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ABSTRACT
Privacy preservation has recently received considerable at-
tention for location-based mobile services. Various location
cloaking approaches have been proposed to protect the loca-
tion privacy of mobile users. However, existing cloaking ap-
proaches are ill-suited for continuous queries. In view of the
privacy disclosure and poor QoS (Quality of Service) under
continuous query anonymization, in this paper, we propose
a δp-privacy model and a δq-distortion model to balance the
tradeoff between user privacy and QoS. Furthermore, two
incremental utility-based cloaking algorithms — bottom-up
cloaking and hybrid cloaking, are proposed to anonymize
continuous queries. Experimental results validate the effi-
ciency and effectiveness of the proposed algorithms.

Categories and Subject Descriptors
H.2.m [DATABASE MANAGEMENT]: Miscellaneous-
performance measures]

General Terms
Algorithms, Performance, Information Privacy

Keywords
Privacy Protection, Continuous Queries, Location-Based Ser-
vices

1. INTRODUCTION
With advances in wireless communication and mobile po-

sitioning technologies, location-based services (LBSs) have
been gaining increasingly popularity in recent years. Re-
search efforts have been put into investigating how to pre-
serve the privacy of mobile users, while still ensuring high
quality of LBSs. In general, there are two types of privacy
issues: location privacy [6] (a sensitive location is protected
from being linked to a specific user) and query privacy [4]
(a query is protected from being linked to a specific user).
For example, suppose Alice issues the following continuous
query to the service provider (SP) (e.g., GoogleMap) via her
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Figure 1: Location privacy and query privacy

mobile phone: “where is the nearest dermatosis hospital for
next 30 minutes?”. Concerning the location privacy, Alice
wants to hide her exact location during her movement (e.g.,
being in a clinic or pub); concerning the query privacy, she
wants to hide the fact that the above query about dermatosis
hospital was issued by her.

To protect the location privacy, Gruteser and Grunwald
[6] proposed spatio-temporal cloaking based on a location
k -anonymity model, that is, the cloaked location is made in-
distinguishable from the location information of at least k -1
other users. To achieve location k -anonymity, each user lo-
cation is extended to a cloaking region such that each region
covers at least k users. Figure 1(a) illustrates an example
of location 3-anonymity (k=3), where the locations of A, B
and C are extended to region R(i.e., users A, B and C form a
cloaking set), such that the adversary cannot figure out their
genuine locations in R. Under some circumstances, the ad-
versary knows the users’ genuine locations [4]; thus, the lo-
cation contained in a query would become a quasi-identifier
(QI) [12] to link the query to a specific user. Fortunately,
the location k -anonymity model is also applicable to tackle
this query privacy issue. Consider the example shown in
Figure 1(b), by simply extending the locations contained in
the query to the same region R , the exact query locations
can be successfully hidden and hence the query privacy is
preserved.

Most of the existing cloaking algorithms focus on anonymiz-
ing snapshot queries [11, 5, 7]. As the cloaking sets for the
same user are different at different timestamps [4], directly
applying these algorithms to continuous queries is not suf-
ficient to protect the query privacy. Figure 2 depicts an ex-
ample where the query privacy is disclosed under continuous
queries. As shown, six users A∼F issue six different contin-
uous queries Q1 ∼ Q6, respectively, and A is successfully
cloaked as {A,B,D}, {A,B,F} and {A,E,C} at the times-
tamps ti, ti+1 and ti+2, respectively. Each of these cloaking
sets is consistent to the location 3-anonymity. However, as
their intersection contains A only, the adversary can easily
infer that A issued query Q1 and, hence, A’s query privacy
is disclosed.
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Figure 2: A continuous query example

As can be observed from the above example, the privacy
disclosure is due to the use of different cloaking sets for the
same user at different timestamps. To conquer this problem,
queries issued from the same cloaking region should stick to-
gether at all timestamps [4]. In detail, under such a scheme,
the cloaking set of A in Figure 2 should always be kept as
{A, B, D} during ti through ti+2 (the cloaking regions are
represented as dashed rectangles in Figures 2(b) and 2(c)).
Although this scheme successfully protects the query pri-
vacy, it leads to new problems: 1) User location privacy
might be disclosed. As shown in Figure 2(b), the minimum
bounding rectangle (MBR) of {A, B, D} shrinks to a smaller
region at ti+1 which might violate the location privacy re-
quirement of A. In the worst case, it may shrink to a point,
thereby exposing the genuine user location. 2) The quality
of service becomes poor. As shown in Figure 2(c), the size of
the cloaking region {A, B, D} is significantly large at ti+2,
which would make the subsequent query processing much
more costly. In an extreme case, the users might scatter
over the entire space over time, forcing the cloaking region
to cover the whole area.

The reason behind the aforementioned new problems is
that, the algorithm exploits the proximity of current user
locations only, but ignores their future locations. As we
known, a user’s future location depends on the velocity of
her movement and the duration of the continuous query. In
an ideal case, all users within the same cloaking set move
with the same velocity such that the size of the cloaking
region remains the same at all timestamps. Unfortunately,
this is unlikely to happen in practice, and the location prox-
imity tends to change once the involved locations update.
Specifically, on one hand, queries whose locations are close
at the current timestamp may become far away from each
other at a future timestamp; on the other hand, queries
who are now far away from each other may meet at some
future timestamp. For a continuous query whose location is
dynamically changing, it is hard to find an optimal cloak-
ing region for all timestamps. The main challenge is how
to achieve a good QoS while still preserving query privacy
during the query period with frequent location updates.

In this paper, we consider protection of both location pri-
vacy and query privacy for both continuous queries. To ad-
dress this issue, we propose a δp-privacy model and a δq-
distortion model to balance the tradeoff between user pri-
vacy and QoS. The perimeter of a cloaking region is adopted
to evaluate the distortion of the location information. As
pointed out in [10], moving objects with similar patterns
would move in a cluster eventually. Motivated by this ob-
servation, we propose to map the location distortion to a
similarity distance of the queries, based on which queries are
clustered such that the distortion of location information in
each cluster is minimized. These clusters are incrementally
maintained as queries move in and out.

The contributions we make in this paper can be summa-

rized as follows:

• We propose a δp-privacy model and a δq-distortion
model to balance the tradeoff between user privacy and
QoS under continuous queries.

• We propose to map the location distortion to a tem-
poral similarity distance of the queries. Furthermore,
we propose two incremental utility-based cloaking al-
gorithms.

• A series of experiments is conducted to evaluate the
performance of our proposed algorithms. The experi-
mental results validate the efficiency and effectiveness
of our proposed algorithms.

The rest of the paper is organized as follows. We review
the related work in Section 2. The problem under investi-
gation is formally defined in Section 3. Several utility-based
cloaking algorithms are proposed in Section 4. Algorithms
for distortion and privacy verification are proposed in Sec-
tion 5. Section 6 presents the performance evaluation results
of our proposed algorithms. Finally, the paper is concluded
in Section 7.

2. RELATED WORK
Location privacy and query privacy are two types of pri-

vacy issues concerned in location-based mobile services. Lo-
cation k-anonymity is the most popular location privacy
metric. It was proposed by Gruteser and Grunwald [6], and
was later refined in [11, 1]. In terms of the techniques used
for protecting location privacy, existing approaches can be
classified into cloaking [6], dummy [8], and encryption [5].
However, all of the above work focuses on privacy protection
for snapshot queries.

Most of the prior research does not distinguish location
privacy and query privacy.The first work to distinguish them
and to explore privacy protection for continuous queries is
presented in [4]. Nonetheless, it has two drawbacks. First,
only the query locations at the issuing time are employed
to generate cloaking sets, which may lead to location pri-
vacy disclosures and poor QoS, as discussed in the previ-
ous section. Second, as the valid period of each query is
ignored, continuous queries may be cloaked with snapshot
queries. If any snapshot query moves out of the service area,
all continuous queries within the same cloaking set may no
longer meet the location k-anonymity privacy requirement.
Our work also employs location k -anonymity and memorizes
users, but it differs from [4] in the following aspects. First,
a temporal location distortion model is employed to find the
cloaking set. Second, the queries with similar expiration
times are clustered together, which guarantees that every
continuous query will always satisfy the privacy requirement
during its valid period.

Another work addressing location anonymity for continu-
ous queries is presented in [15]. It employs entropy to mea-
sure the anonymity level of a cloaking region by assuming
that the probabilities of users in a cloaking region are not
equal. However, as entropy does not consider whether the
user locations are really different or not, location privacy
might be disclosed when k different users are at the same
location. In [13], a mobility-aware cloaking algorithm is pro-
posed to defend trace analysis attacks. However, the privacy
metric employed in [13] is location granularity, rather than
location k-anonymity considered in this paper.
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Figure 3: System architecture

Although most research on privacy protection in LBSs
does not discuss about the location data utility, some of
its measurements have been proposed in data publishing,
such as generalization height, discernibility, information loss,
classification metric and information-gain-privacy-loss ra-
tio [9]. Data utility in data publishing mainly focuses on
how the distribution of the original data is preserved for the
purpose of data mining, whereas in LBSs, we mainly focus
on how the generalized location approximates to the original
location. Therefore, in this paper, we employ information
loss, namely location distortion, as the utility measure. We
remark that our location distortion is different from that of
[14] in the following aspects. First, as QI attributes in data
publishing are independent, each attribute can be associated
with a weight to reflect its importance. Nevertheless, the in-
formation in LBSs, including location (x, y) and velocity v,
is dependent to each other w.r.t. time t. Second, the infor-
mation distortion in [14] is static as long as the anonymizing
table is given, while the location distortion in our paper is
a temporal function, which changes as time evolves.

3. PRELIMINARIES
3.1 System Architecture

Like most existing work [6, 11], we employ a centralized
system, which consists of mobile users, a trusted anonymiz-
ing proxy, and an un-trusted SP, as shown in Figure 3. Each
mobile user sends location-based queries to the anonymizing
proxy. There are two types of queries: new query and active
query. New query, as the name implies, is a query newly
issued by a user. Active query is a continuous query which
was issued at some previous time but not yet expired. For
example, a user issues a continuous query Q at ti, and its
valid period is ∆t. Then, at ti, Q is a new query, while for
any t ∈ (ti, ti + ∆t], it is regarded as an active query.

The anonymizing proxy consists of cloaking engine, cloak-
ing repository and answer refinement engine. Upon receiv-
ing a new query, cloaking engine replaces the user id with a
pseudonym id′. Meanwhile, it invokes the location cloaking
algorithm to generate a cloaking region in accordance with
the user’s privacy requirement. This cloaking set is saved in
the cloaking repository in the form of (CID, Qset, RL,t, Rv,t)

1.
Upon receiving an active query, cloaking engine searches for
the original cloaking set, which was generated at the is-
suing time, in the cloaking repository and then computes
the new cloaking region RL,t. Later on, the anonymizing
proxy forwards the cloaked query to the SP. By maintaining
a cloaking repository, the anonymizing proxy can incremen-
tally compute the cloaking set (i.e., by updating the original
cloaking region) for the active queries and thereby achieving
a higher efficiency.

Finally, candidate results generated by SP are first refined
by answer refinement engine, and then relayed to the mo-

1The meanings of these parameters will be explained later
in Definition 2.
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bile user. In this paper, we focus on the location cloaking
algorithm, which considers the location data utility as well
as the user-specified privacy requirements.

To facilitate our study, we further make the following as-
sumptions. 1) Every mobile user is trusted — this is a com-
mon assumption in the conventional location privacy pre-
serving techniques [6, 11, 1]. 2) The movement velocity of a
user remains unchanged during the query period. Under this
assumption, the movement function of every query is linear.

3.2 Preliminaries

Definition 1. (Location-based query) Query Q is repre-
sented as Q = (l, v̄, t, Texp, con), where (l, v̄, t) implies Q is
at location l=(x, y) with velocity v̄ = (vx, vy) at the times-
tamp t, Texp is the timestamp when the query expires, and
con is the content of this query.

Definition 2. (Cloaking set) Each cloaking set CS is for-
malized as:

CS = (CID, Qset, RL,t, Rv,t),

where CID is the identifier of this cloaking set, Qset is the
set of queries contained in CS, RL,t = (Lx−,t, Ly−,t, Lx+,t, Ly+,t)
is the location MBR for the queries in Qset at t, and Rv,t=
(vxmin,t, vymin,t,vxmax,t, vymax,t) is the BVR (Boundary Ve-
locity Rectangle). vxmin,t=min(vx+,t, vx−,t), vxmax,t=max(vx+,t,
vx−,t), vymin,t=min(vy+,t, vy−,t), vymax,t=max(vy+,t, vy−,t),
where vx−,t (vx+,t) is the boundary velocity of the query at
Lx−,t (Lx+,t) on the x dimension, and vy−,t (vy+,t) is the
boundary velocity of the query at Ly−,t (Ly+,t) on the y
dimension at time t.

Note that vxmax,t (vymax,t) and vxmin,t (vymin,t) may not
be the maximum and minimum velocity in Qset on the x (y)
dimension. Hence, the queries on the boundary of a cloaking
set change with users movements. Thus, Rv,t and RL,t are
both piece-wise functions w.r.t. t, i.e.:

(Lx−,t, Ly−,t) = (Lx−,ti−1 , Ly−,ti−1) + (vx−,t, vy−,t)× [t− ti−1]

(Lx+,t, Ly+,t) = (Lx+,ti−1 , Ly+,ti−1) + (vx+,t, vy+,t)× [t− ti−1]
(1)

where t ∈ [ti−1, ti]. Taking Figure 4 as an example, queries
Q1 ∼ Q5 constitute a cloaking set CS at time ti. The
number in parenthesis is the query’s velocity and the ar-
row indicates the movement direction. CS.RL,ti=(1,1,4,2)
and CS.Rv,ti = (−1,−3, 1, 2). Here the maximum speed is 3
on the x dimension (for Q5), but it is not a boundary speed
at time ti. If Q5 overtakes Q3 at time tj , vxmax will change
to 3 at tj .

Definition 3. (Width/Height of boundary) For a cloaking
set CS with MBR RL,t, its width at time t, denoted as WBt,
is

WBt = Lx+,t − Lx−,t (2)

Similarly, its height at time t, denoted as HBt, is
HBt = Ly+,t − Ly−,t (3)



WBt/HBt is also a piece-wise linear function. For the ex-
ample in Figure 4, the changing trend of WB is shown in
Figure 5. The changing trend of HB is similar; so we omit
it here.

Recall that privacy is protected by reducing the resolution
of the location information. Obviously, the more does the
privacy preserve, the less is the utility of the location data.
In this paper, we use distortion to measure the utility of
anonymized location. In other words, distortion reflects the
location information loss, i.e., how much is sacrificed for
privacy preserving. The smaller is the distortion value, the
higher is the data utility.

Definition 4. (Distortion of a query) Let query Q ∈ CS,
whose MBR (BVR) at time t is denoted as RL,t (Rv,t). Let
Awidth (Aheight) be the width (height) of the whole space.
The distortion for a query Q at time t is defined as

DistortionRv,t(Q, RL,t) =
(Lx+,t − Lx−,t) + (Ly+,t − Ly−,t)

Aheight + Awidth
.

Thus, the distortion of Q during its valid period can be
represented as∫ Texp

Ts

DistortionRv,t(Q, RL,t)dt (4)

where Ts is the timestamp when Q is cloaked successfully.

For the sake of convenience, let PA = Aheight + Awidth,
PL,t = (Lx+,t − Lx−,t) + (Ly+,t − Ly−,t), Pv,t = (vx+,t −
vx−,t) + (vy+,t − vy−,t). Let TSet denote the set of times-
tamps {t1, t2, · · · , tn} (t1 = Ts, tn = Texp) when the bound-
ary queries change. Then, Equation (4) can be rewritten as

∫ Texp

Ts

DistortionRv,t(Q, RL,t)dt

=
1

PA
{
∫ t2

t1

[PL,t1 + Pv,t1(t− t1)]dt+

· · ·+
∫ ti

ti−1

[PL,ti−1 + Pv,ti−1(t− ti−1)]dt+

· · ·+
∫ tn

tn−1

[PL,tn−1 + Pv,tn−1(t− tn−1)]dt}

Definition 5. (Distortion of a cloaking set) Let CS be a
cloaking set with MBR RL,t and BVR Rv,t at time t. The
distortion of CS at time t is defined as

DistortionRv,t(CS, RL,t) =
∑

Qi∈CS

DistortionRv,t(Qi, RL,t)

Thus, the distortion of CS during its valid period is de-
fined as

∫ maxT

Ts

DistortionRv,t(CS, RL,t)dt (5)

where Ts is the timestamp when CS is generated and maxT =
maxQi∈CS(Qi.Texp).

For any two queries, if their states (i.e., initial locations
and velocities) are similar, their future locations tend to be
near to each other. In extreme cases, if two queries are on
the same initial location with the same velocity, they will
have the same location during their common valid periods.
This implies that if queries with similar states are cloaked

together, their distortions during the valid period are likely
to be small. This observation inspires us to map the dis-
tortion with the similarity distance of queries, as defined as
follows:

Definition 6. (Temporal similarity distance between two
queries) Let Q1 and Q2 be two queries, and they constitute a
cloaking set CS12 with MBR (BVR) RL12,t (Rv12,t) at time
t.

The temporal similarity distance between Q1 and Q2 is
defined as

SimDis(Q1, Q2) =

∫ maxT

Ts

DistortionRv12,t(CS12, RL12,t)dt

where maxT=max(Q1.Texp, Q2.Texp).

The similarity distance possesses the following properties:

• SimDis(Q1,Q1)=0

• SimDis(Q1, Q2)=SimDis(Q2, Q1)

• SimDis(Q1, Q2)≤ SimDis(Q1, Q3)+SimDis(Q3, Q2)

The proof is obvious. Due to space limitations, we omit it
here.

Definition 7. (Temporal similarity distance between two
query sets) Let U1 and U2 denote two non-interleaved query
sets (i.e., U1 ∩ U2 = φ), and U = U1

⋃
U2. RL,t (Rv,t)

denotes the MBR (VBR) of U at time t.
The similarity distance between U1 and U2 is defined as

SimDis(U1, U2) =

∫ maxT

Ts

DistortionRv,t(U1, RL,t)dt+

∫ maxT

Ts

DistortionRv,t(U2, RL,t)dt

where maxT = maxQ∈U (Q.Texp). It is easy to know that
the similarity distance between two queries can be regarded
as the special case for two query sets where |U1| = |U2|=1.

3.3 Privacy Model
Recall that the queries within the same cloaking set are

required to stick together before they expire, which makes
it hard to strike a good balance between the user privacy
and QoS for continuous queries. In this section, two mod-
els, namely, δp-privacy and δq-distortion, are proposed to
formalize user privacy and QoS requirements.

The location and velocity of a query are projected to the
x and y dimensions. Now let us first discuss a one-dimension
case. Assume that a candidate cloaking set contains three
queries {Q1, Q2, Q3}, whose velocities on the x dimension
are shown in Figure 6(a). From the figure, we can see that
WB decreases in early stage and shrinks to a point at Tw;
after that, WB increases again. Similar observations can be
drawn on the y dimension. In the worst case, two boundary
segments on the x dimension and y dimension would shrink
at same time, as shown in Figure 6(b). Consequently, the
cloaking region would shrink to a point, which leads to the
exposure of the genuine location.

Location disclosures are prohibited, regardless of how many
dimensions they are disclosed on. If neither WB nor HB
has the opportunity to shrink to a point, apparently, the
privacy would be preserved. A privacy model is designed to
formalize how much WB and HB are allowed to shrink.



1

2

3

exps

Figure 6: Location of query is disclosed

Definition 8. (δp-privacy model) Let WBt (HBt) be the
width (height) of the boundary segment on the x (y) di-
mension at time t, and δp be the privacy threshold specified
by the users. If for ∀t ∈ [Ts, maxT ], min(WBt, HBt)≥ δp,
δp-privacy is satisfied.

While Definition 8 guarantees the protection of user pri-
vacy, the following Definition 9 ensures the quality of ser-
vices. The distortion of a query set CS should not grow
larger than the user’s requirement δq, which is the user’s
tolerable worst service quality. Note that forcing the dis-
tortion to be smaller than δq at Ts cannot ensure that it
always meets the requirement δq during the entire period Ts

through maxT .

Definition 9. (δq-distortion model) Assume that the user’s
tolerable worst service quality is δq, the set of user queries is
CS with MBR RL,t and VBR Rv,t. If for any t ∈ [Ts, maxT ]
and any Q ∈ CS, DistortionRv,t(Q, RL,t) ≤ δq, then δq-
distortion is satisfied.

In summary, the requirements for a successful cloaking set
CS include:

• |CS| ≥ K;

• Let minT = minQ∈CSQ.Texp, maxT = maxQ∈CSQ.Texp,
maxT −minT ≤ δT ;

• CS satisfies δp-privacy and δq-distortion during [Ts,maxT ].

4. UTILITY-BASED ALGORITHMS
4.1 Greedy Cloaking Algorithm

The main idea of the greedy cloaking algorithm (GCA) is
as follows. For every newly arrived query r, we first compute
its temporal similarity distance with those existing queries
which have not yet been anonymized successfully. Then,
the one having the minimal similarity distance with r is put
into the cloaking set. The above steps repeat until no more
queries can be added into the cloaking set. We detail it in
Algorithm 1.

Specifically, when a new query r arrives, it is first inserted
into the candidate cloaking set U (see step 1∼2). Then each
query rm in the set of existing queries which are not yet
anonymized (denoted as RSet) is retrieved. If the difference
between rm.Texp and r.Texp is bigger than the value of δT ,
then rm cannot be clustered with r and therefore it is filtered
out (see step 5). Otherwise, the boundary queries during
its valid period are calculated and each boundary query is
stored in the boundary time queue (BTQ) bq, which would
be detailedly elaborated in Section 5.1. After all boundary
queries are captured, the δq-distortion requirement (the de-
tailed procedure is given in Section 5.2) is verified. If true,
the request rmin with the minimal temporal similarity dis-
tance is inserted into U . The above steps repeat until no
more queries can be put into U or |U | ≥ K. Finally, if U

Algorithm 1 : Greedy cloaking algorithm(GCA)

1: a candidate cloaking set U=null;
2: put r into U ;
3: while true do
4: for each query rm in RSet do
5: if |r.Texp − rm.Texp|>δT then
6: get the next query in RSet;
7: else
8: BoundaryObjectsComputing(rm, bq, U)
9: if DistortionDetection(rm, bq, U)=true then

10: dis=SimDis(rm, U);
11: if (mindis>dis) then
12: mindis=dis;
13: rmin=rm;
14: insert rmin into U ;
15: RSet = RSet - {rmin};
16: if |U | does not change or |U | ≥ K then
17: break;
18: if (|U | ≥ K) then
19: Check δp-privacy and return cloaking set;

covers more than K users, the δp-privacy is also verified (we
will present its detailed procedure in Section 5.3). If both
δq-distortion and δp-privacy are satisfied, U is returned as
the cloaking set.

4.2 Bottom-up Cloaking Algorithm
The drawback of GCA is that for every newly arrived

query, it needs to search the cloaking set from scratch, which
incurs expensive computational cost. Actually, intermediate
results computed in the previous iterations can be exploited.
The basic mechanism is to cluster those queries whose dis-
tortions are always less than δq together during their valid
periods, and then to incrementally maintain these clusters.
Obviously, the cloaking sets are the subsets of these clusters.
Before presenting our new cloaking algorithm, we give the
definition of continuous cluster:

Definition 10. (Continuous cluster) A query set C is a
continuous cluster during [t1, t2] if (1) C satisfies δq-distortion;
(2) maxTexp−minTexp ≤ δT , where maxTexp=maxQ∈C(Q.Texp)
and minTexp=minQ∈C(Q.Texp)

Based on the continuous clusters, the basic idea of bottom-
up cloaking algorithm (BCA) is as follows. When a new
query r arrives, r itself forms a cluster {r}, which naturally
satisfies δq-distortion. Then, among the existing continu-
ous clusters, the one with the minimal temporal similarity
distance with r, denoted as cr, is selected to merged with
{r}. If {cr, r} contains not less than K queries, it is verified
to see if it meets the δp-privacy requirement. If fails, this
cluster is kept in service space for merging future queries.
Algorithm 2 shows the pseudo-code of bottom-up cloaking
upon the arrival of a new query r.

In Algorithm 2, r is the newly arrived query, and CR is the
set of existing continuous clusters in service space. For each
cluster c in CR, it associates with a BTQ bqc, which main-
tains its boundary queries during the valid period. When r
arrives, each cluster c in CR is scanned and the following
steps are conducted. First, new boundary queries of c with r
inserted are computed (see step 5); Second, δq-distortion is
checked (see step 6); Third, the temporal similarity distance
between c and r is calculated (see step 8). After that, the



Algorithm 2 : Bottom-up cloaking algorithm(BCA)

1: for each cluster c ∈ CR do
2: maxT=max(c.maxTexp, r.Texp);
3: minT=min(c.minTexp, r.Texp);
4: if maxT −minT ≤ δT then
5: BoundaryObjectsComputing(r, bqc, c);
6: if DistortionDetection(r, bqc, c)=false then
7: continue;
8: dist=SimDis(r, c);
9: if dcmin>dist then

10: dcmin=dist;
11: cmin = c;
12: else
13: if dc=dist and |cmin| < |c| then
14: dcmin=dist;
15: cmin=c;
16: if cmin not exists then
17: put {r} into CR;
18: else
19: cmin = cmin ∪ {r}; /*do the merging*/
20: if |cmin| ≥ K then
21: Check δp-privacy and return the cloaking set cmin;

cluster cmin which has the minimal temporal similarity dis-
tance with r is sought. If such cmin exists, cmin is updated
by merging it with {r}. Otherwise, r itself forms a cluster
and is added into CR. Note that if there exist two clusters
with the same minimal similarity distance with r, the one
with more queries is preferable to be chosen for {r} to be
merged with (see step 13∼15) so that more queries can be
cloaked.

Consider the example shown in Figure 7, where C1, C2, C3

and C4 are continuous clusters, whose distortions are always
smaller than δq before they expire. When a new query r
arrives, according to BCA, C4 is selected to be merged with
{r} as it has the minimal temporal similarity distance with
r. Then, C4 would have four queries after the merging is
conducted. If K ≤ 4, C4 is sent to check the δp-privacy
requirement, otherwise, it will stay in the service space to
merge with other arriving queries.

4.3 Hybrid Cloaking Algorithm
Many possible cluster merges are ignored in bottom-up

cloaking algorithm (BCA), which might decrease the success
rate of cloaking. Continue with the example in Figure 7, as
discussed previously, C4 cannot be returned as a cloaking
set if K=5. However, by merging some queries of other
cluster, e.g., C1, it is possible that C4 would successfully
become the cloaking set. In fact, C4 ∪{A} satisfies both δq-
distortion and δp-privacy requirements, and thus would be
returned as a cloaking set. However, such opportunities are
omitted in BCA. On the other hand, as cluster merges are
time-consuming, especially when the locations of queries are
frequently updating, conducting merges in the granularity of
queries surely deteriorates the performance of the cloaking
algorithms.

In order to resolve this problem, we propose hybrid cloak-
ing algorithm, which aims to combine the advantages of
BCA and GCA together. Specifically, BCA is used to search
the proper cluster for each newly arrived query, while GCA
is for cluster refinement. To further improve the searching
efficiency, a TPR-tree is adopted to index existing clusters,

Figure 7: BCA Figure 8: Location on x-
dimension

such that some clusters can be filtered out and thereby ac-
celerating the searching process. Before presenting the spe-
cific algorithm, for ease of exposition, we introduce nearest
neighbor cluster whose definition is as follows:

Definition 11. (Nearest neighbor cluster, NNC) A cluster
Cn is the NNC of C iff for any cluster Ci(Ci 6= C and i 6= n),
perimeter(MBR(Ci, C))> perimeter (MBR(Cn, C)).

With the help of TPR-tree, we can easily get the set of
nearest neighbor clusters (denoted as CSnn) for each newly
arrived query r during its valid period. The following theo-
rem shows that, if there exists a cluster C in CSnn and C’s
distortion with r violates δq-distortion, then the distortions
between other clusters and r must also violate δq-distortion.

Theorem 1. Let CSnn be query r’s CNN during its valid
period [Ts, Texp]. If ∃ Ci,ti,ti+1 ∈ CSnn,

distortion(Ci,ti,ti+1 , r, t) > δq

where t ∈ [ti, ti+1], Ts < ti < ti+1 < Texp, then for any
cluster C′(C′ 6= Ci,ti,ti+1),

distortion(C′, r, t) > δq.

Proof. For ease of presentation, without loss of gener-
ality, we assume every cluster has the same valid period as r.
CSnn is in the form of {(C1,t1,t2 , t1, t2), . . ., (Ci,ti,ti+1 , ti, ti+1),
. . ., (Cn,tn−1,tn , tn−1, tn)}, where t1 = Ts, tn = Texp, and
(Ci, ti, ti+1) represents that Ci,ti,ti+1 is r’s NN during [ti, ti+1].
For any cluster C′ which is not NN at timestamp t (t ∈
[ti, ti+1]), according to Definition 11, perimeter(C′, r) > perime-
ter (Ci,ti,ti+1 , r) at t. Apparently, if distortion (Ci,ti,ti+1 , r, t)
> δq, we have distortion (C′, r, t)> δq.

According to Theorem 1, for a newly arrived request r,
if its nearest neighbor cluster at any timestamp of its valid
period violates the δq-distortion requirement, other clusters
are filtered out from checking and thus some computational
cost can be saved. However, two new problems arise: 1) how
to efficiently find CNN of r during its valid period; 2) how
to find the cloaking set based on CSnn.

As the queries within a cluster are dynamically changing
in terms of their locations and velocities, under such circum-
stance, it is a complicated and time-consuming to identify
the CSnn for a query. However, since the purpose of CSnn

is just for filtering, instead of finding out the exact nearest
neighbor for a query, we turn to the approximate computing.
Before that, we first define the centroid of a cluster.

Definition 12. (Centroid of a cluster) The centroid Ocn

of a cluster C is represented as (x, y, vx, vy), where (1)x =∑
Q∈C Q.x

|C| and y =
∑

Q∈C Q.y

|C| ; (2) vx =
∑

Q∈C Q.vx

|C| and vy =
∑

Q∈C Q.vy

|C|



Algorithm 3 : Hybrid cloaking algorithm(HCA)

1: find the CNN cluster CSnn for r on TPR-tree;
2: invoke BCA on CSnn to find cluster cmin;
3: if cmin not found then
4: insert r into TPR-tree;
5: else
6: cmin = cmin ∪ {r}; /*do the merging*/
7: if |cmin| < K then
8: for each query o in CSnn − cmin do
9: maxT=max(cmin.maxTexp, o.Texp);

10: minT=min(cmin.minTexp,o.Texp);
11: if |maxT −minT | < δT then
12: if DistortionDetection(o, bq, cmin)=false then
13: insert o into cmin;
14: delete o from the cluster c it is in;
15: insert c into queue uq;
16: if |cmin| ≥ K then
17: break;
18: for each cluster c in uq do
19: update centroid of cluster c ;
20: update it in TPR-tree;
21: if |cmin| ≥ K then
22: Check δp-privacy and return the cloaking set cmin;
23: else
24: insert centroid of cmin into TPR-tree;

Now, each cluster can be simply represented by its cen-
troid, and a TPR-tree can be built on the centroids of clus-
ters. Also, the NNC for a query can be quickly discovered by
searching over this TPR-tree. In other words, the original
problem is successfully transformed to a traditional CNN
problem on moving objects, which has been well studied in
literature. We detail the proposed hybrid cloaking in Algo-
rithm 3. We employ best-first traversal using min metric [2]
to compute CSnn for r (step 1). Based on CSnn, BCA is
adopted to find the cluster cmin with minimum temporal
similarity distance first (step 2). If such cmin does not ex-
ist, r itself forms a cluster and its centroid is inserted into
TPR-tree (step 4). Otherwise, the merging of {r} and cmin

is conducted. Finally, if cmin has not less than K queries, it
is directly returned as a candidate cloaking set for privacy
verification (step 22). Otherwise, we invoke GCA to do the
cluster refinement (step 7∼17) — for each query o in CSnn

but not in cmin, if cmin ∪ {o} satisfies δq-distortion, then
o is moved into cmin and their centroids in TPR-tree are
updated correspondingly. Such process repeats until cmin

contains K queries.
Continue with the example shown in Figure 7. Suppose

that the set of clusters {C1, C2, C3, C4} is the CNN (denoted
as CSnn) found on the TPR-tree when r arrives, and K is
equal to 5. After invoking BCA, C4 is selected to merge
with {r}. As C4 only contains four queries after merging,
cluster refinement is conducted. Specifically, each query o in
{C1, C2, C3} is checked to see if it can be inserted into cmin.
Hence, in this example, A is found and is moved from C1 to
C4. Consequently, the centroid of C1 is updated and C4 is
removed from the TPR-tree. Finally, C4 ∪ {A} is returned
as a valid cloaking set.

5. DISTORTION AND PRIVACY VERIFICA-
TIONS

The proposed cloaking algorithms, namely, GCA, BCA
and HCA, involve three main steps: boundary query com-
puting, δq-distortion and δp-privacy verifications. We will
elaborate them in Section 5.1, Section 5.2 and Section 5.3,
respectively.

5.1 Boundary Query Computing
As discussed previously, each cluster is associated with

a queue BTQ2, which maintains the boundary queries at
different timestamps. Each item in BTQ is in the form
of <time, query>, where time is the timestamp when this
query becomes boundary. Inside BTQ, the boundary queries
are kept sorted in ascending order of the timestamp. As
queries are changing along with the movement of its issuers,
it is costly to track the boundary queries online.

Figure 8 shows five queries projected on the x-dimension.
For the timestamps ti ∼ tj , each query at the timestamp
t (t < tj) can be located by

x = xti + vx ∗ (t− ti) (6)

Hence, the crossed points of lines in Figure 8 can be easily
computed. Note that we only need to compute those crossed
points which can contribute to the width of the boundary’s
segments. In Figure 8, the crossed point P can be ignored.
Although we take the case on the x-dimension as an exam-
ple, the case on the y-dimension can be handled similarly.
For every cluster C, let V S + /V S− be the velocity sets of
boundary queries on positive/negative x-dimension during
its valid period. The main idea of boundary query com-
puting is as follows: when a query r is inserted into C, if
∀v+ ∈ V S+, r.vx < v+, and ∀v− ∈ V S−, r.vx > v−, r is im-
possible to be the boundary on the x-dimension. Otherwise,
the timestamp when r becomes the boundary is computed
by using equation (6). In addition, those crossed points are
inserted into BTQ. For the example in Figure 8, if Q3 is the
query to be inserted, as Q5’s velocity is larger than Q3’s,
it would be picked up to compute the crossed point P ′. In
this way, all boundary queries of a cluster can be calculated.
Due to space limitations, we omit the detailed algorithm.

5.2 δq-Distortion Verification
By maintaining BTQ, it is easy to get any boundary query

at any time for a cluster. Therefore, during two consecutive
timestamps [ti, ti+1] in BTQ, as each boundary movement
is a linear function with timestamp t, PL,t and Pv,t can
be computed. To satisfy δq-distortion, for any timestamp
t ∈ [ti, ti+1], the following inequation should be held:

1

PA
[PL,ti + Pv,ti(t− ti)] < δq. (7)

By setting the left side of the inequation (7) to be δq, we can
compute the upper bound of t, denoted as t+. If t+ locates
in [ti, ti+1], it is easy to know that δq-distortion is violated.
Otherwise, δq-distortion is satisfied. The algorithm is quite
straightforward and thus is omitted here.

5.3 δp-Privacy Verification
Like δq-distortion, δp-privacy can be verified during each

time interval between two consecutive timestamps in BTQ
by using equations (2) and (3). However, it is not necessary

2In the implementation, there are four queues, namely,
BTQx−, BTQx+, BTQy−, BTQy+, which maintain the
boundary queries on every direction of the cluster MBR.
For ease of presentation, we unify them as a queue BTQ.



Figure 9: Exclusive objects on one dimension

Figure 10: Non-exclusive objects on one dimension

for δp-privacy to be checked during every time interval of
the valid period.

Let’s define exclusive first:

Definition 13. (Exclusive) Let dist be the distance be-
tween two queries r1 and r2. For any two timestamps ti,
tj , ti < tj , if dist(r1, r2, ti)≤dist(r1, r2, tj), we say these two
queries are exclusive to each other.

Intuitively, the distance between two exclusive queries would
increase as the time elapses. Moreover, two observations can
be drawn. First, if two boundary queries on each dimension
are exclusive and WB/HB is larger than δp at ti, it will
not be less than δp after ti. Second, for any two boundary
queries, even if they are not exclusive to each other at the
current timestamp, they will become exclusive at some fu-
ture time. Figure 9 shows the cases when two queries are
exclusive. (a) Two queries have the same velocity, thus the
distance between them remains constant. (b) The veloci-
ties of two queries A and B have the same direction, but B,
which is in front of A on the moving direction, has a larger
velocity. Apparently, (a) is a special case of (b). (c) Two
queries move on the opposite direction. Figure 10 demon-
strates the cases when two queries are not exclusive at the
early stage but become exclusive to each other after a cer-
tain timestamp. As shown, the queries A and B (C and D)
are not exclusive in (a). However, as time goes by, after A
and B converge in (b), they become exclusive to each other
(e.g., in (c)).

The main idea of δp-privacy verification is as follows. If
the boundary queries of a cluster on both dimensions are ex-
clusive, the actions are subject to different cases: when both
WB and HB are larger than δp, the cluster can be returned
as a cloaking set directly; when WB or HB is less than δp,
we can delay to the time to publish the cloaking set, until
both |WB| and |HB| are larger than δp. If the boundary
queries on any dimension are not exclusive, their information
are kept on tracking in the BTQ until they are exclusive or
all boundary queries in BTQ have been checked. The former
terminal condition implies this cluster is a successful cloak-
ing set, while the latter one indicates this cluster should re-
main in the service space and wait for anonymization. Due
to space limitations, we omit the specific algorithm here.

Figure 6(a) shows an example when the cloaking set needs
to be delayed for publishing. Assume Q1 ∼ Q3 constitute a
cluster at ts(K=3). As shown, WB shrinks to zero at Tw,
and it increases to δp at T∆. Therefore, this cluster would
wait until T∆ is to be published as a cloaking set.

6. PERFORMANCE EVALUATION
In this section, the effectiveness and efficiency of our pro-

posed algorithms, including GCA, BCA, and HCA, are ex-
perimentally evaluated under various system settings. Al-
though the privacy technique proposed in [4] is the most

Table 1: Default system settings
Parameters Default values

Number of queries 10,000
Valid period Randomly chosen from [0,1440]

Privacy level K 10
δp 1% of min(Awidth,Aheight)
δq 10% of the space
δT 60s

Perimeter of road map ∼6,000km

representative approach for continuous queries, as discussed
in Section 2, it suffers from disclosing the location privacy
in some cases. Moreover, none of the existing cloaking algo-
rithms consider the temporal utility of the cloaking region
during the anonymization. Hence, we do not include any
existing cloaking algorithm for comparison. The evaluation
metrics include the cloaking success rate, the cloaking cost,
the cloaking time, and the processing time for successful
queries.

We use the well-known Thomas Brinkhoff Network-based
Generator [3] to generate the moving objects in the system.
The input of the generator is the road map of Oldenburg
County (with perimeter around 6,000km). Our algorithms
are implemented in Java and evaluated on a desktop running
Windows XP SP2 with an Intel 2.0GHz CPU and 2GB main
memory. A total of 10,000 moving objects are generated
at the beginning of the simulation. Each object issues a
continuous query, whose valid period is a random number in
the range of [0, 1440]. Meanwhile, we assume a new query
is not issued until the last query is successfully cloaked or
expired. By default, for each query, the privacy level K is
set to 10, δp is set to 1% of the min(Awidth,Aheight), δq is
set to 10% of the system service space, and δT is set to 60s.
We summarize the default parameter settings in Table 1.

6.1 Cloaking Success Rate
In this section, the average cloaking success rates of GCA,

BCA and HCA are evaluated under various settings of K,
δp and δq.

Increasing K implies the privacy requirement becomes
more constrained, which indicates more queries should be
covered by a cloaking set. From Figure 11(a), we can observe
that the success rate decreases when K increases. Among
the proposed algorithms, GCA is the best and its success
rate decreases slightly with K increasing. By contrast, BCA
is the worst. That is because every query in GCA finds its
cloaking set greedily in the entire query set, while the cloak-
ing set is found among cluster sets in BCA. As explained in
Section 4.3, BCA omits some possible cluster merges, and
hence a number of cloaking sets cannot be successfully cre-
ated. For HCA, it successfully resolves the problem of BCA
by introducing a post-step to refine the cluster. However,
as it insists to do the cluster merges on the granularity of
clusters in the pre-step, some possible merges are still miss-
ing, which harms its cloaking success rate. Therefore, the
success rate of HCA is between that of BCA and that of
GCA.

Increasing δp also implies a higher privacy requirement.
Figure 11(b) shows that the cloaking success rate slightly
decreases, with δp increasing. This indicates that δp has lit-
tle impact on the success rate. On the other side, increasing
δq implies the requirement for QoS is relaxed. Figure 11(c)
shows that the cloaking success rate increases when δq in-
creases. The success rate of BCA increases obviously, as
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Figure 11: Cloaking success rate

more clusters can be cloaked together. Compared with BCA,
both the success rates of GCA and HCA increase slowly, in-
dicating that δq has smaller impact on their success rates.

6.2 Cloaking Cost
This section evaluates the average cloaking cost under dif-

ferent settings of privacy level K, δp and δq. The cloaking
cost concerned in this paper can be divided into two parts:
the anonymization cost and the postponed time.

The anonymization cost is the average perimeter of the
cloaking region, which indicates the distortion of location
information. As shown in Figure 12(a), for all cloaking al-
gorithms, the average anonymization cost increases when
the privacy level K increases. This is as expected because
each cloaking set is required to embrace more queries so as
to meet a higher privacy requirement. GCA has a lower
anonymization cost than BCA, because the cloaking region
is built by adding queries one by one in GCA, while in BCA,
the basic incremental unit is a cluster rather than a query.
HCA has the lowest anonymization cost among three algo-
rithms. This can be explained as follows. Different from
GCA, HCA finds the cloaking set for each newly arrived
query from its CNN clusters and thus it can guarantee that
those residing queries of the cloaking set are close to this new
query. As a result, HCA would have a lower anonymization
cost than GCA. In addition, though both HCA and BCA
seek for the cloaking set from CNN clusters, as there is a
post-step to refine the clusters in HCA, BCA has a rela-
tively higher anoymization cost than HCA.

Postponed time evaluates the cost of postponing Texp when
forming cloaking sets. As the expiration time of a cloaking
set is the largest Texp among all residing queries, queries
whose Texp are prolonged are regarded as dummies after
they expire. Postponed time is defined as the ratio of the
prolonged time over the valid period for each successful query.
As shown in Figure 12(b), the postponed time increases as
K increases. The rationale behind is that, as more queries
are covered by a cloaking set, the expiration time of the
cloaking sets becomes larger and therefore the queries can
be prolonged for a longer period. As can be observed from
Figure 12(b), HCA increases very slightly, and it has the
smallest postponed time among the proposed algorithms.
This is due to the benefits of the cluster refinement, which
enables each cluster to have more queries and thus accelerate
the procedure of forming the cloaking sets. In addition, its
processing time is relatively longer (see Figure 15(b)), there-
fore, every query would have more chances to be clustered
with those queries which hold a similar expiration time. As
can be observed from the figure, GCA has a smaller post-
poned time, when comparing with BCA. The reason is two-
folded. First, same as HCA, GCA has a longer processing
time, which provides more chances for those queries with
similar expired time to be anonymized together. Second,
for BCA, as each query becomes fixed in a cluster once it is

inserted, queries within a cluster cannot be merged with the
queries of other clusters, even if they have the same expired
time.

4

(a) Anonymization cost (b) Postponed time

Figure 12: Different privacy levels K

Along with the increment of δp, the lower bound of the
width/height of the cloaking boundary grows larger, which
makes the newly arrived query to find farther queries for
cloaking. As a result, the anonymization cost increases with
δp increasing, just as shown in Figure 13(a). From Fig-
ure 13(b), we observe that each successful query has to be
postponed for a longer period when δp grows larger. When
δp is smaller (i.e., 0.01∼0.03), HCA is the best, and BCA
is the worst. When δp grows beyond 0.03, as each query
needs to be clustered with much farther queries for cloak-
ing, their postponed time increases to a half of their valid
periods. Meanwhile, their difference on the postponed time
is overshadowed.

As shown in Figure 14(a) and Figure 14(b), δq has little
effect on both of the anonymization cost and the postponed
time. They are stable when δq increases.

p

4

(a) Anonymization cost

p

(b) Postponed time

Figure 13: Different δp
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Figure 14: Different δq

6.3 Cloaking Time and Processing Time
The average cloaking time and the processing time are

evaluated in this section. The cloaking time of a query is
the elapsed time between the moment when the query is re-
ceived and the moment when it is successfully cloaked. It
includes the computational time for maintaining the data
structure (e.g., TPR-tree in HCA), boundary query com-
puting, δq-distortion verification and δp-privacy verification.



From Figure 15(a), we can see that cloaking time increases as
K increases. This can be explained: the bigger is the value of
the privacy level K, the more is the queries of each cloaking
set. As a result, a longer cloaking time is needed. Among the
proposed algorithms, BCA has the shortest cloaking time.
This is because BCA finds the cloaking sets from the exist-
ing continuous clusters directly, and incurs little overhead for
data structure maintenance. We can also observe that, GCA
performs better than HCA when K is small (e.g., < 9). The
reason is that, a query can easily find its cloaking set under
a small value of K, thus few queries are maintained in the
service space to wait for anonymization which weakens the
advantage of TPR-tree. Meanwhile, HCA has the overhead
to maintain TPR-tree and clusters. Nonetheless, when K
grows larger (e.g., ≥ 9), the cloaking time of GCA increases
exponentially, while the advantage of TPR-tree in HCA be-
comes obvious. Consequently, HCA outperforms GCA after
the value of K reaches 9. Note that such performance gap
becomes bigger with the increment of K.

The processing time includes the cloaking time and the
time waiting for cloaking. As shown in Figure 15(b), the
waiting time dominates the overall processing time, and the
average processing time increases when K increases. Based
on the results shown in the figure, we can have the following
observations: (1) BCA has the shortest processing time; (2)
when K is small (e.g., < 6), GCA requires less processing
time than HCA. However, when K grows larger (e.g., ≥ 6),
the processing time of GCA increases exponentially, and the
performance improvement of HCA over GCA becomes much
larger. The rationales behind these observations are similar
as described in the last paragraph.

(a) Cloaking time (b) Processing time

Figure 15: Different privacy level K

7. CONCLUSIONS
In this paper, we investigated utility-based cloaking al-

gorithms which protect both location privacy and query
privacy for continuous queries. We observed that most of
the existing location cloaking algorithms cannot effectively
prevent from privacy disclosure or poor QoS for continu-
ous queries. To address this problem, we proposed a greedy
cloaking algorithm (GCA) and two incremental utility-based
cloaking algorithms, called bottom-up cloaking (BCA) and
hybrid cloaking (HCA). A series of experiments has been
conducted to evaluate these algorithms under various sys-
tem settings. Experimental results show that, GCA has the
highest success rate, but suffers from a long cloaking time
especially when the privacy level is high; BCA has the best
efficiency, but its anonymization cost, cloaking success ratio
and postponed time are relatively worse; HCA achieves the
best overall performance in terms of various performance
metrics.
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