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Abstract— Inspired by the great success of information re-
trieval (IR) style keyword search on the web, keyword search on
XML has emerged recently. The difference between text database
and XML database results in three new challenges: (1) Identify
the user search intention, i.e. identify the XML node types that
user wants to search for and search via. (2) Resolve keyword
ambiguity problems: a keyword can appear as both a tag name
and a text value of some node; a keyword can appear as the text
values of different XML node types and carry different meanings.
(3) As the search results are sub-trees of the XML document,
new scoring function is needed to estimate its relevance to a given
query. However, existing methods cannot resolve these challenges,
thus return low result quality in term of query relevance.

In this paper, we propose an IR-style approach which basically
utilizes the statistics of underlying XML data to address these
challenges. We first propose specific guidelines that a search
engine should meet in both search intention identification and
relevance oriented ranking for search results. Then based on
these guidelines, we design novel formulae to identify the search
for nodes and search via nodes of a query, and present a novel
XML TF*IDF ranking strategy to rank the individual matches of
all possible search intentions. Lastly, the proposed techniques are
implemented in an XML keyword search engine called XReal,
and extensive experiments show the effectiveness of our approach.

I. INTRODUCTION

The extreme success of web search engines makes keyword
search the most popular search model for ordinary users. As
XML is becoming a standard in data representation, it is
desirable to support keyword search in XML database. It is
a user friendly way to query XML databases since it allows
users to pose queries without the knowledge of complex query
languages and the database schema.

Effectiveness in term of result relevance is the most crucial
part in keyword search, which can be summarized as the
following three issues in XML field.
Issue 1: It should be able to effectively identify the type of
target node(s) that a keyword query intends to search for. We
call such target node as a search for node.
Issue 2: It should be able to effectively infer the types of
condition nodes that a keyword query intends to search via.
We call such condition nodes as search via nodes.
Issue 3: It should be able to rank each query result in
consideration of the above two issues.

The first two issues address the search intention problem,
while the third one addresses the relevance based ranking
problem w.r.t. the search intention. Regarding to Issue 1 and

Issue 2, XML keyword queries usually have ambiguities in
interpreting the search for node(s) and search via node(s), due
to two reasons below.

• Ambiguity 1: A keyword can appear both as an XML
tag name and as a text value of some other nodes.

• Ambiguity 2: A keyword can appear as the text values
of different types of XML nodes and carry different
meanings.

For example see the XML document in Figure 1, keywords
customer and interest appear as both an XML tag name and a
text value (e.g. value of the title for book B1), and art appears
as a text value of interest, address and name node.

Regarding to Issue 3, the search intention for a keyword
query is not easy to determine and can be ambiguous, because
the search via condition is not unique; so how to measure the
confidence of each search intention candidate, and rank the
individual matches of all these candidates are challenging.

Although many research efforts have been conducted in
XML keyword search [1], [2], [3], [4], [5], none of them has
addressed and resolved the above three issues yet. For instance,
one widely adopted approach so far is to find the smallest
lowest common ancestor (SLCA) of all keywords [3]. Each
SLCA result of a keyword query contains all query keywords
but has no subtree which also contains all the keywords. Since
[4], [5] etc. are variations of SLCA, we use SLCA as a typical
existing approach in the rest discussion. Those SLCA-based
approaches only take the tree structure of XML data into
consideration, without considering the semantics of the query
and XML data.

In particular, regarding to Issue 1 and 2, SLCA may intro-
duce answers that are either irrelevant to user search intention,
or answers that may not be meaningful or informative enough.
E.g. when a query “Jim Gray” that intends to find Jim Gray’s
publications on DBLP [6] is issued, SLCA returns only the
author elements containing both keywords. Besides, SLCA
also returns publications written by two authors where “Jim”
is a term in 1st author’s name and “Gray” is a term in 2nd
author, and publications with title containing both keywords.
It is reasonable to return such results because search intention
may not be unique; however they should be given a lower
rank, as they are not matches of the major search intention.
Regarding to Issue 3, no existing approach has studied the
problem of relevance oriented result ranking in depth yet.
Moreover, they don’t perform well on pure keyword query
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Fig. 1. Portion of data tree for an online bookstore XML database

when the schema information of XML data is not available
[4]. The actual reason is, none of them can solve the keyword
ambiguity problems, i.e. Ambiguity 1 and Ambiguity 2, as
demonstrated by the following example.

Example 1: Consider a keyword query “customer interest
art” issued on the bookstore data in Figure 1, and most likely
it intends to find the customers who are interested in art.

If adopting SLCA, we will get 5 results, which include
the title of book B1 and the customer nodes with IDs from
C1 to C4 (as these four customer nodes contain “customer”,
“interest” and “art” in either the tag names or node values) in
Figure 1. Since SLCA cannot well address the search intention,
all these 5 SLCA results are returned without any ranking
applied. However, only C4 is desired which should be put as
the top ranked one, and C2 is less relevant, as his interest is
“street art” rather than “art”, while C1 and C3 are irrelevant.�

Inspired by the great success of IR approach on web search
(especially its distinguished ranking functionality), we aim to
achieve similar success on XML keyword search, to solve the
above three issues without using any schema knowledge. The
main challenge we are going to solve is how to extend the
keyword search techniques in text databases (IR) to XML
databases, because the two types of databases are different.
First, the basic data units in text databases searched by users
are flat documents. For a given query, IR systems compute
a numeric score for each document and rank the document
by this score. In XML databases, however, information is
stored in hierarchical tree structures. The logical unit of
answers needed by users is not limited to individual leaf nodes
containing keywords, but a subtree instead. Second, unlike
text database, it is difficult to identify the (major) user search
intention in XML data, especially when the keywords contain
ambiguities mentioned before. Third, effective ranking is a
key factor for the success of keyword search. There may be
dozens of candidate answers for an ordinary keyword query
in a medium-sized database. E.g. in Example 1, five subtrees
can be the query answers, but they are not equally useful
to user. Due to the difference in basic answer unit between
document search and database search, in XML database we
need to assign a single ranking score for each subtree of

certain category with a fitting size, in order to rank the answers
effectively.

Statistics is a mathematical science pertaining to the collec-
tion, analysis, interpretation or explanation of data; it can be
used to objectively model a pattern or draw inferences about
the underlying data being studied. Although keyword search is
a subjective problem that different people may have different
interpretations on the same keyword query, statistics provides
an objective way to distinguish the major search intention(s).

This motivates us to design a best efforts heuristic approach
that provides an objective way to measure the query result
relevance; thus we model the search engine as a domain
expert who automatically interprets user’s all possible search
intention(s) through analyzing the statistics knowledge of
underlying data. In this paper we propose a novel IR-style ap-
proach which well captures XML’s hierarchical structure, and
works well on pure keyword query independent of any schema
information of XML data. In particular, the original TF*IDF
similarity [7] is extended to handle both semi-structured and
unstructured data, and a keyword search system prototype
called XReal is implemented to achieve effective identification
of user search intention and relevance oriented ranking for the
search results in the presence of keyword ambiguities.

Example 2: We use the query in Example 1 again to
explain how XReal infers user’s desired result and puts it
as a top-ranked answer. XReal interprets that user desires to
search for customer nodes, because all three keywords have
high frequency of occurrences in customer nodes. Similarly,
since keywords “interest” and “art” have high frequency of
occurrences in subtrees rooted at interest nodes, it is con-
sidered with high confidence that this query wants to search
via interest nodes, and incorporate this confidence into our
ranking formula. Besides, customers interested in “art” should
be ranked before those interested in (say) “street art”. As a
result, C4 is ranked before C2, and further before customers
with address in “art street”(e.g. C1) or named “art” (e.g. C3).�

To our best knowledge, we are the first that exploit the
statistics of underlying XML database to address search in-
tention identification, result retrieval and relevance oriented
ranking as a single problem for XML keyword search. Our
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main contributions are summarized as follows:

1) This is the first work that addresses the keyword ambi-
guity problem. We also identify three crucial issues that
an effective XML keyword search engine should meet.

2) We define our own XML TF (term frequency) and XML
DF (document frequency), which are cornerstones of all
formulae proposed later.

3) We propose three important guidelines in identifying the
user desired search for node type, and design a formula
to compute the confidence level of a certain node type
to be a desired search for node based on the guidelines.

4) We design formulae to compute the confidence of each
candidate node type as the desired search via node to
model natural human intuitions, in which we take into
account the pattern of keywords co-occurrence in query.

5) We propose a novel relevance oriented ranking scheme
called XML TF*IDF similarity which can capture the
hierarchical structure of XML, and resolve Ambiguity 1
and Ambiguity 2 in a heuristic way; and also distinguish
the similarity computation for leaf nodes and internal
nodes in XML data. Moreover, our approach is able to
handle both semi-structured and unstructured data.

6) We implement the proposed techniques in a keyword
search engine prototype called XReal. Extensive exper-
iments show its effectiveness, efficiency and scalability.

The rest of the paper is organized as follows. We present
the related work in Section II, and preliminary on IR and data
model in Section III. Section IV infers user search intention,
and Section V discusses relevance oriented ranking. Section
VI presents the search algorithms. Experimental evaluation is
given in Section VII and we conclude in Section VIII.

II. RELATED WORK

Extensive research efforts have been conducted in XML
keyword search to find the smallest sub-structures in XML
data that each contains all query keywords in either the tree
data model or the directed graph (i.e. digraph) data model.

In tree data model, LCA (lowest common ancestor) seman-
tics is first proposed and studied in [8], [2] to find XML nodes,
each of which contains all query keywords within its subtree.
Subsequently, SLCA (smallest LCA [9], [3]) is proposed to
find the smallest LCAs that do not contain other LCAs in their
subtrees. GDMCT (minimum connecting trees) [5] excludes
the subtrees rooted at the LCAs that do not contain query
keywords. Sun et al. [10] generalize SLCA to support key-
word search involving combinations of AND and OR boolean
operators. XSeek [4] generates the return nodes which can be
explicitly inferred by keyword match pattern and the concept
of entities in XML data. However, it addresses neither the
ranking problem nor the keyword ambiguity problem. Besides,
it relies on the concept of entity (i.e. object class) and considers
a node type t in DTD as an entity if t is “*”-annotated in DTD.
As a result, customer, phone, interest, book in Figure 1,
are identified as object classes by XSeek. However, it causes
the multi-valued attribute to be mistakenly identified as an
entity, causing the inferred return node not as intuitive as

possible. E.g. phone and interest are not intuitive as entities.
In fact, the identification of entity is highly dependent on the
semantics of the underlying database rather than its DTD, so
it usually requires the verification and decision from database
administrator. Therefore, the adoption of entities for keyword
search should be optional although this concept is very useful.

In digraph data model, previous approaches are heuristics-
based, as the reduced tree problem on graph is as hard as
NP-complete. Li et al. [11] show the reduction from minimal
reduced tree problem to the NP-complete Group Steiner Tree
problem on graphs. BANKS [12] uses bidirectional expansion
heuristic algorithms to search as small portion of graph as
possible. BLINKS [13] proposes a bi-level index to prune and
accelerate searching for top-k results in digraphs. Cohen et
al. [14] study the computation complexity of interconnection
semantics. XKeyword [15] provides keyword proximity search
that conforms to an XML schema; however, it needs to com-
pute candidate networks and thus is constrained by schemas.

On the issue of result ranking, XRANK [2] extends
Google’s PageRank to XML element level, to rank among
the LCA results; but no empirical study is done to show the
effectiveness of its ranking function. XSEarch [1] adopts a
variant of LCA, and combines a simple tf*idf IR ranking with
size of the tree and the node relationship to rank results; but it
requires users to know the XML schema information, causing
limited query flexibility. EASE [16] combines IR ranking and
structural compactness based DB ranking to fulfill keyword
search on heterogenous data. Regarding to ranking methods,
TF*IDF similarity [7] which is originally designed for flat
document retrieval is insufficient for XML keyword search due
to XML’s hierarchical structure and the presence of Ambiguity
1 and Ambiguity 2. Several proposals for XML information
retrieval suggest to extend the existing XML query languages
[17], [18], [19] or use XML fragments [20] to explicitly
specify the search intention for result retrieval and ranking.

III. PRELIMINARIES

A. TF*IDF cosine similarity

TF*IDF (Term Frequency * Inverse Document Frequency)
similarity is one of the most widely used approaches to
measure the relevance of keywords and document in keyword
search over flat documents. We first review its basic idea, then
address its limitations for keyword search in XML. The main
idea of TF*IDF is summarized in the following three rules.

• Rule 1: A keyword appearing in many documents should
not be regarded as being more important than a keyword
appearing in a few.

• Rule 2: A document with more occurrences of a query
keyword should not be regarded as being less important
for that keyword than a document that has less.

• Rule 3: A normalization factor is needed to balance be-
tween long and short documents, as Rule 2 discriminates
against short documents which may have less chance to
contain more occurrences of keywords.

To combine the intuitions in the above three rules, the
TF*IDF similarity is designed:
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ρ(q, d) =

∑
k∈q∩d Wq,k ∗ Wd,k

Wq ∗ Wd
(1)

where q represents a query, d represents a flat document and
k is a keyword appearing in both q and d. A larger value of
ρ(q, d) indicates q and d are more relevant to each other. Wq,k

and Wd,k represent the weights of k in query q and document
d respectively; while Wq and Wd are the weights of query q
and document d. Among several ways to express Wq,k, Wd,k,
Wq and Wd, the followings are the conventional formulae:

Wq,k = ln (N/(fk + 1)) (2)
Wd,k = 1 + ln (fd,k) (3)

Wq =
√∑

k∈q

W 2
q,k (4)

Wd =
√∑

k∈d

W 2
d,k (5)

where N is the total number of documents, and document
frequency fk in Formula 2 is the number of documents
containing keyword k. Term frequency fd,k in Formula 3 is
the number of occurrences of k in document d.

Wq,k is monotonical decreasing w.r.t. fk (Inverse Document
Frequency) to reflect Rule 1; while Wd,k is monotonical
increasing w.r.t. fd,k (Term Frequency) to reflect Rule 2. The
logarithms used in Formula 2 and 3 are designed to normalize
the raw document frequency fk and raw term frequency fd,k.
Finally, Wq and Wd are increasing w.r.t. the size of q and d,
playing the role of normalization factors to reflect Rule 3.

However, the original TF*IDF is inadequate for XML,
because it is not able to fulfill the job of search intention
identification or resolve keyword ambiguities resulted from
XML’s hierarchical structure, as Example 3 shows.

Example 3: Suppose a keyword query “art” is issued to
search for customers interested in “art” in Figure 1’s XML
data. Ideally, the system should rank customers who do have
“art” in their nested interest nodes before those who do not
have. Moreover, it is desirable to give customer (A) who is
only interested in art a higher rank than another customer (B)
who has many interests including art (e.g. C4 in Figure 1).

However, it causes two problems if directly adopting orig-
inal TF*IDF to XML data. (1) If the structures in customer
nodes are not considered, customer A may have a lower rank
than B if A happens to have more keywords in its subtrees
(analog to long document in IR) than B. (2) Even worse,
suppose a customer C is not interested in art but has address
in “art street”. If C has less number of keywords than A and
B in XML data, then C may have higher rank than A and B.

B. Data model

We model XML document as a rooted, labeled tree, such as
the one in Figure 1. Our approach exploits the prefix-path of a
node rather than its tag name for result retrieval and ranking.
Note that the existing works [4], [21] rely on DTD while our
approach works without any XML schema information.

Definition 3.1: (Node Type) The type of a node n in an
XML document is the prefix path from root to n. Two nodes
are of same node type if they share the same prefix path.

In Definition 3.1, the reason that two nodes need to share
same prefix path instead of their tag name is, there may be
two or more nodes of the same tag name but of different
semantics (i.e. in different contexts) in one document. E.g. In
Figure 1, the name of publisher and the name of customer are
of different node types, as they are in different contexts.

To facilitate our discussion later, we use the tag name
instead of the prefix path of a node to denote the node type
in all examples throughout this paper. Besides, we distinguish
an XML node into either a value node or a structural node, to
separate the content part from leaf node.

Definition 3.2: (Value Node) The text values contained in
the leaf node of XML data (i.e. #PCDATA) is defined as a
value node.

Definition 3.3: (Structural Node) An XML node labeled
with a tag name is called a structural node. A structural node
that contains other structural nodes as its children is called an
internal node.

Definition 3.4: (Single-valued Type) A given node t is of
single-valued type if each node of type t has at most one
occurrence within its parent node.

Definition 3.5: (Multi-valued Type) A given node t is of
multi-valued type if each node of type t has more than one
occurrence within its parent node.

Definition 3.6: (Grouping Type) An internal node t is
defined as a grouping type if each node of type t contains
child nodes of only one multi-valued type.

XML nodes of single-valued type and multi-valued type can
be easily identified when parsing the data. A node of single-
valued (or multi-valued, or grouping) type is called a single-
valued (or multi-valued, or grouping) node. E.g. in Figure 1,
address is a single-valued node, while interest is a multi-
valued node and interests is a grouping node for interest.

In this paper, for ease of presentation later, we assume every
multi-valued node has a grouping node as its parent, as we can
easily introduce a dummy grouping node in indexing without
altering the data. Note a grouping node is also a single-valued
node. Thus, the children of an internal node are either of same
multi-valued type or of different single-valued types.

C. XML TF & DF
Inspired by the important role of data statistics in IR

ranking, we try to utilize it to resolve ambiguities for XML
keyword search, as it usually provides an intuitionistic and
convincing way to model and capture human intuitions.

Example 4: When we talk about “art” in the domain of
database like Figure 1, we in the first place consider it as a
value in interest of customer nodes or category (or title) of
book nodes. However, we seldom first consider it as a value
of other node types (e.g. street with value “Art Street”).

The reason for this intuition is, usually there are many nodes
of interest type and category type containing “art” in their
text values (or subtrees) while “art” is usually infrequent in
street nodes. Such intuition (based on domain knowledge)
always can be captured by statistics of the underlying database.

Similarly, when we talk about “interest” here, we in the
first place consider it as a node type instead of a value of
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the title of book nodes with intuition thinking. Besides the
simple reason that “interest” matches the XML tag interest,
it can also be explained from statistical point of view, i.e. all
interest nodes contain keyword “interest” in their subtrees.

The importance of statistics in XML keyword search is
formalized as follows.

Intuition 1: The more XML nodes of a certain type T (and
their subtrees) contain a query keyword k in either their text
values or tag names, it is more intuitive that nodes of type T
are more closely related to the query w.r.t. keyword k.

In this paper, we maintain and exploit two important basic
statistics terms, fa,k and fT

k .
Definition 3.7: (XML TF) fa,k: The number of occurrences

of a keyword k in a given value node a in the XML database.
Definition 3.8: (XML DF) fT

k : The number of T -typed
nodes that contain keyword k in their subtrees in the XML
database.

Here, fa,k and fT
k are defined in an analogous way to term

frequency fd,k (in Formula 3) and document frequency fk (in
Formula 2) used in original TF*IDF similarity; except that we
use fT

k to distinguish statistics for different node types, as the
granularity on which to measure similarity in XML scenario
is a subtree rather than a document. Therefore, fa,k and fT

k

can be directly used to measure the similarity between a value
node (with parent node of type T ) and a query based on the
intuitions of original TF*IDF. Besides, fT

k is also useful in
resolving ambiguities, as Intuition 1 shows. We will discuss
how these two sets of statistics are used for relevance oriented
ranking for XML keyword search in presence of ambiguities.

IV. INFERRING KEYWORD SEARCH INTENTION

In this section, we discuss how to interpret the search
intentions of keyword query according to the statistics in XML
database and the pattern of keyword co-occurrence in a query.

A. Inferring the node type to search for

The desired node type to search for is the first issue that a
search engine needs to address in order to retrieve the relevant
answers. Given a keyword query q, a node type T is considered
as the desired node to search for only if the following three
guidelines hold:
Guideline 1: T is intuitively related to every query keyword
in q, i.e. for each keyword k, there should be some (if not
many) T -typed nodes containing k in their subtrees.
Guideline 2: XML nodes of type T should be informative
enough to contain enough relevant information.
Guideline 3: XML nodes of type T should not be overwhelm-
ing to contain too much irrelevant information.

Guideline 2 prefers an internal node type T at a higher
level to be the returned node, while Guideline 3 prefers that
the level of T -typed node should not be very near to the
root node. For instance let’s refer to Figure 1: according to
Guideline 2, leaf nodes of type interest, street etc. are usually
not good candidates for desired returned nodes, as they are
not informative. According to Guideline 3, nodes of type
customers and books are not good candidates as well, as
they are too overwhelming as a single keyword search result.

By incorporating the above guidelines, we define
Cfor(T, q), which is the confidence of a node type T
to be the desired search for node type w.r.t. a given keyword
query q as follows:

Cfor(T, q) = loge(1 +
∏
k∈q

fT
k ) ∗ rdepth(T ) (6)

where k represents a keyword in query q; fT
k is the number

of T -typed nodes that contain k as either values or tag names
in their subtrees; r is some reduction factor with range (0,1]
and normally chosen to be 0.8, and depth(T ) represents the
depth of T -typed nodes in document.

In Formula 6, the first multiplier (i.e. loge(1 +
∏

k∈q fT
k ))

actually models Intuition 1 to address Guideline 1. Meanwhile,
it effectively addresses Guideline 3, since the candidate over-
whelming nodes (i.e. the nodes that are near the root) will
be assigned a small value of

∏
k∈q fT

k , resulting in a small
confidence value. The second multiplier rdepth(T ) simply
reduces the confidence of the node types that are deeply nested
in the XML database to address Guideline 2. In addition, we
use product rather than sum of fT

k (i.e.
∏

k∈q fT
k ) in the first

multiplier to combine statistics of all query keywords for each
node type T . The reason is, the search intention of each query
usually has a unique desired node type to search for, so using
product ensures that a node type needs to be intuitively related
to all query keywords in order to have a high confidence as
the desired type. Therefore, if a node type T cannot contain
all keywords of the query, its confidence value is set to 0.

Example 5: Given a query “customer interest art”, node
type customer usually has high confidence as the desired
node type to search for, because the values of three statistics
f customer
“customer”, f customer

“interest” and f customer
“art” (i.e. the number of sub-

trees rooted at customer nodes containing “customer”, “inter-
est” and “art” in either nested text values or tags respectively)
are usually greater than 1. In contrast, node type customers
doesn’t have high confidence since f customers

“customer” = f customers
“interest” =

f customers
“art” = 1. Similarly, node type interest doesn’t have high

confidence since f interest
“customer” usually has small value. E.g. in

Figure 1’s XML data, f interest
“customer” = 0.

Finally, with the confidence of each node type being the
desired type, the one with the highest confidence is chosen as
the desired search for node, when the highest confidence is
significantly greater than the second highest. However, when
several node types have comparable confidence values, either
users can be offered a choice to decide the desired one, or the
system will do a search for each convincing candidate node.
Although not always fully automatic, our inference approach
still provides a guidance for the system-user interaction for
ambiguous keyword queries in absence of syntax.

B. Inferring the node types to search via

Similar to inferring the desired search for node, Intuition 1
is also useful to infer the node types to search via. However,
unlike the search for case which requires a node type to be
related to all keywords, it is enough for a node type to have
high confidence as the desired search via node if it is closely
related to some (not necessarily all) keywords, because a query
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may intend to search via more than one node type. E.g. we
can search for customer(s) named ”Smith” and interested in
“fashion” with query “name smith interest fashion”. In this
case, the system should be able to infer with high confidence
that name and interest are the node types to search via, even
if keyword “interest” is probably not related to name nodes.

Therefore, we define Cvia(T, q), which is the confidence of
a node type T to be a desired type to search via as below:

Cvia(T, q) = loge(1 +
∑
k∈q

fT
k ) (7)

where variables k, q and T have the same meaning as those
in Formula 6. Compared to Formula 6, we use sum of fT

k

instead of product, as it is sufficient for a node type to have
high confidence as the search via node if it is related to some
of the keywords. In addition, if all nodes of a certain type T
do not contain any keyword k in their subtrees, fT

k is equal
to 0 for each k in q, resulting in a zero confidence value,
which is also consistent with the semantics of SLCA. Then,
the confidence of each possible node type to search via will
be incorporated into XML TF*IDF similarity (which will be
discussed in Section V-B) to provide answers of high quality.

C. Capturing keyword co-occurrence

While statistics provide a macro way to compute the confi-
dence of a node type to search via; it alone is not adequate to
infer the likelihood of an individual value node to search via
for a given keyword in the query.

Example 6: Consider a query “customer name Rock interest
Art” searching for customers whose name includes “Rock”
and interest includes “Art”. Based on statistics, we can infer
that name and interest-typed nodes have high confidence to
search via by Formula 7, as the frequency of keywords “name”
and “interest” are high in node types name and interest
respectively. However, statistics is not adequate to help the
system infer that the user wants “Rock” to be a value of name
and “Art” to be a value of interest, which is intuitive with
the help of keyword co-occurrence in the query. Therefore,
purely based on statistics, it is difficult for search engine to
differ customer C4 (with name ”Art” and interest ”Rock”)
from C3 (with name “Rock” and interest ”Art”) in Figure 1.

Motivated from the above example, the pattern of keyword
co-occurrence in a query provides a micro way to measure
the likelihood of an individual value node to search via, as a
compliment of statistics. Therefore, for each query-matching
value node in XML data, in order to capture the co-occurrence
of keywords matching the node types and keywords matching
the value nodes, the following distances are defined.

Given a keyword query q and a certain value node v, if
there are two keywords kt and k in q, such that kt matches
the type of an ancestor node of v and k matches a keyword
in v, then we define the following distances.

Definition 4.1: (In-Query Distance (IQD)) The In-Query
Distance Distq(q, v, kt, k) between keyword k and node type
kt in query q with respect to a value node v is defined as the
position distance between kt and k in q if kt appears before
k in q; Otherwise, Distq(q, v, kt, k) = ∞.

Note the position distance of two keywords k1 and k2 in a
query q is the difference of k1’s position and k2’s position in
the query. The above definition assumes there is no repeated
kt and k in a query q. When there are multiple occurrences of
kt and/or k (e.g. query “name smith address smith street”), we
define Distq(q, v, kt, k) as the minimal value for all possible
combinations of each occurrence of kt and k.

Definition 4.2: (Structural Distance (SD)) The structural
Distance Dists(q, v, kt, k) between kt and k w.r.t. a value
node v is defined as the depth distance between v and the
nearest kt-typed ancestor node of v in XML document.

Definition 4.3: (Value-Type Distance (VTD)) The Value-
Type Distance Dist(q, v, kt, k) between kt and k w.r.t. a value
node v is defined as

max(Distq(q, v, kt, k), Dists(q, v, kt, k)).
In general, the smaller the value of Dist(q, v, kt, k) is, it is

more likely that q intends to search via the node v with value
matching keyword k. Therefore, we define the confidence of
a value node v as the node to search via w.r.t. a keyword k
appearing in both query q and v as follows.

Cvia(q, v, k) = 1 +
∑

kt∈q∩ancType(v)

1
Dist(q, v, kt, k)

(8)

Example 7: Consider the query q in Example 6 again with
same search intention. Let n3 and i3 represent the value nodes
under name (i.e. Art Smith) and interest (i.e. rock music)
respectively of customer C3. Similarly, let n4 and i4 be the
values nodes under name and interest of customer C4. Now
Distq(q, n3, name, Art) = 3; Dists(q, n3, name, Art) = 1;
as a result Dist(q, n3, name, Art) = 3 and Cvia(q, n3, Art)
= 4/3. Similarly, Cvia(q, i3, Rock) = 1; Cvia(q, n4, Rock) =
2; and Cvia(q, i4, Art) = 2. We can see that the values of
customer C4 are larger than those of customerC3.

V. RELEVANCE ORIENTED RANKING

In this section, we first summarize some unique features
of keyword search in XML, and address the limitations of
traditional TF*IDF similarity for XML. Then we propose a
novel XML TF*IDF similarity which incorporates the confi-
dence formulae we have designed in Section IV, to resolve the
keyword ambiguity problem in relevance oriented ranking.

A. Principles of keyword search in XML

Compared with flat documents, keyword search in XML has
its own features. In order for an IR-style ranking approach to
smoothly apply to it, we present three principles that the search
engine should adopt.
Principle 1: When searching for XML nodes of desired type
D via a single-valued node type V , ideally, only the values
and structures nested in V -typed nodes can affect the relevance
of D-typed nodes as answers, whereas the existence of other
typed nodes nested in D-typed nodes should not. In other
words, the size of the subtree rooted at a D-typed node d
(except the subtree rooted at the search via node) shouldn’t
affect d’s relevance to the query.

Example 8: When searching for customer nodes via street
nodes using a keyword query “Art Street”, a customer node



(e.g. customer C1 in Figure 1) with the matching keyword
“street” shouldn’t be ranked lower than another customer
node (e.g. customer C3 in Figure 1) without the matching
keyword “street”, regardless of the sizes, values and structures
of other nodes nested in C1 and C3. Note this is different
from the original TF*IDF similarity that has strong intuition
to normalize the relevance score of each document with respect
to its size (i.e. to normalize against long documents).

Principle 2: When searching for the desired node type D via a
multi-valued node type V ′, if there are many V ′-typed nodes
nested in one node d of type D, then the existence of one
query-relevant node of type V ′ is usually enough to indicate,
d is more relevant to the query than another node d′ also
of type D but with no nested V ′-typed nodes containing the
keyword(s). In other words, the relevance of a D-typed node
which contains a query relevant V ′-typed node should not be
affected (or normalized) too much by other query-irrelevant
V ′-typed nodes.

Example 9: Consider when searching for customers inter-
ested in art using the query “art”, a customer with “art”-
interest along with many other interests (e.g. C4 in Figure
1) should not be regarded as less relevant to the query than
another customer who doesn’t have “art”-interest but has “art
street” in address (e.g. C1 in Figure 1).

Principle 3: The order of keywords in a query is usually
important to indicate the search intention.

The first two principles look trivial if we know exactly the
search via node. However, when the system doesn’t have exact
information of which node type to search via (as user issues
pure keyword query in most cases), they are important in
designing the formula of XML TF*IDF similarity; we will
utilize them in designing Formula for W q

a in section V-B.2.

B. XML TF*IDF similarity

We propose a recursive Formula 9, which captures XML’s
hierarchical structure, to compute XML TF*IDF similarity
between an XML node of the desired type to search for and
a keyword query. It first (base case) computes the similarities
between leaf nodes l of XML document and the query,
then (recursive case) it recursively computes the similarities
between internal nodes n and the query, based on the similarity
value of each child c of n and the confidence of c as the node
type to search via, until we get the similarities of search for
nodes:

ρs(q, a) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(a) a is value node∑
k∈q∩a

W Ta
q,k∗Wa,k

W Ta
q ∗Wa

(base case)

(b) a is internal∑
c∈chd(a)

ρs(q,c)∗Cvia(Tc,q)

W q
a

node
(recursive case)

(9)
where q represents a keyword query; a represents an XML

node; and the result ρs(q, a) represents the similarity value
between q and a.

We first discuss the intuitions behind Formula 9 briefly.
(1) In the base case, we compute the similarity values between

XML leaf nodes and a given query in a similar way to original
TF*IDF, since leaf nodes contain only keywords with no
further structure.
(2) In the recursive case: on one hand, if an internal node
a has more query relevant child nodes while another internal
node a′ has less, then it is likely that a is more relevant to the
query than a′. This intuition is reflected as the numerator in
Formula 9(b). On the other hand, we should take into account
the fan-out (size) of the internal node as normalization factor,
since the node with large fan-out has a higher chance to
contain more query relevant children. This is reflected as the
denominator of Formula 9(b).

Next, we will illustrate how each factor in Formula 9
contributes to the XML structural similarity in Section V-B.1
(for base case) and V-B.2 (for recursive case).

1) Base case of XML TF*IDF: Since XML leaf nodes
contain keywords with no further structure, we can adopt
the intuitions of original TF*IDF to compute the similarity
between a leaf node and a keyword query by using statistics
terms fT

k and fa,k which have been explained in Section III-C.
However, unlike Rule 1 in original TF*IDF which models

and assigns the same weight to a query keyword w.r.t. all
documents (i.e. Wq,k in Formula 2), we model and distinguish
the weights of a keyword w.r.t. different XML leaf node types
(i.e. WTa

q,k in Formula 10).
Example 10: Keyword “road” may appear quite frequently

in street nodes of Figure 1 while infrequently in other nodes.
Thus it is necessary to distinguish the (low) weight of “road”
in address from its (high) weight in other nodes. Similarly,
we distinguish the weights of a query w.r.t. different XML
node types (i.e. WTa

q ), rather than fixed weight for a given
query for all flat documents.

Now let’s take a detailed look at Formula 9. In the base case
for XML leaf nodes, each k represents a keyword appearing
in both query q and value node a; Ta is the type of a’s parent
node; WTa

q,k represents the weight of keyword k in q w.r.t.
node type Ta. Wa,k represents the weight of k in leaf node
a; WTa

q represents the weight of q w.r.t. node type Ta; and
Wa represents the weight of a. Following the conventions of
original TF*IDF, we propose the formulas for WTa

q,k, Wa,k,
WTa

q and Wa in Formula 10, 11, 12 and 13 respectively:

WTa

q,k = Cvia(q, a, k) ∗ loge (1 + NTa
/(1 + fTa

k )) (10)

Wa,k = 1 + loge (fa,k) (11)

WTa
q =

√∑
k∈q

(WTa

q,k)2 (12)

Wa =
√∑

k∈a

W 2
a,k (13)

In Formula 10, NTa
is the total number of nodes of type

Ta while fTa

k is the number of Ta-typed nodes containing
keyword k; Cvia(q, a, k) is the confidence of node a to be a
search via node w.r.t. keyword k (explained in Section IV-C).
In Formula 11, fa,k is the number of occurrences of k in value
node a. Similar to Rule 1 and Rule 2 in original TF*IDF,
WTa

q,k is monotonical decreasing w.r.t. fTa

k , while Wa,k is



monotonical increasing w.r.t. fa,k. Wa is normally increasing
w.r.t. the size of a, so put it as part of denominator to play
a role of normalization factor to balance between leaf nodes
containing many keywords and those with a few keywords.

2) Recursive case of XML TF*IDF: The recursive case of
Formula 9 recursively computes the similarity value between
an internal node a and a keyword query q in a bottom-up way
based on two intuitions below.

Intuition 2: An internal node a is relevant to q, if a has
a child c such that the type of c has high confidence to be a
search via node w.r.t. q (i.e. large Cvia(Tc, q)), and c is highly
relevant to q (i.e. large ρs(q, c)).

Intuition 3: An internal node a is more relevant to q if a
has more query-relevant children when all others being equal.

In the recursive case of Formula 9, c represents one child
node of a; Tc is the node type of c; Cvia(Tc, q) is the
confidence of Tc to be a search via node type presented in
Formula 7; ρs(q, c) represents the similarity between node c
and query q which is computed recursively; W q

a is the overall
weight of a for the given query q.

Next, we explain the similarity design of an internal node
a in Formula 9: we first get a weighted sum of the similarity
values of all its children, where the weight of each child c is
the confidence of c to be a search via node w.r.t. query q. This
weighted sum is exactly the numerator of formula 9, which
also follows Intuition 2 and 3 mentioned above. Besides, since
Intuition 3 usually favors internal nodes with more children,
we need to normalize the relevance of a to q. That naturally
leads to the use of W q

a (Formula 14) as the denominator.
3) Normalization factor design:

W q
a =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(a) if a is√ ∑
c∈chd(a)

(Cvia(Tc, q) ∗ B + DW (c))2 grouping
node
(b)√ ∑

T∈chdType(Ta)

Cvia(T, q)2 otherwise
(14)

Formula 14 presents the design of W q
a , which is used as

a normalization factor in the recursive case of XML TF*IDF
similarity formula. W q

a is designed based on Principle 1 and
Principle 2 pointed out in section V-A.

Formula 14(a) presents the case that internal node a is a
grouping node; then for each child c of a (i.e. c ∈ chd(a)), B
is considered as a Boolean flag: B = 1 if ρs(q, c) > 0 and B =
0 otherwise; DW (c) is a small value as the default weight
of c which we choose DW (c) = 1/ loge(e − 1 + |chd(a)|) if
B = 0 and DW (c) = 0 if B = 1, where |chd(a)| is the
number of children of a, so that W q

a for grouping node a grows
with the number of query-irrelevant child nodes, but grows
very slowly to reflect Principle 2. Note DW (c) is usually
insignificant as compared to Cvia(Tc, q).

Now let’s explain the reason that we design Formula 14(a).
The intuition for the formula of grouping node a comes

from Principle 2, so we don’t count Cvia(Tc, q) in the
normalization unless c contains some query keywords within
its subtree. In this way, the similarity of a to q will not

be significantly normalized (or affected) even if a has many
query-irrelevant child nodes of the same type. At the same
time, with the default weight DW (c), we still provide a way
to distinguish and favor a grouping node with small number of
children from another grouping node with many children, in
case that the two contain the same set of query-relevant child
nodes. Informally speaking, the more compact the meaningful
answer is, the higher the rank it is given.

When internal node a is a non-grouping node, we compute
W q

a based on the type of a rather than each individual node.
In Formula 14(b), chdType(Ta) represents the node types of
the children of a, and it computes the same W q

a for all a-
typed nodes even if each individual a-typed node may have
different set of child nodes (e.g. some customer nodes have
nested address while some do not have).

This design has two advantages. First, it models Principle
1 to achieve a normalization that the size of the subtree of
individual node a does not affect the similarity of a to a query.

Example 11: Given a query q “customer Art Street”,
since address has high confidence to be searched via (i.e.
Cvia(address, q)), C1 (with address in “Art Street”) will be
ranked before C2 (with interest in “street art”) according to the
normalization in Formula 14(b). However, if we compute the
normalization factor based on the size of each individual node,
then the high confidence for address node doesn’t contribute
to the normalization factor of C2 (who even doesn’t have
address and street nodes etc.). As a result, C2 has a good
chance to be ranked before C1 due to its small size which
results in small normalization factor.

Second, Formula 14(b)’s design has advantage in term of
computation cost. With W q

a for non-grouping node computed
based on node types instead of data nodes, we only need to
compute W q

a for all a-typed nodes once for each query, instead
of repeatedly computing W q

a for each a-typed node in the data.
Note in the base case, a keyword k is less important in T -

typed nodes if more T -typed nodes contain k. However, now
we consider T -typed nodes are more important for keyword k
(i.e. larger Cvia(T, k)). These two, which seem contradictive,
are in fact the key to accurate relevance based ranking.

Example 12: Consider when searching for customers with
query “customer art road”, statistics will normally give more
weights to address than other node types because of the
high frequency of keyword “road” in address. But if no
customer node has address in “art road” but some have address
in “art street”, then these customer nodes will be ranked
before customers with address containing “road” without “art”.
Because the keyword “road” has a lower weight than ”art” in
address nodes due to its much higher frequency.

VI. ALGORITHMS

A. Data processing and index construction
We parse the input XML document during which we collect

the following information for each node n visited: (1) assign
a Dewey label DeweyID [22] to n; (2) store the prefix path
prefixPath of n as its node type in a global hash table,
so that any two nodes sharing the same prefixPath have the

4



same node type; (3) in case n is a leaf node, we create a value
node a (mentioned in section III-B) as its child and summarize
two basic statistics data fa,k (in Definition 3.7) and Wa (in
Formula 13) at the same time. Besides, we also build two
indices in order to speedup the keyword query processing.

The first index built is called keyword inverted list, which
retrieves a list of value nodes in document order whose values
contain the input keyword. In particular, we have designed
and evaluated three candidates for the inverted list: (1) Dup,
the most basic index which stores only the dewey id and
XML TF fa,k; (2) DupType, which stores an extra node type
(i.e. its prefix path) compared to Dup; (3) DupTypeNorm,
which stores an extra normalization factor Wa (in Formula
13) associated with this value node compared to DupType.
DupTypeNorm provides the most efficient computation of
XML TF*IDF, as it costs the least index lookup time; in
contrast Dup and DupType need extra index lookup to gather
the value of Wa,k (see formula 11) to compute Wa online.

Given a keyword k, the inverted list returns a set of nodes a
in document order, each of which contains the input keyword
and is in form of a tuple <DeweyID, prefixPath, fa,k,
Wa>. Each term here has been explained as above. In order
to facilitate the explanations of the algorithm, we name such
tuple as “Node”. It supports the following operations:

• getDeweyID(a,k) returns the Dewey id of value node a.
• getPrefix(a,k) returns the prefix path of a in XML data.
• getFrequency(a,k) returns the value of fa,k.

Algorithm 1: KWSearch(keywords[m], IL[m], F [m])
Let max = 0; Tfor = null1
List Lfor = getAllNodeTypes()2
foreach Tn∈Lfor do3

Cfor(Tn, keywords) = getSearchForConfidence(Tn,keywords)4
if (Cfor(Tn) > max) then5

max = Cfor(Tn); Tfor = Tn6
LinkedList rankedList7
Nfor = getNext(Tfor)8
while (!end(IL[1]) || ... || (!end(IL[m]))) do9

Node a = getMin(IL[1],IL[2],...,IL[m])10
if (!isAncestor(Nfor , a)) then11

ρs(keywords,Nfor) = getSimilarity(Nfor ,keywords)12
rankedList.insert(Nfor , ρs(keywords,Nfor))13
Nfor = getNext(Tfor)14

if (isAncestor(Nfor , a)) then15
ρs(keywords, a) = getSimilarity(a,keywords)16

else17
ρs(keywords, a) = 018

return rankedList;19

The second index built is called frequency table, which
stores the frequency fT

k for each combination of keyword k
and node type T in XML document. Its worst case space com-
plexity is O(K*T), where K is the number of distinct keywords
and T is the number of node types in XML database. Since
the number of node types in a well designed XML database
is usually small (e.g. 100+ in DBLP 370MB and 500+ in
XMark 115MB), the frequency table size is comparable to
inverted list. It is indexed by keywords using Berkeley DB
B+-tree [23], so the index lookup cost is O(log(K)). It supports
getFrequency(T,k) which returns the value of fT

k .
Note that values returned by these operations are important

to compute the result of the formulae presented in Section V.

B. Keyword search & ranking

Algorithm 1 presents a flowchart of keyword search and
result ranking. The input parameters keywords[m] is a key-
word query containing m keywords. Based on the inverted
lists built after pre-processing the XML document, we extract
the corresponding lists IL[1], ..., IL[m] for each keyword in
the query. F is the frequency table mentioned in section VI-A.
In particular, Algorithm 1 executes in three steps.

First, it identifies the search intention of the user, i.e. to
identify the most desired search for node type (line 1-6).
In particular, it first collects all distinct node types in XML
document (line 2). Then for each node type, we compute its
confidence to be a search for node through Formula 6, and
choose the one with the maximum confidence as the desired
search for node type Tfor (line 3-6).

Second, for each search for node candidate Nfor, it com-
putes the XML TF*IDF similarity between n and the given
keyword query (line 7-18). We maintain a rankedList to
contain the similarity of each search for node candidate (line
7). Nfor is initially set to the first node of type Tfor in
document order (line 8). The computation of XML TF*IDF
similarity between an XML node and the given query is
computed recursively in a bottom-up way (line 9-18): for each
Nfor, we first extract node a which occurs first in document
order (line 10), then compute the similarity of all leaf nodes
a by calling Function getSimilarity(), then go one level up
to compute the similarity of the lowest internal node (line 15-
18), until it reaches up to Nfor, which is actually the root of
all nodes computed before. Then it computes the similarity
between current Nfor and the query (line 12), insert a pair
(Nfor, ρ) into rankedList (line 13), and move the cursor to
next Nfor by calling function getNext() and calculate the
similarity of next Nfor in the same way (line 14).

Third, it returns the ranked list of all search for node
candidates by their similarity to the query (line 19).
Function getSimilarity(Node a, q[n])

if (isLeafNode(a)) then1
foreach k ∈ q

⋂
a do2

Cvia(q, a, k) = getKWCo-occur(q,a,k);3

W Ta
q,k = getQueryWeight(q,k,a);4

W Ta
q,k = Cvia(q, a, k) * W Ta

q,k;5
Wa,k = 1+loge(fa,k);6

sum += W Ta
q,k * Wa,k;7

ρs(q, a) = sum/(W Ta
q *getWeight(a));8

if (isInternalNode(a)) then9
W q

a = getQWeight(a,q);10
foreach c∈child(a) do11

Tc = getNodeType(c);12
Cvia(Tc,q) = getSearchViaConfidence();13
sum += getSimilarity(c, q) * Cvia(Tc,q);14

ρs(q, a) = sum/W q
a ;15

return ρs(q, a);16

Function getSimilarity() presents the procedure of com-
puting XML TF*IDF similarity between a document node a
and a given query q of size n. There are two cases to consider.
Case 1: a is a leaf node (line 1-8). For each keyword k
in both a and q, we first capture whether k co-occurs with
keyword kt matching some node type. Line 3-8 present the



calculation details of ρs(q, a) in Formula 9(a). The statistics in
line 3,5,6 are illustrated in Formula 8, 10 and 11 respectively.
Case 2: a is an internal node (line 9-15). We compute a’s
similarity ρs(q, a) w.r.t. query q by exactly following Formula
9(b). ρs(q, a) is computed by a sum of the product of the
similarity of each of its child c and the confidence value of c as
a search via node (line 11-14). Finally, ρs(q, a) is normalized
by a factor W q

a (line 15), which is the weight of internal node
a w.r.t. q. Lastly, we return the similarity value (line 16).

Moreover, XReal can work on both semi-structured and
unstructured data, since unstructured data is a special case
of semi-structured data with no structure, and XML TF*IDF
ranking formula 9(a) for value node can be easily simplified
to original TF*IDF Formula 1 by ignoring the node type.

VII. EXPERIMENTS

We have performed comprehensive experiments to compare
the effectiveness, efficiency and scalability of XReal with
SLCA and XSeek. XReal and SLCA are implemented in Java
and run on a 3.6GHz Pentium 4 machine with 1GB RAM
running Windows XP; the binary file of XSeek is generously
provided by its author. We have tested both synthetic and
real datasets. The synthetic dataset is generated using XMark
benchmark [24] with size 115MB; WSU and eBay from
Washington XML Data Repository [25] and DBLP 370MB
are used as real datasets. Berkeley DB Java Edition [23] is
used to store the keyword inverted lists and frequency table.

 Query Intention XReal SLCA / XSeek 

DBLP (370MB) 

QD1 Java, book book book book; title / book; 

article  

QD2 author, Chen, Lei inproceedings inproceedings author 

QD3 Jim, Gray, article article article article 

QD4 xml, twig inproceedings inproceedings title / inproceedings 

QD5 Ling, tok, wang,  

twig 

inproceedings inproceedings inproceedings 

QD6 vldb, 2000 inproceedings inproceedings inproceedings 

WSU (16.5MB) 

QW1 230 place course; place room; crs / course 

QW2 CAC, 101 course course course 

QW3 ECON course course prefix / course 

QW4 Biology course course title / course 

QW5 place, TODD  course course place / course 

QW6 days, TU, TH course course days / course 

eBay (0.36MB) 

QE1 2, days auction_info listing time_left / listing 

QE2 cpu, 933 listing listing cpu / listing 

QE3 Hard, drive, CA listing listing description / listing 

 Fig. 2. Test on inferring the search for node

The effectiveness test contains two parts: (1) the quality of
inferring the desired search for node; (2) the quality of our
ranking approach.

A. Search effectiveness
1) Infer the search for node: To test XReal’s accuracy in

inferring the desired search for node, we make a survey of
20 keyword queries, most of which do not contain an explicit
search for node. To get a fairly objective view of user search

intentions in real world, we post this survey online and ask for
46 people to write down their desired search for and search
via nodes. We summarize their answers and choose the queries
that more than 80 percentage of users agree on a same search
intention. The final queries are shown in Figure 2, and some
queries contain ambiguities: e.g. QD1 and QD3 have both
Ambiguity 1 and Ambiguity 2; QD2, QD6 and QW1 have
Ambiguity 2. The 4th column contains the search for node
inferred by XReal while the 5th column contains the majority
node types returned by SLCA and XSeek, as the semantics of
SLCA cannot guarantee all results are of the same node type.

We find XReal is able to infer a desired search for node in
most queries, especially when the search for node is not given
explicitly in the query (e.g. QD2, QD4, QW2, QE1), or its
choice is not unique (e.g. QD1, QD3), or both cases such as
QW1. XSeek just blindly infers the return nodes of individual
keyword matches case by case, rather than addressing the
major search intention(s), whereas XReal does so before it
goes to find individual matches.

In addition, if more than one candidate have comparable
confidence to be a search for node, XReal returns all possible
candidates (for user to decide) or returns a ranked list for
each such candidate if user interaction is not preferred. E.g.
in QW1, both place and course can be the return node, as
the frequency of “230” in subtrees of course and place are
comparable. The search for node models a real world object,
so we choose to return sub-trees rooted at the desired search
for node, and provide links to the descendants of subtrees for
user interested in particular parts of the subtree to explore.
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Fig. 3. Precision Comparison(%)

2) Precision, Recall & F-measure: To measure the search
quality, we evaluate all queries in Figure 2, and summarize
two metrics, i.e. precision and recall borrowed from IR field.
The results are shown in Figure 3 and 4. Precision measures
the percentage of the output subtrees that are desired; recall
measures the percentage of the desired subtrees that are output.
We obtain the correct answers by running the schema-aware
XQuery and additionally verifying the correctness manually.

To evaluate XReal’s performance on large real datasets, we
include four more queries for DBLP: QD7 “Philip Bernstein”;
QD8 “WISE”; QD9 “ER 2005”; QD10 “LATIN 2006”. Each
of these queries have Ambiguity 2 problem, e.g. ”WISE” can
be the booktitle, title of inproceedings, or a value of author.

As users are always interested in top-k results, so we com-
pute XReal’s top-100 precision besides the overall precision



of SLCA, XSeek and XReal on DBLP and WSU, shown in
Figure 3; results on eBay are not shown due to space limit.
We have four main observations as below.

(1) XReal achieves higher precision than SLCA and XSeek
for the queries that contain ambiguities (e.g. QD1-QD4, QD6-
QD10, QW1). E.g. in QD3 which intends to find articles
written by author “Jim Gray”. Since “article” can be either
a tag name or a value of title node, and “Jim” and “Gray”
can appear in one author or two different authors, SLCA
and XSeek generate many false positive results and lead
to low accuracy, while XReal addresses these ambiguities
well. As another example in QD9 which intends to find
the inproceedings of ER conference in year 2005. As “ER”
appears in both booktitle and title, and “2005” appears in both
title and year, XSeek returns not only the intended results, but
also other inproceedings whose title contains both keywords;
but XReal correctly interprets the search intention.

(2) We find SLCA suffers a zero precision and recall
from the pure keyword value query, e.g. QD4, QD7, QD8,
QW1 and QW3 etc. Because the result returned by SLCA
contains nothing relevant except the SLCA node. E.g. for
QD8 SLCA returns the booktitle or title nodes containing
“WISE”, while user wants to find the inproceedings of “WISE”
conference. However, XReal detects keyword ”WISE” has
large occurrences as a booktitle of inproceedings and correctly
captures the search intention. XSeek suffers a zero precision in
QD2 and QD7, mainly because it mistakenly decides “author”
as an entity, while the query intends to find the publications.
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Fig. 4. Recall Comparison(%)

(3) XReal Performs as well as XSeek (in both recall and
precision) when queries have no ambiguity in XML data (e.g.
QD5, QW4-QW6, etc).

(4) By comparing the overall and top-100 precision of
XReal on DBLP in Figure 3(a), XReal Top-100 has a higher
precision, which indirectly proves our ranking strategy works
well w.r.t. the user search intention on large datasets.

TABLE I

F-MEASURE COMPARISON

F-measure SLCA XSeek XReal XReal top-100
DBLP 0.272 0.3461 0.4748 0.4799
WSU 0.0083 0.4162 0.4967 0.497
EBAY 0 0.4002 0.4002 0.4002

Furthermore, we adopt F-measure used in IR as the
weighted harmonic mean of precision and recall. We compute
the average precision and recall of all queries in Figure 2

(plus QD7-QD10) for each dataset, adopting formula F =
precision ∗ recall/(precision + recall) to get F-measure in
Table I. We find XReal beats SLCA and XSeek on all datasets,
and achieves almost a perfect value of F which is 0.5 on WSU.

TABLE II

RANKING PERFORMANCE OF XREAL

Dataset Top-1 Number/Total Number R-Rank MAP
DBLP 27/30 0.946 0.925
WSU 8/10 0.85 0.803
eBay 9/10 0.9 0.867

XMark 7/10 0.791 0.713

B. Ranking effectiveness
To evaluate the effectiveness of XReal’s ranking strategy, we

use three measures widely adopted in IR field. (1) Number
of top-1 answers that are relevant. (2) Reciprocal rank (R-
rank). For a given query, the reciprocal rank is 1 divided
by the rank at which the first correct answer is returned,
or 0 if no correct answer is returned. (3) Mean Average
Precision (MAP). A precision is computed after each relevant
answer is retrieved, and MAP is the average value of such
precisions. The first two measure how good the system returns
one relevant answer, while the third one measures the overall
effectiveness for top-k answers returned, k=40 for DBLP (as
DBLP data has very large size) and k=20 for others.

We evaluate a set of 30 randomly generated queries on
DBLP, and 10 queries on WSU, eBay and XMark, with an
average of 3 keywords. The average values of these metrics
are recorded in Table II. We find XReal has an average R-rank
greater than 0.8 and even over 0.9 on DBLP. Besides, XReal
returns the relevant result in its top-1 answer in most queries,
which shows high effectiveness of our ranking strategy.

 5

 10

 15

 20

 25

QD1 QD2 QD3 QD4 QD5 QD6

T
i
m
e
 
(
s
)

Dup
DupType

DupTypeNorm

(a) DBLP

 0.5

 1

 1.5

 2

 2.5

 3

QW1 QW2 QW3 QW4 QW5 QW6

T
im

e 
(s

)

Dup
DupType

DupTypeNorm

(b) WSU

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

QE1 QE2 QE3
T

im
e 

(s
)

Dup
DupType

DupTypeNorm

(c) eBay
Fig. 5. Response time on individual queries

C. Efficiency
We compare the query response time of XReal adopting

three indices for keyword inverted list mentioned in section
VI-A, i.e. Dup, DupType and DupTypeNorm, measured by
the timestamp difference between a query is issued and result
is returned. Throughout section VII, XReal refers to the one
adopting DupTypeNorm. Figure 5 shows the time on hot cache
for queries listed in Figure 2. DupTypeNorm outperforms the
other two on all three real datasets, about 2 and 4 times faster
than DupType and Dup respectively. Because DupTypeNorm
stores the dewey id, node type and normalization factor (for
value nodes) together, thus it needs less number of index
lookups to fulfill the similarity computation in Formula 9. Such
advantage is significant when the number of keywords is large
or query result size is large, e.g. QD5 and QD6 in Figure 5(a).

D. Scalability
Among the existing keyword search systems SLCA[3],

GDMCT[5] and XSEarch[1], SLCA is recognized as the most



efficient one so far, so we compare XReal with SLCA on
DBLP and XMark. For each dataset, we test a set of 50
randomly generated queries, each guarantees to have at least
one SLCA result and contains |K| number of keywords, where
|K| = 2 to 8 for DBLP and |K| = 2 to 5 for XMark. The
response time is average time of the corresponding 50 queries
in four executions on hot cache, as shown in Figure 6. From
Figure 6(a) and 6(b), we find XReal is nearly 20% slower than
SLCA on both datasets which is acceptable, because SLCA
only find all the SLCA nodes resulting in low accuracy, while
XReal does extra search intention identification, precise result
retrieval and ranking; and XReal finds extra results (satisfying
the boolean OR semantics). So this overhead is worthwhile.
We also find, the response time of each proposed index
increases as number of keywords increases. In particular, the
one using DupTypeNorm index costs less time than DupType,
in turn less than Dup. XReal adopting DupTypeNorm index
scales as well as SLCA, especially when |K| varies from 5 to
8 for DBLP (Figure 6(b)).

 0.1

 0.2

 0.3

 0.4

 0.5

2 3 4 5

T
im

e 
(s

)

|K|

Dup
DupType

DupTypeNorm
SLCA

(a) XMark

 1
 2
 3
 4
 5
 6
 7
 8

2 3 4 5 6 7 8

T
im

e 
(s

)

|K|

Dup
DupType

DupTypeNorm
SLCA

(b) DBLP
Fig. 6. Response time on different number of keywords |K|

Besides, we evaluate the scalability of those indices by
drawing the relationship between the response time and query
result size (in term of number of nodes returned). A range of
15 queries with various result sizes run over DBLP, and the
result is shown in Figure 7(a). We can see DupTypeNorm again
outperforms the other two, and scales linearly w.r.t. the query
result size. Similarly, we test the response time of a query
“location united states item” on XMark data of size 5MB up
to 40MB. As shown in Figure 7(b), both DupTypeNorm and
DupType’s response time increases linearly w.r.t. the data size.
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VIII. CONCLUSION

In this paper, we study the problem of effective XML
keyword search which includes the identification of user
search intention and result ranking in the presence of keyword
ambiguities. As statistics provide an objective way to model
patterns and draw inferences on the underlying data, we utilize

them to infer user’s search intention and rank the query results.
In particular, we define XML TF (term frequency) and XML
DF (document frequency). Based on these two statistic terms,
we design formulas to compute the confidence level of each
candidate node type to be a search for/search via node. Then,
we propose a novel XML TF*IDF similarity ranking scheme
which takes the above confidence levels and the co-occurrence
of keywords into consideration, and well captures the hierar-
chical structure of XML document. Moreover, we are the first
paper to investigate and solve the keyword ambiguity problem.
As a result, we implement an XML keyword search engine
prototype called XReal, which exploits only data statistics to
combine search intention identification, search result retrieval
and relevance oriented ranking together as a single problem
in XML keyword search. Extensive experiment results show
XReal is much more effective than the existing approaches.
For future work, we are now investigating the ranking strategy
for XML documents with ID/IDREFs.
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