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ABSTRACT

Cloud-based data management system is emerging as a scal-
able, fault tolerant and efficient solution to large scale data
management. More and more companies are moving their
data management applications from expensive, high-end ser-
vers to the cloud which is composed of cheaper, commodity
machines. The implementations of existing cloud-based data
management systems represent a wide range of approaches,
including storage architectures, data models, tradeoffs in
consistency and availability, etc. Several benchmarks have
been proposed to evaluate the performance. However, there
were no reported studies about these benchmark results which
provide users with insights on the impacts of different im-
plementation approaches on the performance. We conducted
comprehensive experiments on several representative cloud-
based data management systems to explore relative perfor-
mance of different implementation approaches, the results
are valuable for further research and development of cloud-
based data management systems.

Categories and Subject Descriptors

H.3.4 [Information Storage and Retrieval]: Systems
and Software— Performance evaluation

General Terms

Measurement,Performance
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cloud, data management, benchmark

1. INTRODUCTION

Cloud computing has emerged as a prevalent infrastruc-
ture and attracted a lot of attention of companies and aca-
demic circles. Though there has not been a standard defini-
tion about cloud computing, we can summarize the substan-
tial features of it: scalability, fault tolerance, high perfor-
mance cost, pay-as-you-go, etc. Data management system is
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one of the applications that are deployed in the cloud, many
cloud-based data management systems have been proposed
and are serving online right now: BigTable[1] in Google,
Cassandra[2] and Hive[3] in Facebook, HBase[4]in Streamy,
PNUTSI6] in Yahoo! and many other systems. In order to
merge with the cloud computing platform, the data man-
agement system should have high availability and fault tol-
erance, flexible scalability, and the ability to run in the het-
erogeneous environment. Developers of the existing systems
choose different solutions to make their data management
systems work well in the cloud depending on their different
application scenarios.

The developers of many companies are wondering whether
their data management applications can be moved to the
cloud to get better performance with less cost. However, the
application environments and implementation approaches of
existing cloud-based data management systems are so var-
ious that it is difficult for developers to determine which
system is more suitable for their applications. The sig-
nificance of conducting comprehensive experiments on the
cloud-based data management systems can be summarized
as follows: showing the performance advantage of different
systems and providing the users with impacts of different
technical issues on the performance. The test results and
analysis are useful for both further research and develop-
ment of cloud-based data management systems.

There have been several benchmarks proposed to evaluate
the performance of cloud-based data management systems,
including performance evaluation of the Google’s BigTable
[1] which is for systems that do not support structured query
language, the performance comparison of Hadoop[15] and
some parallel DBMSs [8] which put emphasis on structured
query of the systems, and the Yahoo! Cloud Serving Bench-
mark(YCSB)[9] framework which supplies several workloads
with different combinations of insert, read, update and scan.
Several experiment reports depending on these benchmarks
can also be found, however, all of them focus on one or two
systems’ performance evaluation without comparison anal-
ysis depending on their implementation approaches. Three
cloud-based management systems are included in[9]: Cas-
sandra, HBase and PNUTS, they present results of three
workloads: update heavy, read heavy and short ranges. And
all the workloads in YCSB focus on serving systems just like
PNUTS, which provide online read or write access to data.
The analytical systems are not included in their workload.
And all the systems in their experiment do not use repli-
cation, which is widely used in the cloud-based systems for
data availability, so they do not evaluate the fault tolerance



or availability of these systems either. We conduct compre-
hensive experiments on the representative cloud-based data
management systems, which cover the different approaches
on storage architectures and data models. Our workloads
and tasks originate from benchmarks in [1] and [8], we make
some extensions to investigate the factors that affect perfor-
mance of different implementations.

The rest of this article is organized as follows. Section 2
summarizes the existing cloud-based data management sys-
tems with emphasis on storage architecture and data model.
Section 3 describes the workloads and tasks in the bench-
mark. The test results and analysis are given in Section
4. We describe the future work and conclude the article in
Section 5.

2. AN OVERVIEW OF EXISTING CLOUD-
BASED DATA MANAGEMENT SYSTEMS

Cloud-based data management system will not replace
the traditional RDBMS in the near future, however, it sup-
plies another choice for the applications which are suitable
to be deployed in the cloud: large scale data analysis and
data management in the web applications. Different from
transactional applications, data involved in the analysis are
rarely updated, so ACID guarantees in the transactional ap-
plications are not needed. Data analysis applications are
often deployed on shared-nothing parallel databases, but
with the increase of data scale, systems will have to scale
vertically which costs a lot of money and time to get bet-
ter performance. Cloud-based data management systems
provide a flexible and economical solution to scale horizon-
tally with commodities, and the scaling server resources are
transparent to the applications. In the web data manage-
ment applications, response time is one of the most im-
portant requests except for scalability and fault tolerance.
Big data is produced during the interaction between cus-
tomers and the sites, and we can not see the increase end
in sight. Many companies which supply social network ser-
vices have moved some of their applications to cloud-based
data management systems because of data explosion[13].
During the existing cloud-based data mangement systems,
BigTable, HBase, HyperTable, Hive and HadoopDB[10] are
mostly used for analytical data management applications,
while PNUTS and Cassandra are used for web data man-
agement. Different applications originate from different im-
plementation approaches, next we will compare the technical
issues from storage architecture and data model.

2.1 Storage Architecture

Depending on the persistency design, we can classify the
cloud-based data management systems into two kinds: File
System-based systems and DBMS-based systems. BigTable,
HBase, HyperTable, Hive and Cassandra are File System-
based softwares. HBase and HyperTable are open-source im-
plementations of BigTable’s architecture, they are called the
BigTable-like systems. The BigTable-like systems and Hive
all store data in distributed file systems, which is master-
slave organized. While Cassandra uses file system directly
as the storage layer, which is peer-to-peer organized. Table
1 shows the different file systems they use.

SQL Azure, PNUTS, HadoopDB and Voldemort use tra-
ditional DBMS as the storage layer. DBMS’s inherent fea-
tures such as query optimization, index techniques can be

Table 1: File Systems in the Storage Layer

Project Name File System
BigTable GFS[14]
HBase HDFS[16]
HyperTable KFS[17], HDFS
Hive HDFS
Cassandra Local File System

directly utilized in this kind of systems, and it’s easy for this
kind of system to support SQL to the users. However, under
this kind of architecture, DBMS layer can be a bottleneck
for data storage, because all the data storage optimization
can only be executed on top of DBMS.

Generally speaking, FileSystem-based systems inherit sev-
eral merits from MapReduce[7] if they use MapReduce as
the framework, such as scalability, fault-tollerance, adapt-
ing to heterogeneous environment, etc. However, most of
these systems can not support SQL, except for Hive which
can support part of SQL called HQL. DBMS-based systems
can support SQL, however, there is a lot of work to do on
scalability, fault tolerance, and support for semi-structured
and unstructured data.

2.2 Data Model

The data models of existing cloud-based data manage-
ment systems are extremely different, we classify them into
two kinds: the key-value data model and the simplified re-
lational data model.

The key-value data model is a sparse, distributed, persis-
tent multidimensional sorted map[1], it is simple and flex-
ible. There are no different data types, all data is stored
as bytes. The elements in the multidimensional map are
not only rows and columns, but also column families, times-
tamps, etc. The rows and columns represent what they
mean in the relational data model, but the rows are sparse:
each row can have different number of columns in one table,
and columns can be added during the process of data load-
ing. The unique row key identify one record, it is mapped to
a list of column families. The column family is mapped to a
list of columns, while the column is mapped to a list of times-
tamps, then the timestamp is mapped to the value. The
value is fixed by a key consisting of row key, column family,
column name and timestamp, we can simply summarize the
map relationship as <row key,<column family,<columname
,<timestamp, value >>>>. A set of columns are put to-
gether into one column family, which is also the data access
unit. Data of the same column family is stored in one file on
disk, so clients are suggested to put the columns which are
often queried together into one column family to get better
performance. Timestamps are used in two ways: indexing
multiple versions of data, and conflict resolution.

Data in the DBMS-based systems is eventually stored in
the RDBMS, they adopt the relational data model with some
varieties in order to support distributed applications. For
example, traditional relational data model ensures entity in-
tegrity and referential integrity, however, now most cloud-
based data management systems do not ensure referential
integrity. Hive is one of the systems that use the relational
data model, data in Hive is organized into tables which are
analogous to tables in relation databases, each table has a



Table 2: Tasks in data read and write benchmark
Task Name Details
Sequential Write(i) Write rows into an empty
table under sequential row keys.
Write rows into a table
which has already stored data
under sequential row keys.
Write rows into an empty
table under random row keys.
Write rows into a table
which has already stored data
under random row keys.
Read rows under
sequential row keys.
Read rows under
random row keys.
Scan Scan the whole table.

Sequential Write

Random Write(i)

Random Write

Sequential Read

Random Read

corresponding HDFS directory[3]. Hive does not support
primary key or foreign key yet.

The relational data model has solid theoretical basis and
refined implement technologies, however, it is difficult to use
it directly in the cloud environment. The key-value data
model is simple and easy to implement, however, all sys-
tems of this data model support APIs instead of a uniform
language like SQL, which supplies sophisticated DDL and
DML operations. So there is a lot of work to do to widen
the appliation scope of the key-value model systems.

3. WORKLOADS OF THE BENCHMARK

We conducted two benchmarks on several existing cloud-
based management systems: data read and write benchmark
and structured query benchmark. During the data read
and write benchmark, seven tasks are defined to evaluate
the read and write performance during different situations.
The structured query benchmark focus on some basic opera-
tions in the structured query language, including key words
matching, range query, aggregation and so on. In fact many
cloud-based data management systems do not support SQL,
we evaluate their performance in this benchmark by coding
the client through the APIs they provide. Next we will de-
scribe the details of workloads in these two benchmarks.

3.1 Data Read and Write Benchmark

The principles of this benchmark originate from the per-
formance evaluation section of BigTable paper[l], we also
add some tasks included in a test report[11] which shows the
test results of HBase-0.20.0 on 5 servers. There are seven
tasks as Table 2 shows.

All of the tasks operate on a column family with one col-
umn, one row is written or read during one operation. The
row size is 1010 bytes: 1000 bytes for value, and 10 bytes for
row key. We write a string of 1000 bytes into one row as the
value, each string is composed by characters random gen-
erated. The sequential read and write are operations with
row keys in order, while random operations using row keys
out-of-order, and the motivation is to determine whether
performance can be affected by different row key choosing
methods. Initial write is an operation against an empty ta-
ble, while the other kind of write is operation against a table
which has already stored data partitioned in the whole sys-

tem. The motivation is to examine how the existing data can
affect the write performance of systems with different stor-
age architectures. Scan is also reading rows under sequential
row keys, the difference between scan and sequential read is
that we call the special interfaces the systems supply. Dur-
ing the task of sequential read, one row is returned once we
call the API, but during the task of scan, all the rows in the
table are returned once we call the scan API. Scan is one
of the most important applications in the cloud-based data
management systems during data analysis. The replication
factors of all systems involved are set to 3, which is widely
used in the distributed systems.

In addition to the data read and write performance, scal-
ability is also an important characteristic of the cloud-based
systems. A system has scalability means that more servers
will create more capacity and the scaling server resources
are transparent to the applications. Speedup is widely used
to measure the scalability of distributed systems. In order
to evaluate the scalability of systems in a more detailed way,
we also compute the speedup during this benchmark by exe-
cuting these tasks on systems deployed on different numbers
of servers.

3.2 Data Load and Structured Query Bench-
mark

Structured query language is widely supported by tradi-
tional data management systems, and it makes applications
development on the cloud system much easier. Until now,
the DBMS-based systems can support part of SQL, while
most of the FileSystem-based systems don’t provide SQL
APIs. We conduct this benchmark on these two kinds of
systems, and for systems that do not support SQL, we imple-
mented the structured query through coding on other APIs
they provide to analyze their performances. The workload
of this benchmark originates from Pavlo’s work[8], it is used
to evaluate performance of cloud-based data management
systems and parallel databases, focusing on structured data
load and query. Our motivation of conducting this bench-
mark is to compare the performances of cloud-based data
management systems with different architectures and imple-
mentation approaches on structured data query. Three ta-
bles are involved in the dataset, Table 3 described the struc-
tures of them. The table of rankings and uservisits simulate
the the page ranks and visit logs of web pages. There are
five tasks in this benchmark: data load, grep query, range
query, aggregation and fault tolerance.

e Data Load: Data is loaded into cloud-based data man-
agement systems from files on local file system of the
client, the replication factor of data is also set to 3.

e Grep Query: The table of grep contains a column of
10 bytes as the key, and a column of 90 bytes as the
field to be patterned with some key words, during our
test we use the key word 'XY7Z’.

e Range Query: Table involved in this task is "rankings”,
which stores information of page URL and page rank.
The range query will return the records with page rank
in a special region.

e Aggregation: Compute the total adRevenue generated
from each sourcelP in the table "uservisits”, grouped
by the column of "sourelP”.



Table 3: Tables in the dataset

Table Name

Table Structure

grep key VARCHAR(10), field ARCHAR(90)

rankings

pageRank INT, pageURL VARCHAR(100),avgDuration INT

uservisits

sourcelP VARCHAR(16), dessURL VARCHAR(100),
visitDate DATE, adRevenue FLOAT, userAgent VARCHAR(64), countryCode VARCHAR(3),
languageCode VARCHAR(6), searchWord VARCHAR(32), duration INT

Table 4: Testbed Setup
Quad Core 2.33GHz(5 servers)

CPU Quad Core 2.66GHz(15 servers)
7GB(5 servers)

RAM 8GB(15 servers)

Disk 1.8TB(5 servers)

2TB(15 servers)
Linux: Ubuntu 9.04 Server
1000Mbps

Operating System
Network

The tasks above are basic operations in structured query,
most cloud-based data management systems can’t support
sophisticated queries currently, however, we can overview
their performances in structured query from these simple
operations. In a cloud-based data management system with
high fault tolerance, a query does not have to be restarted
when one of the servers involved in the query failed. We also
evaluate the fault tolerance of the systems in this benchmark
through comparing the elapsed time during the normal sit-
uation and fault situation.

4. PERFORMANCE EVALUATION

In this section we describe the implementation details of
the benchmark and the analysis of test results. Four systems
are focused in the benchmark: HBase, Cassandra, Hive and
HadoopDB. We tried to evaluate systems that can cover all
the architecture types from open source software: HBase is
one of the BigTable-like systems based on master-slave archi-
tecture; Cassandra is also Filesystem-based and adopts the
P2P architecture; during all the FileSystem-based systems
we have surveyed, only HIVE can support SQL; HadoopDB
is one of the systems that are based on DBMS. We tune
each system to get the best performance in our platform,
and every task is executed three times to compute the av-
erage result. We choose the latest versions of these systems
when we conduct the benchmark: HBase 0.20.3, Cassandra
0.6.0-beta3d, Hive 0.6.0. All the cloud-based data manage-
ment systems are under active development, so our results
can reflect the current situations, and the results maybe dif-
ferent in the later versions of systems. All of the systems
are deployed on 20 servers in our testbed, and the setup of
these servers is shown in Table 4.

4.1 Data Read and Write Benchmark

HBase and Cassandra are involved in this benchmark,
both of them are FileSystem-based, and neither of them
can support SQL. The difference of these two systems is the
architecture: HBase is Master-Slave organized, and Cassan-
dra is P2P organized. 5,242,880 rows are involved in every
task of this benchmark, and as mentioned in Section 3.1, the
row size is 1010 bytes, so the data size of this benchmark is

HBase
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Figure 1: HBase performance on 20 nodes

about 5G. The implementation details of this benchmark on
these two systems are as follows:

HBase: We adopt the performance evaluation package in
HBase 0.20.3 and modified some code. All the tasks are im-
plemented through MapReduce framework.
Cassandra:We code the evaluation client through the ba-
sic data read and write APIs Cassandra provides. There is
no MapReduce interface in Cassandra, we use multithreads
in the client to increase the parallelism degree. The client
servers are also servers in Cassandra.

4.1.1 Test Results of HBase

Figure 1 illustrates the test results of HBase on 20 nodes(1
master and 19 slaves). The horizontal-axis represents the
task type, and the vertical-axis shows the elapsed time. We
can find that read speed is faster than that of write, this is
very different from the test results of BigTable[1], in which
random write is 7 times faster than random read, while se-
quential write is 1-~2 times faster than sequential read. Ini-
tial writes are slower than writes against an existing table.
At first of the initial write, there are just two or three servers
working in the task, and as time goes, more and more nodes
are involved. But for the writing against an existing table
which has already been distributed on 20 servers, there are
20 servers working at the beginning. For the writing against
an existing table, tasks are easily to be splitted into the
whole system, but for initial write, tasks are splitted among
the servers as data is inserted into the servers. So the par-
allelism degree of writes against an existing table is bigger
than that of the initial write. Scan performs better than
both sequential read and random read. Scan is reading rows
sequentially, and different from sequential read task which
gets one row at once, it can read many rows together each
time, so it costs less RPCs than sequential read.

We conduct these seven tasks on 5 slaves, 10 slaves, 15
slaves and 19 slaves separately, Figure 2(a) illustrates the
scalability results of HBase, the horizontal-axis represents
the number of slaves in the system, and the vertical-axis
represents how many rows are operated per second of each
task. We can see the performance gets better as the number
of nodes increases, although the acceleration is not linear.
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Figure 3: Cassandra performance on 20 nodes

In order to compute the speedup, we adopt the elapsed time
of system with 5 servers as the base time Tpuse. And the
speedup Sk is computed as: Sp = Tk /Tpase- Tk is the
elapsed time of task on systems of k servers. Figure 2(b)
illustrates the speedup, the speedup of random read is so
big that we use the right axis to present it, other tasks are
presented in the left axis. The data I/O unit of HBase is
block, in which there are several rows, and a whole block
has to be read into memory in order to get one row. During
the random read task, data is more likely to be partitioned
into different region servers, this means that more compute
resources can be used as the number of servers increases, so
the speedup of random read is the biggest.

4.1.2  Test Results of Cassandra

In the benchmark of Cassandra, we add a task called se-
quential write in_order because Cassandra supports three
kinds of data partitioning strategy, and two of them are used
often: random partitioning and order preserving partition-
ing. In the random partitioning, Cassandra uses MD5 hash
internally to hash the keys to determine where to place the
keys on the node ring[2]. While in the order preserving par-
titioning, rows are stored by key order, aligning the physical
structure of the data with the sort order[18].

Figure 3 illustrates the test results of Cassandra on 20
nodes, and we can summarize several findings. Firstly, the
sequential write in_order costs more time than sequential
write, because they choose different data partitioners: the
former task adopts order preserving partitioner, while the
latter task adopts random partitioner. When the rows are
inserted with sequential row keys, the hash function of or-
der preserving partitioner will partition the rows to a smaller
scale of servers than random partitioner does. Secondly, dif-
ferent from HBase, writes are faster than reads in Cassan-
dra. Writes to each ColumnFamily of Cassandra are grouped
together in an in-memory structure called memtable, then
they are flushed to disk when the memtable size exceeds
the threshold which is set through the parameter called

MemtableThroughputInMB. This means that writes cost no
random I/O, compared to a b-tree system which not only
has to seek to the data location to overwrite, but also may
have to seek to read different levels of the index if it outgrows
disk cache[19]. Thirdly, we can see that writes against an
existing table performs almost the same as writes against a
new table, it is also different from HBase. This is determined
by the data partitioning mechanism of Cassandra. Which
server one row is partitioned into is decided by a hash func-
tion, which has nothing to do with whether there is data
stored on the server before. So in the scalability test, we do
not distinguish initial writes or not, all writes are operations
against an empty table.

The scalability results of Cassandra are in Figure 4(a),
and the speedup results are in Figure 4(b). We compute the
speedup with the same way of HBase mentioned in Section
4.1.1. Most tasks perform best at the point of 15 nodes,
the performances descends when there are 20 servers in the
cluster. The speedup of random read is the biggest, which
is the same to HBase.

The comparison of performance between HBase and Cas-
sandra is shown in Figure 5. We run the same workload on
the two systems with 20 servers. Cassandra performs better
than HBase in writes: sequential write is 2.1 times faster,
and random write is 1.9 times faster. HBase performs better
in reads: random read is 6.9 times faster, sequential read is
8.5 times faster, and the scan is 3.5 times faster. We also
compare their performances with 15 servers, 10 servers and
5 servers, the situation that HBase performs better in read
and Cassandra performs better in write exists. HBase is
more suitable in the analysis applications during which data
is written once and read many times, while Cassandra is
more suitable to manage data in the web applications where
the read traffic is heavy and full scan of the whole table is
rare.

4.2 Data Load and Structured Query Bench-
mark

As described in Section 3.2, three tables are involved in
this benchmark. Table 5 shows the data sizes of these three
tables. We adopt the data generating code which is avail-
able on HadoopDB’s website[12]. Systems involved in this
benchmark are Hive, HadoopDB, HBase and Cassandra.
HadoopDB is based on DBMS, and we deployed PostgreSQL
as the storage layer in our test. HBase and Cassandra are
FileSystem-based, and they don’t support SQL, we code the
test client by calling the APIs they provide. Next we will de-
scribe the implementation methods of every task and show
the results.
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Table 5: Data size
Table Name | No. of Rows | File Size
grep 500 million 50 GB
rankings 2.3 million 1.4G
uservisits 500 million 61GB

4.2.1 Data Load

The data model of HBase and Cassandra is key-value pair,
we design the schemas in order to execute structured queries
on them. The implementation approaches of data load are
as follows:

e HBase: We create one table in HBase for each dataset,
and each column belongs to one column family. The
row key of grep is "key” and row key of rankings is

"pageURL”, data is loaded through ”Put List” in HBase.

We also run this task through MapReduce framework
to get better performance.

e Cassandra: There are no tables in Cassandra, we use
one column family to stand for one dataset. 10 client
processes load data parallelly to get better throughput.

e Hive: Hive provides commands to load data from lo-
cal file system or from HDFS, we use the following
command to load data from local file system: LOAD
DATA LOCAL INPATH ’/home/test/grep.dat’ INTO
TABLE grep;

e HadoopDB:There are four steps to load data into
HadoopDB: doing global partition to divide data file
in HDFS into small files(the number of small files is
equal to the number of servers in HadoopDB), loading
the files into local file system of each server in the
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Figure 6: Results of data loading

cluster, doing local partition to divide small files into
chunks, then loading chunks into PostgreSQL through
copy command. We sum the time these four tasks
cost together as the execution time of data load on
HadoopDB.

Figure 6 illustrates the results of loading data into grep
and rankings. The data interface of Hive adopts MapReduce
as the workflow framework. And Hive just checks whether
records in the data file accord with the constrains defined in
table creating. After the data checking, the whole data file
is moved from local file system to the directory of Hive in
HDEF'S directly. While HBase and Cassandra have to check
every record and add some meta data such as row key, col-
umn name, and timestamp to organize SSTables, and they
have to partition the record to servers of the cluster. So
Hive cost least time to load data. HBase doesn’t encapsu-
late MapReduce procedure in its data load interface, so we
conduct two methods to load data into HBase: using multi
client processes and using MapReduce framework. HBase
performs better with the method of using MapReduce frame-
work.

4.2.2  Grep Selection

The table of grep contains two columns: a column of 10
bytes as the key, and a column of 90 bytes as the field to be
patterned with the keyword "XYZ”. The keyword appears
once every 108299 rows in the table of grep. We can execute
the following SQL directly on Hive and HadoopDB:
SELECT key, field FROM grep WHERE key like "% XYZ%’;
Because neither of HBase and Cassandra can support SQL,
we complete this task through the simple APIs they provide,
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and the implementations of this query on these two systems
are as follows:

e HBase: We write codes through the class of "Filter”,
which supplies several kinds of data filtering patterns
in HBase. The ”SubstringComparator” of HBase is
case insensitive, so we implement a new substring com-
parator. The program is implemented in two ways:
with multi client processes and with MapReduce frame-
work.

e Cassandra: There is no interfaces of filtering rows in
Cassandra. So we fetch the rows through ”get range
slice” API, then match each row with ”XYZ”. 10 client
processes run parallelly to complete this query, and we
choose the longest elapsed time of these processes as
the final time of this task.

The results are illustrated in Figure 7, systems using MapRe-

duce as the framework of the query get better performance,
such as Hive, HadoopDB and HBase.

4.2.3 Range Query

Table involved in this task is "rankings”, which stores in-
formation of page URL and page rank. The range query is
based on page rank, this query will return the records with
page rank in a special region. The following command can
be executed on Hive and HadoopDB:

SELECT pageRank, pageURL FROM rankings

WHERE pageRank > 10;

The implementation approaches of this query on HBase and
Cassandra are almost the same as described in Section 4.2.2.
And we just use different filter patterns in this task. The
results are shown in Figure 8. Both of the range query
and grep selection need full scan of the table, systems us-
ing MapReduce as the framework of the query get better
performance.

4.2.4 Aggregation

During the four systems, only Hive and HadoopDB sup-
port aggregation. This task computes the total adRevenue
generated from each sourcelP in the table "uservisits”. The
following command can be executed on Hive and HadoopDB:
SELECT sourcelP, SUM(adRevenue) FROM uservisits
GROUP BY sourcelP;

Figure 9 shows the results of our test on Hive and HadoopDB.
Both of them adopt MapReduce as the framework. SQL
command the user put forward to Hive is translated into
MapReduce operations that can be executed on HDFS. While
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Figure 9: Result of aggregation

the SQL command put into HadoopDB is translated into
MapReduce operations, these operations are then translated
into SQL commands that can be executed on PostegreSQL.
Maybe there is room of HadoopDB to optimize the workflow
in the future.

4.3 Fault Tolerance

We choose the grep selection task to test fault tolerance,
because the size of table ”"grep” is big and this query costs
more time, so we can have enough time to create the error.
During the test, we create a connection error to make one
server which is involved in the query fail. After error is
made during the query execution procedure, we record three
items: Firstly, we check whether the whole query should
be restarted by the client. Secondly, if the query continue
running without terminating, we check whether the final
result is correct. Thirdly, we record the elapsed time of the
query and then compare it with the result without error
during the query.

Hive and HadoopDB achieve fault tolerance through Map-
Reduce, in which the failed task will be moved to another
server by the job tracker. HBase does not encapsulate MapRe-
duce in the filter APIs, so we test its fault tolerance in
two ways: call the APIs directly and in MapReduce frame-
work. For MapReduce-based systems, we can observe the
job progress in Hadoop JobTracker Web GUI to determine
which server is doing the query job and to be killed. In or-
der to create error on query of Cassandra, we kill the server
which a thread is fetching data from. In the test of HBase, if
we call the filter API directly without MapReduce, when er-
ror happens on one server which is involved in the query, the
whole job terminates without fault tolerance. The queries
on HBase with MapReduce, Hive, HadoopDB and Cassan-



7000
6000 7
Z 5000 /
g 4000 %
T 3000 /
§ 2000 /
/
Hive Cassandra HBase HadoopDB
B Normal 365 5419 754 253
Fault 862 6209 1035 303

Figure 10: Result of fault tolerance test

dra continue running after error happens, and the results are
all correct. Figure 10 illustrates the comparison of results
under normal situation and fault situation of the four sys-
tems. The elapsed time in the fault situation is 1~ 2 times
longer than that of the normal situation.

5. CONCLUSIONS

Significant process has been made in developing data man-
agement systems on the cloud, and various cloud-based data
management systems for production use have emerged. We
summarize the implementation techniques of existing cloud-
based data management systems from storage architecture
and data model. Then we evaluate a set of systems in per-
formance, scalability and fault tolerance, the systems cover
aforementioned implementation approaches. Our test re-
sults show that systems for analysis applications perform
better in data read and scan, while systems for web appli-
cations perform better in data write. Though most of the
FileSystem-based systems do not support SQL, we imple-
ment some basic structured queries through the APIs they
provide, and we find that some of them have almost the
same or even better performance over DBMS-based systems
during the structured query benchmark. The results and
analysis will be valuable both for developers of cloud-based
data management systems and users who are trying to move
their applications to the cloud.

It is important to remember that the cloud-based data
management is a very fluid field. We choose the latest ver-
sion of systems when we conduct the benchmark, however,
more advances will undoubtedly appear and new systems
will emerge. The cloud-based data management systems are
more attractive when they scale to very large workload. It’s
too expensive to construct an environment with hundreds
or thousands of servers. In the future work, we will extend
the workload scale through simulation tools and new find-
ings about the cloud-based data management systems will
be discovered.
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