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Abstract—Time series has numerous application scenarios.
However, since many time series data are personal data, releasing
them directly could cause privacy infringement. All existing
techniques to publish privacy-preserving time series perturb the
values while retaining the original temporal order. However, in
many value-critical scenarios such as health and financial time
series, the values must not be perturbed whereas the temporal
order can be perturbed to protect privacy. As such, we propose
“local differential privacy in the temporal setting” (TLDP) as the
privacy notion for time series data. After quantifying the utility
of a temporal perturbation mechanism in terms of the costs of
a missing, repeated, empty, or delayed value, we propose three
mechanisms for TLDP. Through both analytical and empirical
studies, we show the last one, Threshold mechanism, is the most
effective under most privacy budget settings, whereas the other
two baseline mechanisms fill a niche by supporting very small
or large privacy budgets.

Index Terms—Local differential privacy; time series data; data
sanitization

I. INTRODUCTION

A time series is a sequence of values indexed in a discrete
time order. Time series analysis has numerous applications
in multimedia, internet of things, location services, financial
trading, geophysics, and other domains that involve temporal
measurements. However, many time series originate from
personal data and releasing them for analysis could infringe
privacy. For example, in recent COVID-19 pandemic, social
networking and location-service providers such as Apple,
Google and Facebook are called on by the Trump administra-
tion to provide people’s location history for contact and social
distance tracing. But the Congress has raised privacy concerns
on tracking and collecting individual’s location history [1]. As
another example, medical researchers have successfully rei-
dentified individuals from their anonymous fitness data (e.g.,
20-minute aggregated physical activities by accelerometers)
using machine learning techniques [2]. To address this issue,
many privacy-preserving time series publishing techniques
have been proposed [3], [4], most of which are based on
differential privacy [5], [6]. They perturb the values of a
released time series to guarantee no value at any timestamp can
be restored with high confidence [4], [5], [7]. However, such
perturbation can lead to significant distortion of the values
as the noise can overshadow them or even be unbounded.
In this paper, we propose temporal perturbation mechanisms
to achieve differential privacy, and bound the perturbation

of timestamp by a time window k. Since many time series
manipulations, such as aggregation, window transformation
(e.g., smoothing, rolling), and resampling in Apache Flink [8],
are operated on time windows, temporal perturbation can have
less or even no impact on the accuracy of these operators
than value perturbation. The following are several real-life
examples of publishing and analzying sensitive time series.

Example I: (Biosensors in Health Monitoring) Many per-
sonal health and fitness monitoring systems such as Apple
Watch, Fitbit, and Omron HeartGuide continuously monitor
vital metrics including heart rate, ECG, and blood pressure.
The accuracy of these sensor values is essential for diagnostics.
On the other hand, many diagnostics are based on the statistics
of aggregated values, e.g., the maximum and average heart rate
or blood pressure [9], of which temporal perturbation only
causes a minimum change or even just a delay.

Example II: (Mobility Tracking) In recent COVID-19
pandemic, through mobile operators and location-service
providers, governments collect users’ (especially those in self-
quarantine) mobility data to monitor their social distancing.
For example, the moving speed can be used to infer whether
they are stationary, walking, jogging, driving or taking a
train [1]. The accuracy of the moving speed is essential for
the monitoring. On the other hand, temporal perturbation only
causes a delay of the monitoring.

Example III: (Sensor Readings in Smart Home) Environ-
mental sensors are deployed in smart home to monitor the
temperature, humidity, light, sound, air quality. The accuracy
of sensor readings is essential to the operation of smart home.
On the other hand, temporal perturbation only causes a delay
of the reading and thus the operation.

In this paper, we first define local differential privacy in
the temporal setting (TLDP) for time series data, denoted
by ε-TLDP. TLDP ensures that the original value at any
timestamp cannot be restored by a released time series with
high confidence. This definition is in the context of a k-
timestamp window, which denotes the maximum delay the
system can tolerate a user to release a value. Then we quantify
the utility of a released time series in terms of the missing,
repetition, empty, and delay cost, and present three temporal
perturbation mechanisms that dispatch values in the temporal
axis. The first two, namely, Backward Perturbation mechanism
and Forward Perturbation mechanism, dispatch a value to
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each of the k timestamps with probabilities that follow the
Generalized Randomized Response [10] mechanism. However,
they both suffer from value missing, repetition or empty.
The third one, Threshold mechanism, is not only free of
missing, repetition, and empty costs, but also has the lowest
delay costs when ε is moderate. Through both analytical and
empirical studies, we show the effectiveness of Threshold
mechanism and provide a holistic strategy on when to use
which mechanism for privacy-preserving time series release.
To summarize, our technical contributions are three-folded.

• We formulate the problem of local differential privacy in
the temporal setting (TLDP) for time series, and point out
the issues arising from value-perturbation mechanisms.

• We present two baseline temporal perturbation mecha-
nisms that satisfy ε-TLDP, with detailed analysis on their
costs of value missing, repetition, empty, and delay.

• We design Threshold mechanism that can satisfy ε-TLDP
without any value missing, repetition or empty. Through
both analytical and empirical studies, we show when this
mechanism should be used for time series release.

The rest of the paper is organized as follows. Section II
formulates the problem of TLDP on time series, together
with preliminaries on DP and LDP. Section III presents the
two baseline mechanisms and analyzes their costs. Section IV
introduces the Threshold mechanism with theoretical analysis
on its TLDP privacy guarantee and total cost. Section V
presents experimental results and demonstrations on both real
and synthetic datasets. Finally, we review existing work in
Section VI and conclude this paper in Section VII.

II. PRELIMINARIES AND PROBLEM DEFINITION

A. Preliminary: Differential Privacy

Differential Privacy in the Centralized Setting. Differ-
ential privacy (DP) [11] is initially defined on a randomized
algorithm A of a sensitive database. A is said to satisfy ε-
differential privacy, if for any two neighboring databases D
and D′ that differ only in one tuple, and any possible output
v of A:

Pr(A(D) = v) ≤ eε · Pr(A(D′) = v), (1)
where the parameter ε is called privacy budget and denotes the
degree of privacy retained after releasing the output (the lower
the better privacy). To satisfy ε-DP, two major perturbation
mechanisms are developed, namely, Laplace mechanism [11]
and Exponential Mechanism [12].

Differential Privacy in the Local Setting. Local Differen-
tial Privacy (LDP) [13] lets each user locally perturb her data
before sending it to an untrusted data collector. Formally, A is
said to satisfy ε-local differential privacy, if for any two tuples
t and t′, and any possible output t∗:

Pr(A(t) = t∗) ≤ eε · Pr(A(t′) = t∗) (2)
To satisfy ε-LDP, both Laplace mechanism and General-
ized Randomized Response [10] are predominant perturbation
mechanisms.

B. Problem Definition: Local Differential Privacy in the Tem-
poral Setting

In this paper, we assume a time series is an infinite se-
quence of values S = {St1 , St2 , ..., Stn , ...} in the temporal
domain T = {t1, t2, ..., tn, ...}. For ease of presentation,
in the sequel we assume S is univariate (i.e., the values
are one-dimensional) and T has equal time intervals, i.e.,
t2 − t1 = ... = tn − tn−1 = .... So a time series is simply
denoted by S = {S1, S2, ..., Sn, ...}. As with other differential
privacy notions, we first define neighboring time series. Since
a time series has both values and timestamps, neighbors can
be defined either on values or on timestamps, which leads to
local differential privacy in the value setting (VLDP) and in the
temporal setting (TLDP). VLDP is a straightforward extension
of LDP in time series to protect the true value in each
timestamp from being restored with high confidence. It can be
satisfied by existing value perturbation mechanisms for LDP,
such as Laplace mechanism or Randomized Response. On the
other hand, the privacy goal of this paper is TLDP, which
protects the true timestamp of any released value from being
restored. As such, two time series are defined as neighbors if
their transposition distance in the temporal domain is 1, that
is, they turn into one another by swapping the values in both
timestamps. To further restrict the swapping, we require the
two timestamps within a time window of length k, which is
the maximum delay the system can tolerate a user to release
a value. As will be elaborated in Section II-D, k is a system
parameter based on the time series analysis task.

Definition 2.1: (Neighboring Time Series) Two time series
S and S′ are neighbors if there exist two timestamps ti 6= tj
such that

1) |i− j| ≤ k, and
2) Si = S′j and Sj = S′i, and
3) for any other timestamp tl(l 6= i, l 6= j), Sl = S′l .

1

Then we define local differential privacy in the temporal
setting as follows.

Definition 2.2: (Local Differential Privacy in the Tempo-
ral Setting, TLDP) Given privacy budget ε, a randomized
algorithm A satisfies ε-TLDP, if and only if for any two
neighboring time series S and S′, and any possible output
R of A, the following inequality holds:

Pr(A(S) = R) ≤ eε · Pr(A(S′) = R) (3)
As with other LDP notions, the degree of privacy is

controlled by the privacy budget ε. Since the whole time
series is released for analysis, the output R of A is simply
a perturbed time series {R1, R2, ..., Rn, ...} from the original
one S = {S1, S2, ..., Sn, ...}.

C. Relationship between TLDP and VLDP

Although TLDP and VLDP are two independent privacy
models derived from the original notion of LDP, they can
convert to each other under certain conditions. The following

1We assume S and S′ are infinite time series. For finite time series, we
treat the beginning and ending k timestamps as warmup and cooldown periods
and exclude them from this equality test.
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Theorem 2.3 shows that any perturbation that satisfies VLDP
also satisfies TLDP with a doubled privacy budget, and The-
orem 2.4 shows that any temporal perturbation that satisfies
ε-TLDP of window k can satisfy ε/2-VLDP for any value in
this window, as long as the skewness of value is bounded. In
the interest of space, the proofs of lemmas and theorems in
this paper are included in our technical report [14].

Theorem 2.3: If a randomized algorithm A satisfies ε/2-
VLDP for each value Si, A will also satisfy ε-TLDP for the
time series S.

Theorem 2.4: Let A be a randomized algorithm that sat-
isfies ε-TLDP, then A also satisfies ε∗-VLDP, where ε∗ =
max{ε/2, ε̂} and ε̂ denotes the skewness of value. Specifically,
in any time window with length k, the ratio of the maximum
and minimum occurrences of two values is bounded by exp(ε̂).

D. Cost (Utility) of Released Time Series

The cost of TLDP is the inaccuracy of time series analysis
introduced by the released time series R. Since R deviates
from S by missing, repeating, emptying, and delaying values,
we quantify this cost in terms of these four costs as below.
1) Missing Cost CM . This occurs when a value Si is missed,

i.e., it does not appear in the time window starting from
Ri, i.e., {Ri, Ri+1, ..., Ri+k−1}. For simplicity, we assume
each missing value bears a unit cost of M .

2) Repetition Cost CN . This occurs when a value Si is
repeatedly released in the time window starting from Ri,
i.e., {Ri, . . . , Ri+k−1}. For simplicity, we assume each
occurrence of a repeated value bears a unit cost of N .

3) Empty Cost CE . This occurs when no value is set for Ri
when it needs to be released at timestamp ti. For simplicity,
we assume each empty release of a timestamp bears a unit
cost of E.

4) Delay Cost CD. This occurs when a value Si is released at
a delayed timestamp tj(j > i). For simplicity, we assume
one timestamp delay of a value bears a unit cost of D. As
such, the delay cost of Si being released to Rj is D(j− i).
To avoid double counting of costs, all above costs supersede
delay cost. For example, a repeated value has no delay cost.
To illustrate how to derive these costs and their unit costs

M , N , E, and D, for a time series analysis task in practice,
we use two common time series manipulations [15], [16]
as examples, namely, frequency counting (FC) and simple
moving average (SMA). At each timestamp, FC(v) returns
the number of occurrences of value v in the past time series;
whereas SMA(d) takes the arithmetic mean over the past d
timestamps.

Case 1: Frequency Counting FC(v). Let f(v) be the
probability of value v in the original time series. A missing
value in the original time series leads to a repeated or an
empty value in the released time series. For the first case,
suppose the repeated value is v′, this causes inaccuracy in all
of the subsequent l counts and the expected mean square error
(MSE) is [(f(v) − f(v′)) l2 ]

2. For the second case, it causes
underestimation to all the subsequent l counts by f(v), thus the
expected MSE is [f(v) l2 ]

2. As for a delayed value v, it causes

R1

S1

R4R3R2

S2 S4S3

missingmissing

repetitionrepetition
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p
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p
1
p
1
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p
2
p
1
p
1(=    )p

2
p
1

(a) Perturbation protocol (b) Dispatching example

Possible dispatch Actual dispatch

Fig. 1. Backward Perturbation mechanism

inaccuracy in the subsequent k − 1 counts at most, hence the
expected MSE is [f(v)k−12 ]2. Therefore, M +N = [(f(v)−
f(v′)) l2 ]

2, or M + E = [f(v) l2 ]
2, and D = [f(v)k−12 ]2.

Case 2: Simple Moving Average SMA(d). A missing
value v causes inaccuracy in the subsequent d timestamps,
which amounts to an expected MSE of d (v−v)2

d = (Si − v)2,
where v is the arithmetic mean in the neighborhood times-
tamps. The expectation of (Si−v)2 can be derived as v2−v2,
where v2 is the mean square in the neighborhood timestamps.
Similarly, a repeated value v also causes an expected MSE
of v2 − v2. An empty value causes an expected MSE of
(v− dv−v

d−1 )2, which can be approximated to 0. A delayed value
Si for t timestamps, on the other hand, causes inaccuracy in
2t timestamps,2 whose accumulated error is thus 2t

d (v
2− v2).

Therefore, M = N = v2 − v2, E = 0, and D = kM/d.

III. BASELINE APPROACH

In this section, we present two baseline temporal per-
turbation mechanisms for TLDP — the Backward and the
Forward Perturbation mechanisms. As their names suggest, the
Backward Perturbation mechanism probabilistically selects a
value from previous k timestamps in the original time series
to release at the current timestamp, whereas the Forward
Perturbation mechanism probabilistically dispatches the value
at the current timestamp to one of the subsequent k timestamps
to release. In what follows, we first show how to set these
probabilities to satisfy ε-TLDP, and then analyze their costs.

A. Backward Perturbation Mechanism

1) Perturbation Protocol: At each timestamp ti, the pro-
tocol probabilistically releases the value Ri drawn from
{Si−k+1, Si−k+2, ..., Si}, which are the values at the k most
recent timestamps. Fig. 1(a) shows an example where k = 3.
At t3, the released value R3 is drawn from {S1, S2, S3} with
probabilities {p2, p1, p0}. To satisfy ε-TLDP, we set these
probabilities as

Pr(Ri=Si−j) := pj=

{
eε/2

k−1+eε/2 , j = 0
1

k−1+eε/2 , j∈{1,2, ..., k−1}
(4)

As there are only two probabilities, we simply use p0 and p1 to
denote them in the sequel. Note that since any two neighboring
time series only differ two timestamps at most, this protocol
satisfies ε-TLDP.

2) Cost Analysis: There are three costs in the Backward
Perturbation mechanism — missing, repetition and delay.
•Missing cost CM . A value Si in the time series is missing

if it is not selected as an output in all subsequent k timestamps

2We assume d ≥ k > t.
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(e.g., S2 in Fig. 1(b)), whose probability is (1−p0)(1−p1)k−1.
Therefore, the expected missing cost E[CM ] of each value is

E[CM ] = (1− p0)(1− p1)k−1 ·M (5)
• Repetition cost CN . The probability that a value Si

is repeated r times, i.e., has r + 1 occurrences (e.g., S1 in
Fig. 1(b) has two occurrences), can be calculated in two cases:
(1) Si is dispatched to Ri (so there are r occurrences in
subsequent k − 1 timestamps), and (2) Si is not dispatched
to Ri (so there are r + 1 occurrences in subsequent k − 1
timestamps). Therefore,

E[CN ] = N
∑k−1

r=1
rp0 ·

(
k−1
r

)
· pr1 · (1− p1)

k−1−r

+N
∑k−2

r=1
r(1− p0) ·

(
k−1
r+1

)
· pr+1

1 · (1− p1)
k−2−r (6)

= (1− p0)(1− p1)
k−1N

From Eqs. 5 and 6, we observe that the expected counts of
missing and repetition are the same, because a value repetition
always causes a value missing, and vice versa. To suppress the
repetition (and thus missing) counts, one might be tempted
to revise the Backward Perturbation mechanism protocol and
avoid choosing a value that has already been selected. Un-
fortunately, this collision-free variant undermines the ε-TLDP
guarantee. We will elaborate on this in Section IV-A.
• Delay cost CD. We first derive p(Si→Ri+j), the proba-

bility of Ri+j being the first occurrence of Si in the released
series. This is a joint probability of two events — Si being
chosen for Ri+j , and Si not being chosen for any Ri+l (l < j).
Summing this probability over all j ∈ {1, 2, . . . , k − 1}, we
can derive the expected delayed timestamp counts and thus
E[CD]:
E[CD]=D

∑k−1

j=1
p(Si→Ri+j)

∏j−1

l=0
(1− p(Si→Ri+l))(j−i)

= p1(1− p0)
∑k−1

j=1
j · (1− p1)

j−1 ·D
(7)

To sum up the above, the expected total cost of Backward
Perturbation mechanism on any value Si is

E[C] = E[CM ] + E[CN ] + E[CD] (8)

B. Forward Perturbation Mechanism

1) Perturbation Protocol: As opposed to Backward Pertur-
bation mechanism which finds for each Ri a previous Si−j to
dispatch to, the Forward Perturbation mechanism dispatches
each Si to one of the Ri+j’s in the next k timestamps.
The protocol is illustrated in Fig. 2(a), whose perturbation
probabilities are the same as Eq. 4. That is, Si is dispatched
to Ri with probability p0 = eε/2

k−1+eε/2 and dispatched to Ri+j
(j ∈ {1, 2, ..., k − 1}) with probability p1 = 1

k−1+eε/2 . Under
this mechanism, multiple Si’s can be dispatched to the same
Ri+j , causing value overwritten, and only the last dispatched
Si is released for Ri+j while all other Si’s dispatched to Ri+j
become missing. Similar to Backward Perturbation mecha-
nism, Forward Perturbation mechanism trivially satisfies ε-
TLDP.

2) Cost Analysis: The costs in Forward Perturbation mech-
anism include missing, empty and delay.
• Missing cost CM . Missing cost occurs when an earlier

dispatched value Si is overwritten by a subsequent one (e.g.,

p0 p1

R1 R3R2

S1 S3S2

(=    )p2 p1

R1

S1

R4R3R2

S2 S4S3 S5

R5

missing

empty

(a) Perturbation protocol (b) Dispatching example

Possible dispatch Actual dispatch

Fig. 2. Forward Perturbation mechanism

TABLE I
COST ANALYSIS OF DIFFERENT MECHANISMS

Cost Backward Pert. Forward Pert. Threshold
mechanism mechanism mechanism

Missing (1−p0)(1−p1)k−1M (1−p0)(1−p1)k−1M 0
Repetition (1−p0)(1−p1)k−1N 0 0
Empty 0 (1−p0)(1−p1)k−1E 0

Delay p1(1− p0)· p1(1− p0)· (k−c0)D∑k−1
j=1 j(1−p1)

j−1D
∑k−1

j=1 j(1−p1)
j−1D

S1 in Fig. 2(b)). To derive this probability, we find that it
only happens when Si is dispatched to Ri+j (j > 0), and it
can be overwritten by Si+1, Si+2, ..., or Si+j with probability
1 − (1 − p0)(1 − p1)j−1. By summing over all j, we derive
the expectation of the missing cost for Si as:

E[CM ] = p1
∑k−1

j=1

(
1− (1− p0)(1− p1)

j−1
)
·M

= (1− p0)(1− p1)
k−1 ·M

(9)

• Empty cost CE . The probability that value Ri is empty,
i.e., not dispatched from any Si−j (e.g., R3 in Fig. 2(b)), is
(1− p0)(1− p1)k−1. Therefore, the empty cost is

E[CE ] = (1− p0)(1− p1)
k−1 · E (10)

• Delay cost CD. We derive the expected delayed timestamp
counts and thus E[CD] for value Si by deriving the probability
of Ri+j being the first occurrence of Si in the released series,
and summing over all Ri+j :

E[CD] = p1
∑k−1

j=1
j · (1− p0)(1− p1)

j−1 ·D (11)

To sum up the above, the expected cost of Backward
Perturbation mechanism on any value Si is

E[C] = E[CM ] + E[CE ] + E[CD] (12)

C. Comparison of Backward and Forward Perturbation
Table I summarizes the cost analysis of both mechanisms,

where they achieve the same missing and delay costs, and
only differ in the type of cost they can avoid — the Backward
Perturbation mechanism trades repetition cost for zero empty
cost, whereas the Forward Perturbation mechanism does the
opposite. As such, the choice of both mechanisms simply
depends on whose unit cost is larger, a repetition (N ) or
an empty value (E).

Neither mechanism can avoid value missing, which
is very costly or even unacceptable in many time series
applications. In the next section, we propose the Threshold
mechanism that completely eliminates the missing, repetition,
and empty costs, and retains low delay cost under most ε and
k settings.

IV. THRESHOLD MECHANISM

In this section, we first show the collision-free variant of
Forward Perturbation mechanism violates ε-TLDP, which in
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R1 R4R3R2

S1 S4S3S2

R7R6R5

S7S6S5

A random dispatch The only collision-free dispatch

Fig. 3. Collision-free Forward Perturbation violates ε-TLDP.

turn motivates the Threshold mechanism. We then present the
perturbation protocol, its privacy guarantee, and the optimal
choice of the threshold parameter that minimizes the overall
cost. Finally, we show an extended version that resolves the
infeasible ε issue for this mechanism.

A. Motivation

The missing cost in two baseline mechanisms is due to
repeatedly selecting from or dispatching to the same times-
tamp, which essentially causes a “collision”. To eliminate the
missing cost, one is tempted to avoid collision by restraining
the perturbation protocol from selecting from a repeated
timestamp (Backward Perturbation) or dispatching to an occu-
pied timestamp (Forward Pertubation). However, the counter-
example in Fig. 3 shows that the collision-free variant of
Forward Perturbation mechanism no longer satisfies ε-
TLDP. In this example, k = 3, so Si can be dispatched to
Ri, Ri+1, or Ri+2. However, after S1 is dispatched to R3 and
S2 to R4, S3 has only one collision-free choice R5, because
R3 and R4 have already been occupied but R5 must be empty
(since no prior value can be dispatched to it). Even worse, this
effect propagates to all subsequent values — each of them has
only one collision-free choice — S4 → R6, S5 → R7, and so
on. Since the time series is infinite, it is just a matter of time
for this effect to occur, which means an adversary can infer,
with almost 100% confidence, that a released value must come
from k − 1 timestamps earlier. As such, ε-TLDP is violated.

As a key observation, this effect is caused by the ever-
decreasing empty timestamps for dispatching c in the time
window {ti, ti+1, ..., ti+k−1} until it stabilizes at 1 (because
the last timestamp ti+k−1 is always empty). Inspired by this,
we propose the Threshold mechanism that keeps c at a healthy
level, i.e., above or equal to a threshold c0, so that there are
always enough choices to dispatch a value to satisfy ε-TLDP.
Obviously, c0 is in the range of [2, k − 1] and Section IV-D
will show how to derive it from the input k and ε. For now
we just regard it as an input parameter.

B. Perturbation Protocol

A naive perturbation protocol for the Threshold mechanism
is to add the following rule to the collision-free Forward
Perturbation — when dispatching Si, if the number of empty
timestamps c = c0, we will ignore Si. However, this rule
re-introduces missing cost. In what follows, we design a
more delicate perturbation protocol that can guarantee c ≥ c0
without any missing cost.

The idea is to adopt a less aggressive strategy than the
naive one by only keeping c from dropping further to c0 − 1.
Algorithm 1 shows the pseudo-code. If c > c0, Si is dispatched

Algorithm 1 Perturbation protocol: Perturb(·)
Input: Original time series S = {S1, S2, ..., Sn, ...}

Time window length k
Threshold c0

Output: R = Perturb(S, k, c0) is the released time series
Procedure:

1: Initialize x = 0, and R = ∅
2: for each value Si ∈ S do
3: Count the number of “0”s in {xi, xi+1, ..., xi+k−1}, denoted by c
4: if c > c0 then
5: Randomly select an index l from X = {j|xj = 0, i≤ j≤ i+k−1}
6: Dispatch Si to Rl, and set xl = 1
7: else
8: if xi = 0 then
9: Dispatch Si to Ri, and set xi = 1

10: else
11: Randomly select an index l from X={j|xj =0, i<j≤ i+k−1}
12: Dispatch Si to Rl, and set xl = 1
13: Release Ri

14: return R = {R1, R2, ..., Rn, ...}

to any empty timestamp with the same probability 1/c (Lines
4-6), and c will be decreased by 1 if Ri is still empty after
dispatching Si and thus expired. If c = c0, to prevent c from
dropping any further, if the current timestamp ti is empty, it
should not be expired without being dispatched. As such, the
protocol always dispatches Si to Ri if ti is empty (Lines 8-9);
otherwise, it dispatches Si to any empty timestamp with the
same probability 1/c0 (Lines 11-12). In either case, a non-
empty Ri is released (Line 13). Note that once c drops to c0,
this protocol guarantees c remains c0 forever.

C. Privacy Analysis

In this subsection, we prove Threshold mechanism satisfies
ε-TLDP in Theorem 4.3. To facilitate the proof, we first derive
the dispatching probability pj , j ∈ {0, 1, ..., k − 1}, which
is the probability of Si being dispatched to Ri+j . Let bit xj
denote whether ti+j is empty (xj = 0 means empty), and poj
denote this empty probability. Then

p0 = p(Si → Ri) = p(xi = 0) = po0

pj = p(Si → Ri+j) =
(1− po0) · p(xi+j = 0|xi = 1)

c0

(13)

To calculate po0 and p(xi+j = 0|xi = 1) where j ∈
{1, 2, ..., k− 1}, we observe a recursion that p(xi+j = 0|xi =
1) with window length k equals to p(xi+j−1 = 0) with
length k − 1. And to begin with, when k = c0 + 1, we have
p(xi+j = 0|xi = 1) = 1. Based on this observation, we can
derive the following lemma to recursively calculate po0.

Lemma 4.1: Given time window length k, threshold c0 and
m = k − c0, the probability that the first timestamp ti is
not empty, denoted by g(k,m) = 1 − po0, can be recursively
derived as
g(k,m) =

m

1−
∑m

l=1(−
1
c0
)l ·
∏l+1

i=1
k−i
i
·
∏l−1

i=1 g(k−i,m−i)
where g(k, 1) = 2

k .
Now we present the following theorem on the dispatching

probability of pj .
Theorem 4.2: Given time window length k, threshold c0

and m = k− c0, for any j ∈ {0, 1, ..., k− 1}, the dispatching
probability of Si → Ri+j , denoted by pj , is
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p0 = 1− g(k,m)

p1 = g(k,m) +
∑m

l=1
(
−1
c0

)l
∏l−1

i=0
g(k−i,m−i)

∏l

i=1

k−1−i
i

pj>1 = −
∑m

l=1
(
−1
c0

)l
∏l−1

i=0
g(k − i,m− i)

∏l−1

i=1

k−j−i
i+ 1

· l

To satisfy ε-TLDP, the ratio of any two dispatching proba-
bilities should be bounded by exp( ε2 ). The following theorem
shows how to derive the ε̂ achieved by the Threshold mech-
anism, given window length k and threshold c0 as inputs. In
the sequel, ε̂ is called a derived privacy budget, as opposed to
ε, which is the user input privacy budget.

Theorem 4.3: (TLDP Guarantee of Threshold Mech-
anism). Given time window length k and threshold c0,
the Threshold mechanism satisfies ε̂-TLDP, where ε̂ =
2max{ln p0

p1
, ln pk−1

p1
}, and pi’s are defined in Theorem 4.2.

D. Cost Minimization and Derivation of c∗0
One remaining issue in Threshold mechanism is the choice

of parameter c0 that can minimize the total cost. Since
Threshold mechanism does not have missing, repetition, and
empty cost,3 the expected total cost is:

E[C] =
∑k−1

j=1
j · pj ·D =

∑k−1

j=1
j · (poj − poj−1) ·D

=
(
k · pok−1 −

∑k−1

j=0
poj
)
·D = (k − c0) ·D

(14)

The above equation shows that the total cost decreases with
c0. Therefore, the optimal threshold c∗0 should be the largest
c0 that satisfies ε-TLDP according to Theorem 4.3.

Unfortunately, Theorem 4.3 does not provide a closed-form
solution to derive c∗0 from ε and k. Nonetheless, according
to Theorem 4.3, the derived privacy budget ε̂ first decreases
and then increases with c0. Fig. 4 illustrates this. The red
line denotes ε̂ = 2 ln pk−1

p1
, the blue line denotes ε̂ = 2 ln p0

p1
,

and then the solid (red and blue) lines denote the derived
privacy budget ε̂ by the Threshold mechanism, which is
2max{ln p0

p1
, ln pk−1

p1
}. The following theorem shows that both

lines are monotonic. So instead of calculating ε̂ for each
c0 ∈ [2, k−1] and finding c∗0 as the largest c0 whose ε̂ ≤ ε (the
user input privacy budget), we can use a binary search of c∗0 in
[2, k−1]. The details of this binary search are in the complete
description of Threshold mechanism in Section IV-F.

Theorem 4.4: The derived privacy budget ε̂ by Threshold
mechanism first monotonically decreases with c0 and then
monotonically increases.

3The empty cost is amortized to 0 for an infinite time series, because c = c0
always holds and no empty timestamp is wasted in the stable state.

E. Extended Threshold Mechanism

Fig. 4 also points out one limitation of Threshold mech-
anism — the intersection of the two solid lines, i.e., point
V , dictates the lowest privacy budget ε∗ this mechanism can
achieve. For an input privacy budget ε1 ≥ ε∗, Threshold
mechanism can use a binary search to find Q that intersects
with ε1,4 and then Q is rounded down to U = bQ.c0c.
However, for an input privacy budget ε2 < ε∗, Threshold
mechanism cannot find any feasible c0 because to optimize the
total cost this mechanism inherently favors the first (ti) and
last (ti+k−1) timestamps to dispatch Si. As such, the derived
privacy budget, which is the maximum ratio (in logarithm) of
any two dispatching probabilities, cannot be arbitrarily low no
matter what c0 is chosen.

To address this problem, we extend the Threshold mech-
anism. As shown in Fig. 4, for ε2 < ε∗, we still find O,
the intersection point with the red line, and then round it
up (because ε in the red line is decreasing) to dO.c0e. To
satisfy ε2-TLDP at this c0, we must move G, the intersection
point with the blue line, to H , the intersection point with
the horizontal line ε2. This is achieved by reducing the
dispatching probability p0 to p∗0 such that 2 ln(p

∗
0

p1
) = ε2. The

extended Threshold mechanism implements this reduction by
probabilistically ignoring value Si when dispatching it to the
current timestamp. In other words, when the current timestamp
ti is empty, it dispatches Si to Ri with probability p∗0

p0
, which

is eε2/2·p1
p0

, and ignores Si with probability 1 − eε2/2·p1
p0

.
In essence, the extended Threshold mechanism re-introduces
missing and empty costs to increase randomness and thus
satisfy very small ε. Note that the drop of p0 does not affect
the other dispatching probabilities p1, p2, ..., and pk−1, so
the extended Threshold mechanism still satisfies ε-TLDP as
shown in the following theorem.

Theorem 4.5: Given input privacy budget ε and time window
length k, the extended Threshold mechanism satisfies ε-TLDP.

F. Overall Algorithm

Algorithm 2 summarizes the overall algorithm of the (ex-
tended) Threshold mechanism. The core of this algorithm is
to find c∗0, the optimal threshold of this mechanism, using a
binary search. It first initializes the lower bound l and upper
bound r for this search (Line 1). Then in each recursion, the
current c0 is the mid-point of [l, r]. Based on this c0 and the
time window length k, it derives the privacy budget ε̂1 by
Theorem 4.3 (Line 3). If ε̂1 < ε, this means the next recursion
should search in the range of [c0, r] for even larger c0 (Line 4).
Otherwise, we should first determine whether the current c0 is
on the decreasing or increasing solid line as in Fig. 4. This is
done by testing whether privacy budget ε̂2 derived from k and
c0− 1 is larger than ε̂1. If this is true, c0 is on the decreasing
line and the next recursion should search [c0, r]; otherwise, c0
is on the increasing line and we should search [l, c0] (Line 7).

4According to Eq. 14, Threshold mechanism always chooses the largest c0
whose ε̂ ≤ ε1, so Q is chosen instead of W .
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Algorithm 2 (Extended) Threshold mechanism
Input: Original time series S = {S1, S2, ..., Sn, ...}

Time window length k
Input privacy budget ε

Output: A perturbed time series R
Procedure:

1: Initialize binary search range l = 2, and r = k − 1
2: while l < r do
3: Calculate c0 = b l+r

2
c, and ε̂1 ← (k, c0) according to Theorem 4.3

4: if ε̂1 < ε then l = c0
5: else
6: Calculate ε̂2 ← (k, c0−1)
7: if ε̂2 > ε̂1 then l = c0 else r = c0
8: if l + 1 = r then
9: Calculate ε̂3 ← (k, l) and ε̂4 ← (k, r)

10: if ε̂3 ≤ ε then c∗0 = l, break the loop
11: else if ε̂4 ≤ ε then c∗0 = r, break the loop
12: else /* extended Threshold mechanism */
13: l = r, r = k − 1
14: while l < r do
15: Calculate c0 = b l+r

2
c, ε̂5 ← (k, c0)

16: if ε̂5 ≤ ε then r = c0 else l = c0
17: if l + 1 = r then
18: return R = ExtendedPerturb(S, k, r)
19: return R = Perturb(S, k, c∗0)

The binary search terminates when l+1 = r. The algorithm
derives both ε̂3 and ε̂4 from l and r, respectively (Line 9). If
either of them is no larger than the input privacy budget ε, then
the optimal threshold c∗0 is found and Algorithm 1 is invoked to
perturb the original time series using c∗0 (Line 19). Otherwise,
Threshold mechanism cannot achieve ε and we have to use the
extended Threshold mechanism (Lines 13-18). Since this line
must be decreasing as in Fig. 4, the optimal threshold c∗0 must
reside in [r, k−1] and can be found by a similar binary search
(Lines 15-16). The search terminates when l + 1 = r and the
extended Threshold mechanism will be invoked to perturb the
original time series (Lines 17-18). The perturbation is the same
as Algorithm 1 except at Line 9, Si is dispatched to Ri with
probability eε/2·p1

p0
instead of probability 1.

V. EXPERIMENTAL EVALUATION

A. Experimental Setting

1) Datasets: We conduct experiments on two real and
one synthetic time series datasets: (1) U.S. Stocks [17] is
about historical daily prices of all U.S. stocks. We select a
stock that has the longest duration with 14,058 trading days
and derive a time series from its daily close price, where
each value indicates “up” or “down” of daily price; (2) Taxi
Trajectories [18] consists of 6307 taxi trajectories, each of
which has GPS coordinates in a 15-second interval and has
at least 300 timestamps; and (3) SyntheticTS is a generated
synthetic time series that consists of 106 timestamps, whose
values Si are integers and randomly drawn from [0, 100].

2) Experiment Design: We design two sets of experiments.
The first set evaluates the overall cost of the three TLDP per-
turbation mechanisms, namely, Backward Perturbation mech-
anism BPM, Forward Perturbation mechanism FPM, and
Threshold mechanism TM (ETM denoting the extended ver-
sion) under various datasets and system parameters, including

the time window length k, privacy budget ε and unit cost of
missing, repetition, empty and delay M , N , E and D. As
costs are all relative, we fix the unit delay cost D = 1, so the
delay cost of a value is less then k. Then we use M

k , N
k and

E
k to denote the relative cost of a missing, repeated and empty
value compared to a delayed value.

The second set compares the real utility of TLDP-based
temporal perturbation (i.e., BPM, FPM and TM/ETM) against
VLDP-based value perturbation (i.e., Randomized Response or
Laplace mechanism) in three real-world applications, namely,
frequency counting, simple moving average, and trajectory
clustering. For frequency counting, since the values are binary,
we use Randomized Response [19] for VLDP-based pertur-
bation, where the flipping probability is set to p = eε/2

1+eε/2

to satisfy ε-TLDP according to Theorem 2.3. For simple
moving average and trajectory clustering, since values are
numerical data, we apply Laplace mechanism for VLDP-based
perturbation. To be fair to it, the sensitivity S(F ) is calculated
from those exist in the time series, instead of the whole value
domain. A Laplace noise Lap( 2·S(F )

ε ) is then added to each
value to satisfy ε-TLDP according to Theorem 2.3.

We implement all mechanisms in Python and conduct
experiments on a desktop computer with Intel Core i7-6700
3.40 GHz CPU, 32G RAM running Windows 10 operating
system.

B. Results of Cost Analysis

1) Impact of relative cost: We first investigate the impact
of relative cost of missing, repetition and empty on total cost.
We set k = 20, and ε = 5, which is equivalent to perturbing
values with ε = 5/2 according to Theorem 2.3. Both measured
and theoretical results derived from Eqs. 8, 12 and 14 are
plotted in Fig. 5(a)-(c). We observe that both results coincide
with each other in all settings. In Fig. 5(a), we vary M

k from
0.2 to 2.0, while keeping N

k = E
k = 1. BPM and FPM have

exactly the same total cost, because the two mechanisms trade
repetition with empty cost, or vice versa. In Fig. 5(b), we vary
N
k from 0.2 to 2.0 while keeping M

k = E
k = 1. The total cost

of BPM grows with the ratio of N
k , while that of FPM stays

unchanged. This is because repetition cost only exists in the
former. Fig. 5(c) shows opposite results to Fig. 5(b) when E

k
is varied from 0.2 to 2.0. On the other hand, the total cost of
TM does not change over M

k
, N
k

or E
k

in Figs. 5(a)-(c), and
remains the lowest among all three mechanisms.

2) Impact of k and ε: We set all relative costs equally as
r = M

k = N
k = E

k = 1, ε = 5, and vary the time window
length k from 10 to 160. Fig. 5(d) shows the impact of k on
individual costs as bars and the total cost as lines. Overall, all
costs increase with k. TM always has the lowest total cost,
even though its delay cost is higher than the two baseline
mechanisms. This is attributed to the fact that TM does not
incur other costs, which are large in baseline mechanisms.
Note that by setting all relative costs to 1 we already favor
the two baselines, because the rationale behind any temporal
perturbation mechanism assumes a missing/repeated/empty
value is more severe than a delayed value.
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(d) Impact of k on individual and total costs
Fig. 5. Impact of relative cost and sliding window length on total cost

In Figs. 6(a) and (b), we compare the total cost of three
mechanisms by varying the input privacy budget ε from 1 to
16. We still set all relative costs equally as r = M

k = N
k =

E
k = 1 and plot the results under k = 10 and 50, respectively.
Overall, the total costs of three mechanisms all decrease with
ε, and TM outperforms the other two except for very small and
large ε. When ε becomes small, it cannot be satisfied by TM,
so the extended version ETM (the dashed lines) is adopted.
The gain of this mechanism gradually shrinks as ε gets smaller
until at very small ε, e.g., ε = 1 for k = 10 case, the baseline
mechanisms outperform it. On the other hand, as ε becomes
very large, all three mechanisms tend to saturate. For TM, this
is because there is an upper bound of privacy budget it can
expend, which is the maximum derived privacy budget of all
c0 ∈ [2, k − 1]. As k increases, this bound is lifted — 10
for k = 10, and 16 for k = 50. As such, TM can still gain
better performance as k increases whereas the two baseline
mechanisms cannot.

3) Valid range of (extended) Threshold mechanism: To
better understand the range of input privacy budget where
TM/ETM can derive and where it outperforms the two base-
lines, we plot them in Fig. 6(c) for k from 5 to 200. The dark
blue bar denotes the range of derived privacy budget, and the
light blue bar denotes the range where TM/ETM outperform
the baselines. As k increases, TM can derive a wider range
of input privacy budget, for which it can be adopted. On
the other hand, as k increases, the range of input privacy
budget where the TM/ETM outperforms the baselines expands,
which is attributed to the increasing upper bound and stable
lower bound (as low as 2.5 even when k = 200). To further
investigate the lower bound, we also plot the threshold c∗0 that
corresponds to the lowest derived privacy budget in the red
line. As k increases, c∗0 almost increases proportionally, so the
delay cost k − c∗0 increases proportionally, as opposed to the
drastic increase of missing/repetition/empty costs of baselines
as in Fig. 5(d).

4) Conclusion: choosing suitable mechanisms: To summa-
rize the results, we shall use the following strategy to choose
a temporal perturbation mechanism for given ε and k. If
this ε can be derived by the Threshold mechanism under
k, then we should choose this mechanism. Otherwise, if ε
is beyond the lower bound of derivable privacy budget, we
should still choose the (extended) Threshold mechanism unless
ε is extremely small (e.g. < 1) or k is very large (e.g.,
k > 100). Otherwise, if ε is beyond the upper bound of
derivable privacy budget, we should still choose the Threshold
mechanism unless ε is extremely large (e.g., > 20) or k is very

small (e.g., k < 10). For other cases, we should choose either
Forward or Backward perturbation mechanism, depending on
which unit cost is higher, repetition or empty.

C. Real Applications: TLDP vs. VLDP

To compare the effectiveness of TLDP (e.g., BPM, FPM,
TM/ETM) against VLDP (e.g., Laplace mechanism or Ran-
domized Response), we measure their utilities in three real-
world time series applications — frequency counting, simple
moving average, and trajectory clustering.

1) Frequency Counting: We conduct frequency counting of
value “up” in the US stock’s time series of daily close. At
each timestamp, we calculate the true count since the first
timestamp and use it as the ground truth. Then we adopt
VLDP-based Randomized Response and TLDP-based BPM,
FPM and TM/ETM, and measure their deviation from the
ground truth. Fig. 7(a) plot the MSE of these mechanisms,
where the input privacy budget varies from 1 to 8, and the
time window length k = 10. We observe that TM/ETM
outperforms the other three mechanisms significantly in most
cases. On the other hand, the MSE of FPM always stays
high, which is consistent to our analysis in Section II-D that a
timestamp being empty continuously causes underestimation
to the subsequent counts. This phenomenon is also reflected
on ETM when given a small privacy budget. As for BPM, it
has both missing and repeated values, which can cancel each
other to some extent and thus leads to a lower MSE than FPM.
In addition, to verify the accuracy of our parameter setting of
M , N , E and D for frequency counting in Section II-D, we
plot the predicted and measured ratios of BPM to TM/ETM
in terms of Log(MSE) in Fig. 7(b). The red dash line
indicates where BPM and TM/ETM are equivalently accurate.
We observe that the predicted ratio shows similar trend as
the measured ratio and can accurately predict at which point
TM/ETM outperforms BPM.

2) Simple Moving Average: We conduct simple moving
average on the stock’s daily close price and plot the MSE
of estimated results in Fig. 7(c). The time window length k is
set to 10 and the averaging range d = k. We observe that all
three TLDP mechanisms, i.e., BPM, FPM and TM/ETM, sig-
nificantly outperfosrm the VLDP-based Laplace mechanism,
and TM/ETM achieves the lowest MSE in most cases. As
opposed to frequency counting, FPM achieves higher accuracy
than BPM, because an empty (i.e., skipped) timestamp in FPM
does not cause as much deviation to the true average as a
repeated value in BPM. Similar to frequency counting, we
plot the predicted and measured ratios of FPM to TM/ETM
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Fig. 6. Impact of sliding windows length k on total cost
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Fig. 7. Results of frequency counting and simple moving average

TABLE II
NMI ON TRAJECTORY CLUSTERING

Input ε 1 2 3 4 5 6 7 8
Laplace 0.003 0.003 0.004 0.005 0.006 0.005 0.006 0.007

TM/ETM 0.572∗ 0.590∗ 0.610∗ 0.616 0.699 0.705 0.706 0.768
*: Extended Threshold Mechanism (ETM) is used.

under simple moving average in Fig. 7(d). We observe that
the predicted ratio is closely aligned with the measure ratio,
which verifies the correctness of our parameter setting of M ,
N , E and D for simple moving average in Section II-D.

3) Trajectory Clustering: We adopt the k-medoids algo-
rithm [20] to cluster all 6307 trajectories into 6 groups.
The clustering result over original data is regarded as the
ground truth. Then we perturb these trajectories by TLDP-
based Threshold mechanism (i.e., TM/ETM) and VLDP-
based Laplace mechanism respectively, and apply the same
k-medoids algorithm to cluster them again. For TM/ETM, we
set k = 10. To measure the similarity between the ground-truth
clusters and the clusters from perturbed trajectories, we adopt
a classic metric Normalized Mutual Information (NMI) [21].
A larger NMI means more similarity. Table II shows the results
with privacy budget from 1 to 8. TM/ETM always achieves a
higher NMI than Laplace mechanism, which indicates a more
similar clustering result to the ground truth.

VI. RELATED WORK

In this section, we review existing works on differential
privacy, and then with a focus on time series data release.

Differential Privacy. Differential privacy was first proposed
in the centralized setting [22], [23]. To avoid relying on a
trusted data collector, local differential privacy (LDP) was
proposed to let each user perturb her data locally [13], [24].
In the literature, many LDP techniques have been proposed
for various statistical collection tasks, such as frequency
of categorical data [10], [25]–[27], and mean of numerical

data [28]–[30]. Recently, the research focus in LDP has
been shifted to more complex tasks, such as heavy hitter
identification [31]–[33], itemset mining [34], [35], marginal
release [36], [37], graph data mining [38]–[40], and key-value
data collection [41], [42]. Some works also focus on learning
problems [30], [43], [44].

Differential Privacy for Time Series Data. Existing work
on time series focuses on differentially private aggregate statis-
tics, e.g., frequency count. Depending on the privacy require-
ment, a perturbation mechanism can satisfy either event-level
or user-level privacy [5], [45]. The former protects a user’s
presence at a single timestamp, while the later hides a user in
the whole time series. Rastogi et al. [15] proposed to achieve
differential privacy by injecting noise into the discrete Fourier
coefficients. The work of [46], [47] proposed differentially
private statistical release schemes that combine sampling or
smoothing techniques. The works of [45], [48] studied contin-
ual counting queries on time series, and [49] further considers
the correlation of continuously released time series data. Fan
et al. [7] proposed a framework to release real-time aggregate
statistics. Further, Kellaris et al. [6] merged the gap between
event-level and user-level privacy by proposing a model call
w-event privacy over infinite streams, which protects any event
sequence occurring in w successive timestamps.

VII. CONCLUSION

This paper proposes local differential privacy in temporal
setting (TLDP) for time series release. Since values must
not be perturbed in many time-series applications, we pro-
pose three temporal-perturbation based mechanisms, i.e., For-
ward and Backward Perturbation mechanisms, and (extended)
Threshold mechanism. We compare them through theoretical
and empirical analysis under various privacy budgets and time
window sizes. We also demonstrate the advantages of temporal
perturbation over value perturbation through three real-world
time series applications.

As for the future work, we plan to extend this work to
multivariate time series data, where each timestamp comes
with more than one time-dependent values that are correlated,
for example, heart rate and blood pressure.

ACKNOWLEDGMENT

This work was supported by National Natural Science Foun-
dation of China (Grant No: 61941121, 91646203, 62072390
and U1636205), the Research Grants Council, Hong Kong
SAR, China (Grant No: 15238116, 15222118, 15218919,
15203120 and C1008-16G), the United States National Sci-
ence Foundation (Grant No: 1931443).

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: Renmin University. Downloaded on April 13,2022 at 11:12:28 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] “COVID-19 community mobility reports,” https://www.google.com/
covid19/mobility/.

[2] L. Na, C. Yang, C.-C. Lo, F. Zhao, Y. Fukuoka, and A. Aswani, “Feasi-
bility of reidentifying individuals in large national physical activity data
sets from which protected health information has been removed with
use of machine learning,” JAMA Network Open, vol. 1, 2018.

[3] Y. Yang, M. Shao, S. Zhu, and G. Cao, “Towards statistically strong
source anonymity for sensor networks,” ACM Transactions on Sensor
Networks (TOSN), vol. 9, no. 3, p. 34, 2013.

[4] E. Shi, H. Chan, E. Rieffel, R. Chow, and D. Song, “Privacy-preserving
aggregation of time-series data,” in ISOC Network and Distributed
System Security Symposium. Citeseer, 2011.

[5] C. Dwork, “Differential privacy in new settings,” in SODA. SIAM,
2010, pp. 174–183.

[6] G. Kellaris, S. Papadopoulos, X. Xiao, and D. Papadias, “Differentially
private event sequences over infinite streams,” Proceedings of the VLDB
Endowment, vol. 7, no. 12, pp. 1155–1166, 2014.

[7] L. Fan and L. Xiong, “An adaptive approach to real-time aggregate
monitoring with differential privacy,” IEEE Transactions on Knowledge
and Data Engineering (TKDE), vol. 26, no. 9, pp. 2094–2106, 2013.

[8] “Apache flink,” https://flink.apache.org/.
[9] “High blood pressure (hypertension) - diagnosis - nhs,” https://www.nhs.

uk/conditions/high-blood-pressure-hypertension/diagnosis/.
[10] P. Kairouz, S. Oh, and P. Viswanath, “Extremal mechanisms for local

differential privacy,” in NIPS, 2014, pp. 2879–2887.
[11] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise

to sensitivity in private data analysis,” in TCC. Springer, 2006, pp.
265–284.

[12] F. McSherry and K. Talwar, “Mechanism design via differential privacy,”
in FOCS. IEEE, 2007, pp. 94–103.

[13] J. C. Duchi, M. I. Jordan, and M. J. Wainwright, “Local privacy and
statistical minimax rates,” in FOCS. IEEE, 2013, pp. 429–438.

[14] Tech. Rep., http://www.qingqingye.net/wp-content/uploads/2020/12/
TechReport.pdf.

[15] V. Rastogi and S. Nath, “Differentially private aggregation of distributed
time-series with transformation and encryption,” in SIGMOD. ACM,
2010, pp. 735–746.

[16] G. E. P. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time
Series Analysis: Forecasting and Control, 5th Edition. Holden-Day,
2015.

[17] “Historical daily prices of u.s. stocks,” https://www.kaggle.com/
borismarjanovic/price-volume-data-for-all-us-stocks-etfs.

[18] “Taxi trajectories,” https://www.kaggle.com/crailtap/taxi-trajectory.
[19] S. L. Warner, “Randomized response: A survey technique for eliminating

evasive answer bias,” Journal of the American Statistical Association,
vol. 60, no. 309, pp. 63–69, 1965.

[20] H.-S. Park and C.-H. Jun, “A simple and fast algorithm for k-medoids
clustering,” Expert Systems with Applications, vol. 36, no. 2, pp. 3336–
3341, 2009.

[21] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical
machine learning tools and techniques. Morgan Kaufmann, 2016.

[22] C. Dwork, “Differential privacy,” in ICALP. Springer, 2006, pp. 1–12.
[23] N. Li, M. Lyu, D. Su, and W. Yang, “Differential privacy: From theory to

practice,” Synthesis Lectures on Information Security, Privacy, & Trust,
vol. 8, no. 4, pp. 1–138, 2016.

[24] Q. Ye and H. Hu, “Local differential privacy: Tools, challenges, and
opportunities,” in WISE. Springer, 2020, pp. 13–23.
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