corresponding TPs.

4.1 Insight into the TwigStack algorithm

In the TwigStack algorithm, each query node q in
a TP is associated with a stack Sq, a cursor Cq

and a data stream Tq. Cq can point to some el-
ements in Tq, especially, we say that Cq is NULL
if all elements in Tq are processed, and Cq is also
used to denote the element it points to. Before
executing, all cursors point to the first elements in
each data stream. We use Advance(Cq) to make Cq

pointing to the next element. The self-explaining
functions isRoot(q) and isLeaf(q) are used to de-
termine whether q is a root node or a leaf node.
The function children(q) is used to return all the
child nodes of q and parent(q) is used to return the
parent node of q.

TwigStack works in two steps. In the first step, it
repeatedly calls getNext(root) to get a query node

q with Solution Extension1), and then Cq is pro-
cessed by either being pushed into stack as a use-
ful element, or being skipped as a useless element.
Such operations will repeat until all elements of
leaf nodes are processed. At the end of this step,
TwigStack will produce all path solutions. In the
second step, all produced path solutions are merge-
joined to get the final answers. When all edges in
the TP are A-D edges, TwigStack guarantees that
both its time and I/O complexity are independent
of the size of partial matches to any root-to-leaf
path.

In the TwigStack algorithm, the objective of get-
Next(root) is finding the first element that may
participate in final answers from the elements that
are still not being processed, and Solution Exten-
sion is used here to guide the execution of get-
Next(root). As shown in Figure 5, QAD is a TP
with just A-D edges. Suppose B is returned by
getNext(A). From the definition of Solution Exten-
sion we know that it guarantees that the structural
constraints below B are satisfied, which is denoted
by (1) with arrows in Figure 5(a). Thus whether
CB is a useful element is determined by just check-
ing whether the top element in SA is an ancestor of
CB, which is denoted by (2) with an arrow. Obvi-
ously, Solution Extension, (1) with arrows, works
in down direction in TwigStack; while useful ele-
ment, (2) with an arrow, works in up direction.

Figure 5 Processing strategy for different methods.

Example 2. For D3 and Q11 in Figure 6, the
first call of getNext(A) in TwigStack will return B

with cursor CB pointing to b1, which means that
all descendant nodes of B have Solution Extension.
Among all cursors of descendant of B, CB has the
smallest preorder value. However, as no element
in SA is ancestor of b1, b1 is skipped as a useless

1) A node q has a Solution Extension if there is a solution for the sub query rooted at q composed entirely of the cursor elements of

the query nodes in the sub query. Note that if q has a Solution Extension, Cq is the ancestor of all cursor elements in the sub query tree

nodes, and pre(Cq) is smaller than all other elements of query nodes in the subtree rooted at q, based on the strictly nested property

of XML data.
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element instead of being pushed into SB. In this
example, the useful elements are a1, b2, b3 and c1.
After c1 is processed, the stack encoding is shown
in Figure 6(c) and then two path solutions are pro-
duced, they are (a1, b2, c1) and (a1, b3, c1).

Thus we have the following observations.
1. Query nodes in a TP are processed with a

special order in existing methods, i.e. left-to-right
depth-first traversing the TP. For Q11, the order is
A,B,C.

2. Query node q returned by getNext(root) must
have a Solution Extension, from which we can get
an element Cq for further processing. Cq can be ei-
ther pushed into stack if it can participate in final
answers, or skipped directly as a useless one.

3. If q is the root node or otherwise, Cq satisfies
the structural relationship of edge < parent(q), q >

with the top element in stack Sparent(q) (if such el-
ement exists), then Cq is a useful element, which
means that Cq can participate in final answers.

4. All elements in the same stack (from bot-
tom to top) are guaranteed to lie on a root-to-
leaf path according to the given XML document,
and elements in different stacks are linked together
through pointers (from descendant to ancestor).

Figure 6 An example of query processing of the TwigStack al-

gorithm.

4.2 Challenges and our solutions

Although TwigStack guarantees that all elements
are scanned only once and no redundant output,
the four aspects described above hold only for a
TP, not a PSTP. Similarly, we need to resolve the
following problems when evaluating a PSTP.
4.2.1 Query node processing order. As a PSTP
may correspond to multiple TPs, e.g. Q9 in Figure
4 corresponds to 7 TPs, a naive way is processing
each one of them using existing methods. Obvi-
ously, this will cause high processing cost. In our

method, we process a Samepath axis without de-
composing it into two P-C or A-D axes, thus we
can process a PSTP without considering the de-
rived TPs. In this way, the query node processing
order for Q9 is A,B,C.
4.2.2 Returning node. For the same reason,
when processing a PSTP, Solution Extension can-
not be used correctly in getNext as an indicator to
tell whether an element is useless. For example,
consider Q11 and D3 in Figure 6. If the current
cursors CA, CB and CC point to a2, b4 and c2, we
can skip b4 directly since b4 appears before c2 and
it is not the ancestor of c2. But for Q9 in Figure
4, Q11 is just one of the derived TPs of Q9. Al-
though b4 is useless for Q11, for Q9, however, we
cannot say that b4 is useless by just checking Q11,
b4 may be useful for other derived TPs since B also
appears at leaf node in two derived TPs of Q9. In
this case, we should return B for further processing
to avoid losing answers of Q9. For this problem, we
propose a notion partial solution extension (PSE)
to guide the execution of getNext. Intuitively, if q

has a PSE, q corresponds to at least one derived TP
in which q has a Solution Extension, which means
that Cq may participate in final answers of these
derived TPs.
4.2.3 Pushing element. In TwigStack, an ele-
ment Cq corresponding to q returned by get-
Next(root) can be pushed into stack if Cq can par-
ticipate in at least one final result, i.e. Cq is a
useful element. Similarly, in our method, Cq will
be pushed into stack if and only if it is a useful ele-
ment. Then what is a useful element for PSTP? In
TwigStack, we only need to check whether the top
element in Sparent(q) satisfies the structural relation-
ship of edge < parent(q), q > with Cq. However, we
need to check other related elements for PSTP so
as not to lose any result. For example, consider Q9

in Figure 4(b) and D4 in Figure 7(a). Obviously,
a1, b1 and c1 are useful elements since B[.//A]//C
and B//C[.//A] are two derived TPs of Q9; thus
the three elements are pushed into SA, SB and SC.
After that, CA, CB and CC point to a2, b2 and c2,
respectively. Because A appears at leaf node of
three derived TPs of Q9, after a2 is returned by
getNext(root), we need to check whether a2 can
participate in final answers with elements in stacks.
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Obviously, a2 is a useful element for Q9. For an-
other example, consider D3 in Figure 6 and Q9 in
Figure 4. Suppose CA, CB and CC point to a2, b4

and c2, respectively. Because B also appears at leaf
node of some derived TPs, b4 is first returned by
getNext(root) for further processing. Although b4

can satisfy the structural constraint of A ⇒ B with
top(SA), i.e. a1 ⇒ b4, it is a useless element for Q9

since no element with tag C can satisfy the struc-
tural constraint of B ⇒ C. We propose a notion,
Useful Element, in the next section as a metric to
tackle this problem.

Figure 7 Three XML documents.

4.2.4 Stack organization. For a PSTP, a query
node is the ancestor of another one in some de-
rived TPs; in other derived TPs, however, it may
be a descendant of that node. In our method, data
elements in the same stack (from bottom to top)
lie on a root-to-leaf path in an XML document,
and data elements in different stacks are linked to-
gether through pointers from elements in the stack
of descendant query node to elements in stack of
ancestor query node. For example, consider Q9 in
Figure 4 and D4 in Figure 7. a1, b1 and c1 satisfy
the structural constraint of A ⇒ B ⇒ C, so they
should be pushed into SA, SB and SC , respectively.
Although a1 is a descendant of b1, the pointer be-
tween them starts with b1 and ends at a1.

5 Related notions

From the discussion in section 4 we know that the
first problem of evaluating PSTPs is: in what con-
dition a query node q should be returned by get-
Next(root)? For example, QS in Figure 5(b) is
a PSTP, B and C have the Samepath relation-
ship, so each of them can be a leaf node, which
is denoted by (1) with arrows. Suppose B is re-

turned by getNext(A) in our method. Then CB

appears before CC and maybe they are not on the
same path. We cannot say that, in this case, CB is
useless. So the objective of getNext(root) can be
stated as not checking whether an element is use-
ful, but whether it is useless. If it is useless, the
element will be skipped directly, otherwise, it will
be returned for further processing. In the following
definition, hasSE(q) checks whether q has a Solu-
tion Extension.

Definition 4 (partial solution extension
(PSE)). Let Q be a PSTP, we say that a query
node q of Q has a PSE if and only if q satisfies any
one of the following conditions:

1. isLeaf(q)∧Cq �=NULL, or,
2. for each q′ ∈ children(q)
(1) q//q′ ∧ Cq//Cq′∧hasSE(q′), or,
(2) q ⇒ q′∧hasSE(q′) ∧ (pre(Cq) < pre(Cq′) ∨

Cq′ ⇒ Cq).
Case 1 is straightforward. Case 2 consists of two

independent conditions. (1) means that if q and
q′ have A-D relationship, the current elements of
q and q′, i.e. Cq and Cq′ , should satisfy the struc-
tural constraint of q//q′, i.e. Cq//Cq′ , at the same
time, q′ should have Solution Extension. For (2),
consider D5 in Figure 7(b) and Q9 in Figure 4(b),
and suppose CA, CB and CC point to a1, b1 and
c1, respectively. As B and C have the Samepath
relationship, C has a PSE and b1 ⇒ c1, which is
equal to q ⇒ q′∧hasSE(q′) ∧ Cq ⇒ Cq′ , so we say
that B has a PSE since b1 may participate in fi-
nal answers. Consider D6 in Figure 7(c) and Q9,
and suppose CA, CB and CC point to a1, b1 and
c1, respectively. In this case, A and B have the
Samepath relationship, B has a PSE, and a1 and
b1 are not on the same path, which is equal to q ⇒
q′∧hasSE(q′) ∧ pre(Cq) < pre(Cq′) ∧ ¬(Cq ⇒ Cq′).
However, we cannot say that a1 is useless just ac-
cording to the structural relationship between a1

and b1, because A can be a leaf node in some de-
rived TPs shown in Figure 4(b). In such a case, A

has a PSE and the union of the two cases is equal
to (2).

By the definition of PSE, we can easily check
whether a query node q has PSE. However, Cq

may not participate in final answers and we need
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to check whether Cq is useful, which forms the sec-
ond problem, i.e. in what condition should Cq be
pushed into stack Sq? From (2) with arrow in
Figure 5(b) we know that this operation should
include checking the satisfiability of all Samepath
relationships that are directly related with B from
both up and down directions. We propose a notion,
Useful Element, to answer this problem, where
top(Sq) returns the top element from stack Sq and
isEmpty(Sp) checks whether Sp is empty. For two
elements ep and eq, isHold(ep, eq, 〈p, q〉) is used to
check whether ep and eq satisfy the structural con-
straint between query nodes p and q.

Definition 5 (Useful element). An element
pointed by Cq (q is returned by getNext(root) in
our method) is a useful element if and only if any
one of the following conditions holds:

1. isRoot(q)∧hasSE(q), or,
2. isHold(top(Sparent(q)), Cq, 〈parent(q), q〉)∧
(1) hasSE(q), or,
(2) for each child q′ of q, if isHold(Cq, Cq′ , 〈q, q′〉)

= FALSE, then isHold(Cq,top(Sq′), 〈q, q′〉) =
TRUE

Intuitively, Cq is useful means that it can par-
ticipate in final answers. The fact we should un-
derstand is that q has a PSE does not means that
it must have a Solution Extension. Because the
Samepath axis is bidirectional in essence, if q has
not a Solution Extension, we need to check for each
child node q′ of q, whether there exists in Sq′ el-
ements that can satisfy the structural constraint
between q and q′ with Cq.

Case 1 means that if q is the root node and q

has Solution Extension, then Cq is a useful ele-
ment. Case 2 means that if q is not the root node,
Cq must satisfies the structural constraint between
parent(q) and q with top(Sparent(q)); moreover, q

must have a Solution Extension (shown as “(1)”),
or otherwise, for any child node q′, if Cq and Cq′

do not satisfy the structural constraints between q

and q′, then Cq and the top element of Sp′ must
satisfy the structural constraints between q and q′.
For example, consider D3 in Figure 6(a) and Q9 in
Figure 4(b), and suppose CA, CB and CC point to
a2, b4 and c2, respectively. From Definition 4 we
know that B has a PSE, and the top element a1

in SA satisfies the structural constraint of A ⇒ B,
i.e. a1 ⇒ b4. However, we still cannot say that
b4 is a useful element. As b4 and c2 do not satisfy
the structural constraint of B ⇒ C, B has not a
Solution Extension. Further, b4 does not satisfy
the second condition “(2)” of “2”, i.e. there is no
element (in SC) that can satisfy the structural con-
straint of B ⇒ C with b4. Therefore, b4 is a useless
element and can be safely discarded.

6 PSTP matching

Similarly to the TwigStack algorithm, in our
method, each query node q in the given PSTP is
associated with a stack Sq, a cursor Cq and a data
stream Tq. Sq, Cq and Tq have the same meaning as
that of TwigStack, and some functions used in our
method are the same as that described in section
4.1.

6.1 Algorithm: pTwigStack

As shown in Algorithm 1, in the first phase (lines
1–8), as long as not all elements in element streams
of leaf nodes are processed, getNext(root) is called
repeatedly in line 2 to get a query node q with a
PSE. If Cq is useful (determined by isUsefulEle(q)
in line 3), it will be pushed into Sq in line 4,
ModifyPointer(q) is used to modify related pointers
in line 5. In line 6, elements that are not processed
and have a smaller numerical id value than pre(Cq)
are processed by calling ProcessOtherEle(q), i.e.
all elements appear before Cq are processed all to-
gether with Cq if their corresponding query nodes
are descendant of q in the given PSTP. In line 7, Cq

is moved to the next element in Tq. When an ele-
ment is popped from stack, all its related path solu-
tions are produced by calling cleanStack(). In line
8, all remaining path solutions will be produced by
calling outputPaths(). In the second phase, these
path solutions are merge-joined to compute the fi-
nal answers by calling MergeAllPathSolution() in
line 9. Noting that path solutions should be out-
putted in root-to-leaf order so that they can be eas-
ily merged together to form the final answers, so we
need to block some path solutions during output,
just as showSolutionsWithBlocking[1] does.
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Algorithm 1: pTwigStack(root)

1: while ¬end(root) do

2: q = getNext(root)

3: if isUsefulEle(q) then

4: Push(Cq , Sq, NULL)

5: ModifyPointer(q)

6: ProcessOtherEle(q)

7: Advance(Cq )

8: outputPaths()

9: MergeAllPathSolution()

Function: end(q)

1: return ∀qi ∈ subtreeNodes(q): isLeaf(qi)∧end(Cqi )

Procedure: ModifiyPointer(q)

1: for p ∈ relatedNodes(q) do

2: if p//q ∨ p⇒ q then top(Sq).ptr=top(Sp)

3: if q ⇒ p then top(Sp).ptr=top(Sq)

Function: isUsefulEle(q)

1: bUseful=FALSE; bFlag=TRUE

2: if isRoot(q)∧hasSE(q) then bUseful=TRUE

3: if ¬isRoot(q)∧isHold(top(Sparent(q)), Cq, 〈parent(q), q〉)
4: if hasSE(q) then bUseful=TRUE

5: else for each q′ ∈ children(q)

6: if ¬isHold(Cq , Cq′ , 〈q, q′〉)∧
¬isHold(Cq ,top(Sq′ ), 〈q, q′〉) then bFlag = FALSE

7: if bFlag=TRUE then bUseful=TRUE

8: return bUseful

Procedure: Push(Cq , Sq, ptr)

1: push the pair (Cq , ptr) onto stack Sq

Procedure: cleanStack(Sp, Cq)

1: Push all useful elements that are descendant of each

popped element of Sp, which does not satisfy the

structural relationship of 〈p, q〉 with Cq , then

output related path solutions

Procedure: ProcessOtherEle(q)

1: for p ∈ children(q) do

2: while q ⇒ p∧pre(Cq) < pre(Cp) do

3: cleanStack(Sq , Cp)

4: if isUsefulEle(p)=TRUE then

5: Push(Cp, Sp, Cq)

6: ModifyPointer(p)

7: ProcessOtherEle(p)

8: Advance(Cp)

getNext, as shown in Algorithm 2, is the core
function called in pTwigStack, in which we need
to consider A-D and the Samepath relationship si-
multaneously. getNext is used here to get a query
node with a PSE, from which we can get an ele-
ment that may participate in final answers. If q

is a leaf node, it will be returned directly in line
1. If not, in lines 2–5, for each child p of q, if

p′ (returned by getNext(p)) is not equal to p, p′

is returned in line 4; otherwise, if p′ equals p and
p has not a Solution Extension, p is directly re-
turned in line 5. If all children of q have Solu-
tion Extension, we need to determine whether q

has a PSE. In lines 6–7, we find nmin and nmax

which have the minimal and maximal numerical id
value from all children that have A-D but not the
Samepath relationship with q. In lines 8–9, Cq is
forwarded until Cq and Cnmax are on the same path
or Cnmax is before Cq. If pre(Cq) > pre(Cnmin),
nmin is returned in line 10. In lines 11–12, for
each child of q that has the Samepath relation-
ship with q, if Cq cannot cover or be covered by
Cp and Cp appears before Cq, p is returned. Fi-
nally, if all children of q satisfy the structural
constraint with q (hasSE(q)=TRUE) or Cq ap-
pears before Cp, i.e. ¬(Cq⇒Cp)∧pre(Cq) <pre(Cp)
(hasSE(q)=FALSE), q is returned in line 13.

Algorithm 2: getNext(q)

1: if isLeaf(q)=TRUE then return q

2: for p ∈ children(q) do

3: p′ = getNext(p)

4: if p′ 	= p then return p′

5: if ¬hasSE(p) then return p

6: nmin =minargp{pre(Cp)|q//p}
7: nmax =maxargp{pre(Cp)|q//p}
8: while pre(Cq) <pre(Cnmax)∧¬ (Cq⇒Cnmax) do

9: Advance(Cq )

10: if pre(Cq) >pre(Cnmin) then return nmin

11: for p ∈ children(q) do

12: if q ⇒ p ∧ ¬(Cq ⇒ Cp)∧pre(Cq) >pre(Cp) then

return p

13: return q

Example 3. As shown in Figure 8, (a) is the
given XML document D, (b) is a PSTP Q and (c)–
(f) are four TPs of Q. Initially, CA, CB and CC

point to a1, b1 and c1, respectively. The first call
of getNext(A) returns C with a PSE since A and
C have A-D relationship and pre(c1) <pre(a1) ∧
¬(a1//c1). Because c1 is useless, it is skipped di-
rectly and CC is moved to c2. The second call
of getNext(A) returns A with a PSE, then a1 is
pushed into SA and b1 is also pushed into SB since
pre(b1) <pre(a1) and B ∈children(A) and they are
all useful elements. The statuses of SA, SB and
SC are shown in Figure 8(g). Though B is a leaf
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node, no path solution will be produced after b1

is pushed into SB since b1 is ancestor of a1. After
that, CA and CB point to a2 and b2, respectively.
Thus CA, CB and CC point to a2, b2 and c2. In the
third call of getNext(A), a2 is skipped directly and
CA is moved forwardly to a3 since A and C have
A-D relationship and pre(a2) <pre(c2)∧¬(a2//c2).
Then C is returned with a PSE. Since c2 is useful,
it is pushed into stack SC . The statuses of SA, SB

and SC are shown in Figure 8(h). The path solu-
tion (a1, c2) is produced since C is a leaf node and
c2 is a descendant of a1. After that, c2 is popped
from SC . The next call of getNext(A) returns B

with a PSE, and b2 will be pushed into SB. The
statuses of SA, SB and SC are shown in Figure 8(i).
The path solution (a1, b2) is produced and b2 is
popped from SB. After all elements are processed,
all related path solutions are produced at the end
of the first phase. They are (a1, b1), (a1, b2) and
(a1, c2), respectively. In the second phase, all path
solutions are merge-joined to get the final results,
i.e. (a1, b1, c2) and (a1, b2, c2).

Figure 8 Document D, PSTP Q and its TPs ((a)–(f)), and

running examples ((g)–(i)).

When P-C or PC-samepath edges appear in the
given PSTP, we just need to take the level infor-
mation of each element into account, the detailed
description is omitted from Algorithm 1 for sim-
plicity.

6.2 Analysis of pTwigStack

We first show the correctness of pTwigSatck and
then analyze the complexity of pTwigStack.

Lemma 1. Let Q be a PSTP, and q be a query
node of Q. If q=getNext(root), q has a PSE.

Lemma 2. Any useful element Cq will be
pushed into stack Sq.

Obviously, Lemma 1 shows that from the query
node q returned by getNext(root) we can get an
element Cq that may be useful. Lemma 2 means
that all useful elements are pushed into stacks. Let
Q=A op B, where op can be A-D (“//”), P-C
(“/”), PC-samepath(“→”) or AD-samepath(“⇒”)
relationship. Because P-C and PC-samepath re-
lationships can be easily processed based on A-
D and AD-samepath relationships, we just show
the correctness about A-D and AD-samepath rela-
tionships. If op=“//”, Q = A//B and the subse-
quent operation is the same as that in TwigStack.
If op=“⇒”, Q = A ⇒ B. As shown in Figure
9, we need to consider four cases: (a) CA//CB ,
which is consistent with A ⇒ B and A is returned
first, the element processing order is CA, CB . (b)
CB//CA, which is consistent with A ⇒ B and A

is returned first. Further, element CB is processed
simultaneously after A is returned, and the ele-
ment processing order is CA, CB. This case de-
notes that all elements appearing before CA are
processed without another call of getNext(A). (c)
pre(CB) <pre(CA) ∧ ¬(CA ⇒ CB). B is returned
first by getNext(A) since CB appears before CA.
The element processing order is CB, CA. (d)
pre(CB) >pre(CA) ∧ ¬(CA ⇒ CB). In this case,
A is returned first by getNext(A) since CA appears
before CB, and A has a PSE, and the element pro-
cessing order is CA, CB. In each case, if the pro-
cessed element is useful, it will be pushed into Sq,
otherwise, it will be discarded directly. Thus we
have the following theorem.

Theorem 1. Let Q be a PSTP. If each edge
in Q represents an A-D or AD-samepath relation-
ship, then algorithm pTwigStack guarantees that
only useful elements can be pushed into stack and
each intermediate path solution can participate in
final answers.

Theorem 1 means that each intermediate path
solution produced by pTwigStack is useful when
considering only A-D and AD-samepath relation-
ship. The proof is simple. From Algorithm 1 we
know that if an element is useless (line 3 in Algo-
rithm 1), the cursor pointing to it will be forwarded
to the next element (line 7 in Algorithm 1), oth-
erwise, it will be pushed into stack according to
Lemma 2. Further, if an element is useful, it must
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Figure 9 Cases for pTwigStack.

satisfy the structural constraint of the given query
with other elements in the running stacks; thus
each intermediate path solution consisting of only
useful elements will definitely participate in final
answers, i.e. it is useful.

Since all useful elements are pushed into
stacks according to Lemma 2, in the procedure
cleanStack, path solutions are produced when el-
ements are popped from stacks. Finally, in the
second phase of pTwigStack, all path solutions are
merge-joined to compute the final answers. So we
have the following theorem.

Theorem 2. Given a PSTP Q and an XML
database D, algorithm pTwigStack correctly re-
turns all answers for Q on D.

While the correctness holds for any given PSTP
Q, the I/O optimality holds only for the case where
no P-C and PC-samepath edges exist in Q as only
useful elements are pushed into stacks. Therefore,
we have the following result.

Theorem 3. Consider an XML database D

and a PSTP Q that has n nodes and just A-D and
AD-samepath edges. Algorithm pTwigStack has
worst case I/O and CPU time complexities linear
in the sum of sizes of the n input lists and the out-
put list. Further, the worst case space complexity
of Algorithm pTwigStack is the minimum of (i) the
sum of sizes of the n input lists, and (ii) n times
the maximum length of a root-to-leaf path in D.

Theorem 3 holds only for PSTP with A-D and
AD-samepath edges, in the case where the PSTP
contains P-C or PC-samepath edges. Algorithm
pTwigStack is no longer guaranteed to be I/O and
CPU time optimal. In particular, the algorithm
might produce a solution for one root-to-leaf path
that does not match any solution in another root-
to-leaf path.

6.3 Optimization

If schema is not considered for query process-
ing, obviously, pTwigStack definitely outperform
TwigStack since a PSTP may correspond to mul-
tiple TPs. In this paper, we represent the under-
neath schema S as a directed graph, where each
node corresponds to a tag name, and each edge
from node A to node B means that in the docu-
ment complying with S, elements with tag B can
be children of elements with tag A. We say there
exists a cycle between A and B in S if there exists
at least a path from A to B and vice versa, which
means that elements with tag A can be ancestor
or descendant of elements with tag B. However,
if no cycle exists between two query nodes in S,
the Samepath relationship between the two nodes
in a PSTP can be replaced by just one P-C or A-D
relationship. If we can make use of such struc-
tural information, then query performance can be
improved significantly.

Let a PSTP Q = {V,E, T}, where V is the set
of nodes in Q, E ⊆ V × V is the set of edges
in Q, and T : E → R is a type function that
maps each edge to a value in the relationship set
R={‘/’,‘//’,‘→’,‘⇒’}. We propose Algorithm 3 to
optimize a PSTP using the schema S.

In Algorithm 3, hasCycle(A,B, S) is used to
check whether there exists a cycle between A and
B in schema S. For each edge 〈A,B〉 ∈ Q.E, if
A and B are connected by a PC-samepath edge
and there is no cycle between A and B (line 3),
the relationship between A and B can be replaced
by P-C edge (lines 4–5). Similarly, if A and B are
connected by an AD-samepath edge and there is
no cycle between A and B (line 6), the relation-
ship between A and B can be replaced by A-D
edge (lines 7–8). In line 9, the optimized PSTP Q

is returned. Compared with the PSTP input into
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Algorithm 3, the number of derived TP is reduced
significantly, as shown in Figure 10. For simplicity,
we call Algorithm 3 the 1st optimization technique.

Figure 10 Number of derived TPs for each query. #TP1,

Number of derived TPs without optimization; #TP2, number

of derived TPs after using the 1st optimization technique; #TP3,

number of remained TPs after using the 2nd optimization tech-

nique.

Algorithm 3: Rewrite(Q,S) /*Q is a PSTP, S is

the schema graph*/

1: for ∀A, B ∈ Q.V do

2: if 〈A, B〉 ∈ Q.E then

3: if T (〈A, B〉) = ‘→′ ∧¬hasCycle(A, B, S) then

4: T (〈A, B〉)←‘/’

5: ‘A→ B’ is replaced by ‘A/B’ or ‘B/A’

6: if T (〈A, B〉)=‘⇒’ ∧¬hasCycle(A, B, S) then

7: T (〈A, B〉)← ‘//’

8: ‘A⇒ B’ is replaced by ‘A//B’ or ‘B//A’

9: return Q

Example 4. Assume that the DTD schema
of the given XML document consists of two
rules, namely 〈!ELEMENT A (A,B,C)〉 and
〈!ELEMENT B (A∗, C)〉. Obviously, there ex-
ists a cycle between A and B, not B and
C. If the given PSTP is Q9 in Figure 4
(b), by Algorithm 3, it can be rewritten as
Q9′ : A⇒B//C, through which we can get four
TPs, they are A//B//C,B//A//C,B//C[.//A]
and B[.//A]//C. Note that after optimization us-
ing Algorithm 3, the cost of evaluating Q9 is greatly
reduced since many derived TPs of Q9 are no longer
existent.

Further, schema information can also be used
to check whether a PSTP or derived TP is satis-
fied, i.e. the answer set is not empty. Thus we
can further reduce query processing cost by check-
ing whether the given query is consistent with the
schema information (i.e. Definition 6). We imple-
mented such an operation in Algorithm 4, which
we call the 2nd optimization technique.

Definition 6. Letting a PSTP Q = {V,E, T},
we say that Q is consistent with schema S if
for each edge 〈A,B〉 ∈ Q.E, we can find two
nodes A′, B′ that satisfy Lable(A) =Lable(A′) and
Lable(B) =Lable(B′) in S, such that the relation-
ship of A′ and B′ satisfies the structural constraint
of T (〈A,B〉) according to S, which corresponds to
four cases: 1) if T (〈A,B〉) =‘/’, there exists an
edge from A′ to B′; 2) if T (〈A,B〉)=‘//’, there ex-
ists a path from A′ to B′; 3) if T (〈A,B〉)=‘→’,
there exists an edge from A′ to B′ or vice versa;
and 4) if T (〈A,B〉) =‘⇒’, there exists a path from
A′ to B′ or vice versa.

Algorithm 4: isConsistent(Q,S)

1: for ∀A, B ∈ Q.V do

2: if 〈A, B〉 ∈ Q.E then

3: find two nodes A′, B′ corresponding to A and

B in S

4: if T (〈A, B〉) =‘/’ ∧¬hasEdge(A′, B′, S) then

5: return FALSE

6: if T (〈A, B〉) =‘//’ ∧¬hasEdge(A′, B′, S) then

7: return FALSE

8: if T (〈A, B〉) =‘→’ ∧
¬(hasEdge(A′, B′, S)∨hasEdge(B′ , A′, S)) then

9: return FALSE

10: if T (〈A, B〉) =‘⇒’ ∧
¬(hasPath(A′ , B′, S)∨hasPath(B′ , A′, S)) then

11: return FALSE

12: return TRUE

Algorithm 4 is used to determine whether the
given query is consistent with the underneath
schema, where hasEdge(A,B, S) is used to check
whether there is an edge from A to B in S. And
hasPath(A,B, S) is used to check whether there
is a path from A to B. For each edge 〈A,B〉 in
Q.E, we find two nodes A′, B′ that correspond to
A and B in S. In lines 4–11, we check whether
the relationship between A′ and B′ in S is satisfied
with the structural constraint between A and B in
Q, which corresponds to the four cases in Defini-
tion 6. If any one of the four cases does not hold,
Algorithm 4 is terminated with FALSE returned,
meaning that Q is not consistent with S; otherwise,
TRUE is returned in line 12, which means that Q

is consistent with S.
Assume that the DTD schema is the same to

that of Example 4. Consider the four TPs derived
from Q9′ , i.e. A//B//C,B//A//C,B//C[.//A]
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and B[.//A]//C. Since no elements can appear
below elements with tag C according to the DTD
schema, we can safely discard B//C[.//A] as it is
not consistent with the DTD schema. Thus only
three TPs are left for further processing.

7 Experimental evaluation

7.1 Experimental setup

Our experiments were implemented on a PC with
Pentium4 2.8 GHz CPU, 512 MB memory, 160 GB
IDE disk, and Windows XP professional as the op-
eration system.

We used TwigStack as the basis when imple-
menting the naive method proposed in ref. [12],
which we call nTwigStack (nTS). In addition to
nTS and pTwigStack (pTS), we also implemented
five other algorithms using three optimization tech-
niques including B+ tree index, the 1st and 2nd
optimization techniques (i.e. Algorithm 3 and Al-
gorithm 4). B+ tree is used to index element labels
so that we can skip useless element labels in label
stream like TSGeneric+[2]. The 1st optimization is
used to rewrite the given PSTP and the 2nd opti-
mization is used to check whether a given query is
consistent with the underneath schema. All these
algorithms are listed in Table 1, where nTS-O is an
improved version of nTS using the 1st optimization
technique, nTS-OB is the combination of nTS, the
1st optimization technique and B+ tree index, and
nTS-OBO is the combination of nTS, B+ tree in-
dex, the 1st and the 2nd optimization techniques.
Similarly, pTS-O is an improved version of pTS
using the 1st optimization technique, pTS-OB is
the combination of pTS, the 1st optimization tech-
nique and B+ tree index. All algorithms were im-
plemented using Visual C++ 6.0.

7.2 Datasets and queries

We used XMark (http://monetdb.cwi.nl/xml),

DBLP (http://www.cs.washington.edu/research/
xmldatasets/www/repository.html) and TreeBank
for our experiments. The main characteristics of
the three datasets can be found in Table 2. Al-
though PSTP can be used to extract useful infor-
mation from multiple XML documents with struc-
tural heterogeneity, we use one data set with re-
cursive structure to simulate multiple data sources
with different structures.

In our experiment, each element is labeled with
a triple (start, end, level) and then stored into two
separate files, one is sequential file, and the other is
random file (disk-based B+ tree index). All labels
corresponding to same tag are stored together in
a label stream in an ascending order according to
start value of each label. Sequential file is used in
nTS, nTS-O, pTS and pTS-O algorithms without
B+ tree index, and random file is used in nTS-OB,
nTS-OBO and pTS-OB algorithms with B+ tree
index. Each query node with a distinct tag name
corresponds to a separate label stream.

The queries used in our experiment are listed in
Table 3. Since the 2nd optimization technique is
just used for the derived TPs in our experiment,
we show in Table 3 only the changes caused by
the 1st optimization technique. The benefits of
the 2nd optimization is shown in Figure 10. All
these queries can be classified into three categories:
1) PSTPs without the Samepath edges (“⇒” and
“→”), e.g. QD1, QX1 and QT1, which we call
1st group PSTPs. 2) PSTPs can be transformed
to TPs based on DTD schema using the 1st opti-
mization, e.g. QD2, QD3 and QX2, which we call
the 2nd group. 3) PSTPs cannot be transformed to
TPs, which means that some Samepath edges can-
not be replaced by P-C or A-D edges since there
exist cycles in the schema between the nodes con-
nected by these Samepath edges, e.g. QX3, QT2
and QT3, which we call the 3rd group.

Table 1 Algorithms and optimization techniques used in our experiment

nTS nTS-O nTS-OB nTS-OBO pTS pTS-O pTS-OB

The 1st optimization
√ √ √ √ √

B+ tree index
√ √ √

The 2nd optimization
√
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Table 2 Statistics of XML data sets

Dataset Size (M) Nodes (Million) Max depth Average depth

DBLP 127 3.3 6 2.9

XMark 113 1.7 12 5.5

TreeBank 82 2.4 36 7.8

Table 3 Queries used in our experimenta)

Dataset Status Queries Group

QD1 DBLP
BO //book/author

1

AO -no change-

QD2 DBLP
BO //www[.⇒editor]/url

2

AO //www[.//editor]/url

QD3 DBLP
BO //dblp⇒article/year

2

AO //dblp//article/year

QX1 XMark
BO //site/people/person/name

1

AO -no change-

QX2 XMark
BO /site⇒closed auctions/emph

2

AO /site//closed auctions/emph

QX3 XMark
BO //listitem[.//bold]/text[.//emph]⇒keyword

3

AO -no change-

QT1 TreeBank
BO //S/VP/VBD

1

AO -no change-

QT2 TreeBank
BO //S[.⇒JJ]/NP

3

AO -no change-

QT3 TreeBank
BO //S⇒VP/PP[NP/VBN]/IN

3

AO -no change-

a) BO, Before the 1st optimization; AO, after the 1st optimization.

7.3 Performance comparison and analysis

We consider the following performance metrics to
compare the performance of different algorithms:
1) number of derived TPs, which reflects the effect
of using the 1st and 2nd optimization techniques;
2) number of scanned elements; 3) running time;
and 4) scalability.

Consider the first metric, i.e. number of derived
TPs, as shown in Figure 10, for the 1st group of
PSTPs, optimization equals no optimization since
no Samepath edge is contained in the three PSTPs.

For the 2nd group of PSTPs, the 1st optimiza-
tion will cause the Samepath edge replaced by A-
D edge, the 2nd optimization technique will not
bring us any benefits since each PSTP is consistent
with the schema. For PSTPs in the 3rd group, the
1st optimization technique does not work in such
a case since the three PSTPs are consistent with
the schema and the Samepath edge in each PSTP
cannot be replaced by A-D or P-C edge, but the
2nd optimization technique does work since some
derived TPs of QX3 and QT3, except QT2, are not
consistent with the schema; thus they can be safely
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discarded without further processing.
Consider the 1st group of PSTPs, as shown in

Figure 11(a), the number of scanned elements of
nTS, nTS-O, pTS and pTS-O are same as each
other, because neither of the two optimization tech-
niques works for the 1st group of PSTPs, and for
a given query, each algorithm uses the same set of
label streams (sequential files); thus they will read
the same amount of element labels. Figure 11(b)
shows that our method, pTS and pTS-O, need
to afford additional CPU cost since our method
has more judging operations. This conclusion also
holds for the comparison of nTS-OB, nTS-OBO
and pTS-OB. However, as shown in the follow-
ing, this performance degradation can be safely ig-
nored when compared with the significant perfor-
mance improvement achieved from the 3rd group
of PSTPs.

For the 2nd group of PSTPs, as shown in Figure
12, the number of scanned elements of nTS is more
than that of other algorithms since nTS will pro-
cess each derived TP of the given PSTP without
any optimization; as a result, running time of nTS
is also very large compared with other algorithms.

For the remainder algorithms, we can see from Fig-
ure 12 that algorithms with same basic configura-
tion (label streams and optimization techniques)
have similar performance because after the 1st op-
timization, each one of the 2nd group of PSTPs will
be transformed to a TP, and the 2nd optimization
doesn’t work for each PSTP after transformation.
Note using B+ tree index to skip useless elements
will greatly improve query performance for QD2
rather than QD3. For QD2, only few elements are
useful, so the running time of nTS-OB, nTS-OBO
and pTS-OB is less than that of nTS-O, pTS and
pTS-O. For QD3, although the number of scanned
elements is reduced after using B+ tree index, re-
peatedly searching from root to leaf node makes
the I/O cost of nTS-OB, nTS-OBO and pTS-OB
larger than that of nTS-O, pTS and pTS-O, which
will further result in poor query performance.

For the 3rd group of PSTPs, as shown in Figure
13, for any metrics in this figure, our methods, i.e.
pTS, pTS-O and pTS-OB, outperform nTS, nTS-
O, nTS-OB and nTS-OBO significantly, because
the 1st optimization technique is useless for the
3rd group of PSTPs and each PSTP corresponds

Figure 11 Performance comparison against the 1st group of PSTPs. (a) Number of scanned elements; (b) runnin time.

Figure 12 Performance comparison against the 2nd group of PSTPs. (a) Number of scanned elements; (b) running time.
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Figure 13 Performance comparison against the 3rd group of PSTPs. (a) Number of scanned elements; (b) running time.

Figure 14 Performance comparison of seven algorithms over XMark of different sizes using QX3. (a) Number of scanned elements;

(b) running time.

to multiple TPs (Figure 10), among which only
limited TPs can be safely discarded using the 2nd
optimization technique, thus all remainder TPs af-
ter the 2nd optimization will be processed one by
one using nTS, nTS-O, nTS-OB or nTS-OBO al-
gorithm, as a result, large amount of elements need
to be scanned multiple times, which will result in
high CPU cost. Although the 2nd optimization
technique is useful in such a case, the effect is lim-
ited for the 3rd group of PSTPs. Obviously, naive
method, nTS, and its improved algorithms, nTS-
O, nTS-OB and nTS-OBO, cannot work efficiently
for the 3rd group of PSTPs.

Further, we present the performance results
about scalability of QX3 in Figure 14, from which
we know that our methods can work more effi-
ciently than naive methods when processing PSTP
over XML document with different size, because
our method processes each element only once,
while the performance of naive methods is deter-
mined by the number of derived TPs.

From the above experimental results and our
analysis we know that when processing PSTPs
with Samepath edges, especially the effect of op-

timization is not remarkable, e.g. QX3, QT2 and
QT3, our methods, e.g. pTS, pTS-O and pTS-OB,
can work much more efficiently than naive meth-
ods, i.e. nTS, and its optimization, i.e. nTS-O,
nTS-OB and nTS-OBO. The reason lies in two as-
pects: 1) our methods guarantee that each element
is scanned only once; and 2) our methods guarantee
that no useless intermediate paths will be produced
when considering only A-D and AD-samepath rela-
tionships (Theorem 1). Even if no Samepath edge
appears in the query expression, e.g. QD1, QX1
and QT1, or otherwise, the Samepath edges can
be replaced by P-C or A-D edges after optimiza-
tion, e.g. QD2, QD3 and QX2, our method can
achieve similar performance to that of the existing
methods.

8 Related work

TPs can be used to match data fragments in an
XML document. MPMGJN[13] was proposed for
efficient structural join, Stack-Tree-Desc/Anc[15]

improves the query performance of MPMGJN by
using stack-based binary structural join algorithm.
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Wu et al.[16] studied the problem of binary join or-
der selection for complex queries based on a cost
model. All these structure join methods suffer
from the large number of intermediate results. To
process a TP holistically, many methods[1−4] were
proposed to avoid producing large size of useless in-
termediate results. Among them, TwigStack[1] was
proposed to process a TP in a holistic way. When
considering only A-D edges, TwigStack guarantees
that the CPU time and I/O complexity is inde-
pendent of the size of partial matches to any root-
to-leaf path. Other methods[2−4] made improve-
ments against TwigStack from different aspects.
TSGeneric+[2] focused on holistic twig joins on
all/partly indexed XML documents to skip some
useless elements. Chen et al.[3] proposed iTwigJoin
that exploits different data partition strategies to
further boost the holism. TJEssential[4] uses a hy-
brid strategy to avoid redundant operations com-
pared with the methods of refs. [1–3]. All these
methods can only be used to a single TP, for a
PSTP, however, they cannot work efficiently since
a PSTP may correspond to several TPs.

Keyword based methods[8,9] can provide us with
the most flexibility. MLCAS was introduced in
ref. [9] to reduce meaningless results. XSEarch[8]

returns semantically related document fragments
that satisfy the user’s query. However, we can
not specify that several nodes are on the same
path without specifying the concrete precedence
relationship. Query relaxation based methods[10,11]

will produce a large number of relaxed query ex-
pressions, thus resulting in too many approximate

answers.
In the area of integrating tree-structured data,

the Xyleme system[17] exploits XML views to cope
with the problem. The Agora system[18] translates
query expressions to SQL queries on each local data
source. In ref. [19], queries are processed using
mapping rules between a global schema and many
local data sources, and then evaluated in each data
source.

Although the notion of PSTP has been proposed
in ref. [12] to provide the users with a more flexi-
ble way to express semantic constraints, no exist-
ing work has focused on holistic query evaluation
for PSTPs. In ref. [20], the authors proposed a
method for evaluation of partial path queries, not a
query expression with branch node, thus we do not
compare them with this method since it is based
on different query syntaxes.

9 Conclusions

In this paper, we firstly extended XPath language
with the new axis, Samepath axis, which allows
users to express partial semantic constraints of be-
ing on the same path in a concise but effective way;
then we proposed a new holistic query process-
ing method, pTwigStack, for semantically querying
tree-structured data sources using PSTPs. Our ex-
perimental results show that our method can work
more efficiently than the existing methods when
processing PSTPs. As our method cannot process
a PSTP that is not specified with a root node, we
will focus on this problem in the near future.

1 Bruno N, Koudas N, Srivastava D. Holistic twig joins: op-

timal XML pattern matching. In: Michael J F, Bongki M,

Anastassia A, eds. Proceedings of the 2002 ACM SIGMOD

International Conference on Management of Data. Madison:

ACM, 2002. 310–321

2 Jiang H, Wang W, Lu H, et al. Holistic twig joins on indexed

XML documents. In: Freytag J C, Lockemann P C, Abiteboul

S, et al., eds. Proceedings of 29th International Conference on

Very Large Data Bases. Berlin: Morgan Kaufmann, 2003.

273–284

3 Chen T, Lu J, Ling T W. On boosting holism in XML twig

pattern matching using structural indexing techniques. In:
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