

David DeWitt Speaks Out

on Rethinking the CS Curriculum, Why the Database Community
Should be Proud, Why Query Optimization Doesn’t Work, How

Supercomputing Funding Is Sometimes Very Poorly Spent, How He’s
Not a Good Coder and Isn’t Smart Enough to do DB Theory, and More

by Marianne Winslett

David DeWitt, http://www.cs.wisc.edu/~dewitt/

This issue’s interview with David DeWitt took place in November 2001, in Roy Campbell’s
HDTV studio at the University of Illinois at Urbana-Champaign. Once again I’d like to thank
everyone who suggested questions for this interview and for the other interviews in the series. As
usual, all errors of transcription are my own and the videotape itself is the final arbiter of
meaning. This interview was recorded digitally, and we expect that the video will eventually be
made available on the SIGMOD Web site.

In an upcoming column, we’ll be hearing from Hector Garcia-Molina.

==

I’m Marianne Winslett, and I’d like to welcome you to this installment of the SIGMOD Record’s
Distinguished Profiles in Databases interview series. Our guest today is David DeWitt, who is
the John P. Morgridge Professor and chair of the Department of Computer Science at the
University of Wisconsin at Madison. He is a member of the National Academy of Engineering;
he is an ACM Fellow; [he is the local arrangements chair for the SIGMOD/PODS conference
this year;] and he is known for his work on performanc eevaluation and parallel databases. So,
welcome, DeWitt!

I’d like to start with some questions about life in academic departments. You’ve had a career in
a field that is closely related to industry, in a place where there isn’t any database industry.
Would you advise fledgling database researchers to go to a place that is a hotbed of industrial
activity, or doesn’t it matter?

I don’t think it matters too much. I think the main thing is pick a department that is supportive
and willing to build a group. I think you can build a strong group in any university that is
supportive. I think we [at Wisconsin] have shown that you can do databases in the middle of the

http://www.cs.wisc.edu/~dewitt/

country fairly effectively. I think there are other strong groups at places other than [the east and
west US] coasts.

Speaking of building a database group: most
academic departments have one or two people
doing database research, but at Wisconsin, for
many years, you had five or more people doing
that kind of research. As the numbers increase,
is there a qualitative change in what happens, or
is it just more of the same?

g
tr
an
w
al
R
th
th
tw

Y
p
p

I
th
P
p
p
to
an
ti
ca
so
p

W
p
it

D

W
se

In
o

[In systems research,]
sometimes you get good
software artifacts, and
sometimes you get lots of
papers, and occasionally
you get both
I think there are definitely advantages to having
roups of four or five faculty members in an area. If you look at Wisconsin’s department, we’ve
ied to organize all groups as four to five faculty members. I think [having just] two people [in
 area] presents a problem in that they may go through periods where they don’t want to work
ith each other, [though of course] sometimes they do want to work with each other. But when
l five of us were [in Wisconsin’s CS Department], Mike [Carey] and Jeff [Naughton] and I and
aghu [Ramakrishnan] and Yannis [Ionnides] plus Miron [Livny] (and Tony Klug before any of
ese other people were at Wisconsin), there are all sorts of permutations [of working together]
at happened over time. So five is a fun number [of faculty to have], and it’s much better than
o. [In sum,] I think there is a qualitative difference in addition to a quantitative difference.

ou’ve led large software projects in academia, which isn’t all that usual: lots of money, lots of
eople. How do you divide your efforts in that kind of work between producing papers and
roducing software artifacts?

think [the way work gets divided between papers and software artifacts] is a total accident. I
ink back on my two most recent projects, the Paradise project and the Niagara project. The
aradise project---if you look at the number of papers per dollar spent, it was [very bad]. We
roduced a great software artifact, had a great time doing it; at some point there were actually 25
eople working on the effort, between graduate students and full-time staff members. It was far
o big a project to do in academia. [However], the number of papers produced was [very low],
d the dollars per paper was really high. Whereas in the Niagara project, we had a [difficult]

me producing a [reliable] software artifact, [but] we [have produced] lots of papers. I think you
n’t plan it; you just go with the flow, and sometimes you get good software artifacts, and
metimes you get lots of papers, and occasionally you get both, [as happened in] the Gamma

roject. But [the Gamma project] was the exception [in that regard].

hich is more influential in that kind of project, the
apers you produce or the software that comes out of
?

epends [on] what you are trying to sell.

ell, in those three projects, what were you trying to
ll?

 the Gamma project, we were trying to show proof
f concept. Eventually Naughton and I were the last
I’m not a very good
coder, and the
software artifact, by
the time we were
done with it, was
unusable

programmers working on the software artifact. Jeff designed the experiments and I wrote the
code. I’m not a very good coder, and the software artifact, by the time we were done with it, was

unusable.

But it proved the concept?

It proved the concept. [Whether the project’s papers or
software artifacts are more influential] depends on the
students [who work on the project] and the skills of the
students. Sometimes you have good ideas that turn into
good software artifacts, but sometimes the ideas are bad
ideas. I think you need to exploit what you currently
have in terms of the mix and quality of the students---
their software skills and their research skills.

[For] a lot of people,
programming is
boring … [It's not]
that big a part of
computer science
any more.

Shifting gears slightly, what should go into an introductory computer science class for majors?

Boy, that’s a good question[,] a loaded question. We’re
actually looking at this [question], because if you look
at the number of women (at least at Wisconsin) in the
introductory [CS] classes, it’s very low. And the
question is, why is it so low?

How low is it?

I think we’re about 22% [women] in the introductory
class, but the number of majors drops to 10-15%.

[My own department is] lower than that.

And the question is, why? I don’t know why. I have
two daughters, one of whom is a chemistry major and
one of whom is a math major. [… Neither daughter]
has ever taken a computer science class[, although] the
math major is going to be required to take a computer
science class. But there’s something about young women in high school that [causes them not to
take] any computer science classes, despite being perfectly capable of [doing computer] science.
I don’t know why that is; I don’t know whether it’s because [computer science is] viewed as
[being] too male-dominated, or whether it’s just viewed as boring. I think part of the problem is
that we teach programming first. And I think for a lot of people, programming is boring, and it’s
not a good reflection of what goes on in computer science. If you think about chemistry,
chemistry starts by teaching inorganic chemistry, and quantitative analysis is a very small part of
the introductory course; [the introductory course is] a broad brush of inorganic chemistry. Our
introductory courses could have some architecture in them, some theory in them, maybe some
database systems in them. But they don’t need to just be data structures and programming.

[The Wisconsin
Benchmarks] made a
lot of people,
including a lot of
friends, very angry.
… Larry Ellison was
very, very angry
and---I guess this is
the best story--- tried
to get me fired.

Would they be hands-on [courses,] then?

Maybe, maybe not. I don’t think programming is that big a part of computer science any more. I
think there are a lot of things that you can do in computer science that don’t require a lot of

programming skills. I think we should just try something different and see whether that affects
the number of women in the field. [Of course,] it may not have any effect.

Have you tried [this new introductory course approach] at Wisconsin?

No, but we have a curriculum committee that’s made up of all junior faculty members who are
just fresh out of their PhD’s, with no senior people. We haven’t changed our courses in basically
25 years. The introductory sequence looks exactly the same, in terms of what gets taught in what
courses. So I’ve tried to get new junior faculty members to think a little bit differently, to try
something different. We’re going to try to do something completely different in the introductory
course with a very minimal amount of programming that goes on in the course.

Interesting. I look forward to hearing how it turns out.

Actually, I wish someone else would do it so we could
just copy their course.

You can be the trailblazer for the rest of us.

We haven’t changed
our [intro CS]
courses in basically
25 years.
Many years ago you were one of the authors of one of the
first popular database benchmarks, the Wisconsin benchmarks. Are there any stories that you
would like to tell about the Wisconsin benchmarks?

Not on videotape!

Actually, it was an interesting experience. It got a lot of people’s attention. It made a lot of
people, including a lot of friends, very angry. I remember Mike Stonebraker once getting really
mad at me because we had shown that Ingres didn’t do very well on a particular kind of query. I
think a lot of people got really emotionally caught up in the performance results instead of trying
to take the results and use them for what they were intended for, which was to say, here’s where
your system works and doesn’t work.

There is the case where Larry Ellison was very, very angry and---I guess this is the best story---
tried to get me fired. [He] didn’t quite understand the concept of tenure, didn’t understand the
concept that the department chair wasn’t going to fire me because I didn’t say very positive things
about Oracle. But I think all in all, benchmarks have served the community well. I think that
they help the developers focus. In general, I think the whole benchmarking effort has been very
positive for the community.

Are you suggesting that professors shouldn’t work on benchmarks unless they have tenure?

(Laughs.) Yes, I’m definitely suggesting that! The sad thing is that every database product
[except DB2, I believe,] has a clause in it that basically is the result of the Wisconsin benchmarks,
saying no one but vendors can publish numbers. I think that’s really sad. I think that’s a silly
attitude for the industrial community to have. If you sell a product, people should be able to
evaluate that product. The database [vendors] seem to have some kind of phobia about people
evaluating their products.

But [the vendors’ benchmark] results that they publish are independently audited, usually.

No, they’re never audited any more. There are some rules that [the vendors] have to follow in
reporting their benchmark numbers, but I think it’s widely agreed that no customers ever do as
well as the vendors do.

Well, that would be true: a benchmark [result
published by a vendor] is a guarantee that your
performance will never exceed the published
number.

That’s right, that’s certainly the upper bound.

I think this restriction has allowed vendors to
concentrate on one particular number, whether it be
TPC-A or -B or -C or -D or -H, and it has hurt the
community in general, or users in general, because
users can’t conduct their own evaluations and publish th
vendors to focus all their effort on a single number, and

Well, you can publish as long as you call it database [s

--- C, or D. Yes, that is the standard dodge for getting a

I think there’s been a
lot of bad money
spent in the name of
supercomputers.

Has startup feve
academia?

I think it’s been
haven’t stayed t
academics have
general it’s been
say.

What about now that the fever is winding down?

I think it’s great. Everyone wants to stay and get a PhD
and students will be more conservative about leaving ac
it’ll be good for academia for a couple of years.

What about the recent economic downturn in the US? W
academia because of that?

I think the same sort of thing [will happen]. I think that
school. I think incoming graduate students will be bette
that means we will produce more high-quality PhDs and
in continuing in academia.

What about research funding, though? That pays for th

I think the real question is, will the government, after S
everything that they need to fund? And will there be a
research? I think that if you’re in security---this is a gre
database systems, it might be a pretty good time becaus
I’m not sure why
[NSF's] CISE has an
advisory board,
because I think our
advice is repeatedly
ignored.
eir own evaluations. That allows the
 I think that’s the wrong thing.

ystem] A, B, ---

round it, but [still!]

r been a good thing or a bad thing for

bad in that some of the very best students
o get PhDs. It’s been good in that some
done very well financially. I think in
 neutral. It has hurt the PhD quality, I’d

 now. I think there will be a swing back
ademia after the Master’s degree. I think

hat do you think will happen in

 there will be more applications for grad
r. I think they will stay longer. I think
 hopefully [also] more students interested

ose students.

eptember 11, be able to afford to fund
trickle down effect on more basic kinds of
at time to be in security. If you’re in
e they’re going to have to manage a lot of

information. The question is simply will the government be able to afford [to fund all that needed
work], and I don’t have any idea [whether they will be able to do it]. Database systems, and
information management, will become increasingly more important as the government tries to
collect more information. And there are obviously privacy issues that we have to worry about. I
think that it could be a good time [with respect to funding] for the database community.

Continuing with the questions about database funding, I know that you are a member of the
advisory committee for [the US National Science Foundation (NSF)]’s CISE, and [CISE] is the
source of most of NSF’s funding for database research, as well as research in many other areas.
Do you think that NSF should be funding people, or funding specific research projects?

I think that they should be funding more things [than they do now]. It’s good to sometimes fund
people. Sometimes proposals are a little too narrow. But I think you need to be able to fund new
faculty members, so sometimes you need to fund proposals. But funding people is also perfectly
viable.

I think the whole funding
situation, even with
[NSF’s] ITRs, is pretty
discouraging. …
[I]t’s almost impossible
to get money to do core
[database] research

I don’t think the CISE advisory board has much
impact on what CISE does, so people shouldn’t
think that I have a lot of say in who is getting
funding.

What do you advise them about, then?

No matter what we say to them, they never listen
to our advice, so it doesn’t matter. I’m not sure
why CISE has an advisory board, because I think
our advice is repeatedly ignored.

You said that you thought that [NSF CISE] should fund more projects, but you also said that that
you thought some of the project proposals were quite narrow.

If you say that you want to work on X, and X is really broad, I think it’s harder to get that kind of
project funded. A typical strategy [to get a grant] is to do the research, and then write a proposal
that proposes to do the research---and I think that’s unfortunate. I think people should be able to
say, I want to work in this broader area; and that may be what I mean by funding people.

I think the whole funding situation, even with [NSF’s] ITRs, is pretty discouraging. In the old
days, there was a program called Coordinated Experimental Research, CER; those grants were
started in the late 70s and they ran about a million dollars a year, and you could really do
significant software development [with that amount of money]. Nowadays, the biggest ITR
grants you can get are in the range of a million dollars a year---and twenty years have gone by!
You get a lot less out of your million dollars a year [now] than you could in the old days. I think
it’s really unfortunate. Personally, I think CISE puts far too much money into supercomputers
and terascale and grid computing and all the things that [the University of Illinois at Urbana-
Champaign (UIUC)] gets.

[It’s true that] we’re a hotbed of that [kind of funding and research].

I think [that that kind of funding is] not funding computer science; it’s funding the physicists, and
it’s not funding computer scientists.

Well, it’s funding me. That and my security work, the topics that you brought up...

Well, that’s ok, that’s fine. I think [that that kind of funding has been given] too much money. I
think that building 2000-node clusters and claiming it’s computer science is nonsense.

Don’t you want them to be able to simulate the
nuclear arsenal, though, [instead of conducting
above-ground tests] and all that?

I think that’s funding physicists, it’s not funding
computer science research.

Oh. Well, I think they need a lot of help in order to
simulate the nuclear arsenal, it’s pretty tough [to
write that kind of simulation].

I think there’s been a lot of bad money spent in the
name of supercomputers. I think [the] PACI
[program] was a perfect example of money that was n

Ooooh, hitting home at Illinois! [(PACI is a major sou
Supercomputing Applications (NCSA) at UIUC.)]

You’re the interviewer, [you asked the question, and]

No, that’s fine, that’s fine. Are there specific things y
[happen], or do you just think that whole direction…

I think it’s perfectly fine to fund big pieces of iron [(i.
have national centers like [NCSA at] Illinois, and Pitt
San Diego [Supercomputing Center]; I think you need
do computation outside of the [big supercomputers at
should tie funding iron with funding research. That’s
think that it tried to tie funding iron with funding rese
they should be separated apart. I actually like the Pitt
better, of just funding that iron and funding the resear
everything as one big lump sum---because I think ther

I think
hot area
this rea
cubes[,
had thre
writing

I was about to ask why, but you told
me already: more accountability.

[More accountability] to the funding
agency.

So you mean that, for example, if they
were successful in building the iron,
they might call the whole project a
success, even if …

I don’t think there’s much research in building the iro
machines, put them in a machine room, cluster them t
I think we [database
researchers] have
done an absolutely
terrific job as a field
and everybody
should be proud of
that.
ot well spent.

rce of funding for the National Center for

 that’s how I feel.

ou wish that PACI had produced that didn’t

e., supercomputers)], [because] you need to
sburgh [Supercomputing Center] even, and
 to have national centers where people can
the] government labs. But I don’t think you
 my problem with the PACI program. I
arch and funding applications, and I think
sburgh [Supercomputing Center’s] model
ch separately, [rather] than funding
e’s more accountability [that way].

too many people get into
s. … Jim [Gray] wrote

lly nice paper on data
 and] all of a sudden we
e hundred people

 papers on data cubes.

n. [You just need to] buy a bunch of
ogether, attach them to the grid. I just think

that purchasing the hardware should be [the extent of the use of the funding]. Obviously if you
purchase hardware, you should [also] support that hardware; but you shouldn’t necessarily have
the people who get the grant [also be the people who] determine which research projects should
be funded. I just don’t like that model, which is why I dropped out of the PACI program.

I see, interesting.

I don’t think the SIGMOD
community is going to be
interested in that.

Well, I’m interested in it. That’s
the world I live in. [If it seems
to be too boring for the
SIGMOD community,] we can
just trim it out of the printed

version of the interview.

The traditional core areas of database research aren’t
as well funded as they once were. Is this just a sign of
the maturing of our field, or have we missed some core
areas that need more research?

I think we have missed some core areas that need more
research.

[First, let me say that] I think the field certainly has
matured. We now have very, very capable systems,
and the field should be proud of that accomplishment. I think both the academic researchers and
the industrial people have done a terrific job. The systems are reliable, they’re scalable, [they
provide] high performance. I think we’ve done an absolutely terrific job as a field and everybody
should be proud of that.

[Q]uery optimizers [do] a terrible
job of producing reliable, good
plans [for complex queries] without
a lot of hand tuning. I think we
need to totally rethink how we do
query optimiz

ation

[Optimizers] are
making assumptions
about joins five or
six levels up in the
tree based on just
wishful thinking.

[However,] I think there are some core areas [that need more attention.] I think query
optimization is a huge hole; I think I/O is a huge hole. I think too many people get into hot areas.
It was recursive query processing for a while, then it was object-oriented databases, then it was
data cubes; because Jim [Gray] wrote this really nice paper on data cubes[,] all of a sudden we
had three hundred people writing papers on data cubes. Now we have data mining, where [the
Knowledge Discovery from Data (KDD) conference] has seven hundred attendees. I think people
get hooked into fad areas---which is fine, because I think that leaves a small group of us
interested in core problems.

There’s been very little funding for core [database] research. [The US Defense Advanced
Research Projects Agency (DARPA)] hasn’t been interested in that for years and years; DARPA
has nothing going on in databases right now, although that may change, and NSF isn’t interested
either, so it’s almost impossible to get money to do core research.

You said [that] query optimization [needed more research]. So what part of query optimization
do people need to do more work on?

All of it! Query optimization is 22 years old at this point. Everybody does exactly the same
thing, all based on work that Pat Selinger and the System R team did, and it doesn’t work [any
more]. [Database] systems have gotten ever more powerful. [Now we database systems users]
can do ten-way joins, we can do TPC-H queries (which are incredibly complicated queries) on
huge data sets on scalable machines, and the query optimizers [do] a terrible job of producing
reliable, good plans [for these kinds of queries] without a lot of hand tuning. I think we need to
totally rethink how we do query optimization, because the rest of [database] technology has
improved, and the query optimization technology has not improved.

Do you have specific suggestions for how we should do query optimization instead?

I have an idea that sort of relates back to how Ingres did query processing, which was basically to
iterate over the optimization and execution phases. Right now [the way database systems operate
is that] we optimize, and then we execute. We [completely] optimize nine- and ten-way [join]
plans based on ridiculous assumptions about [data] statistics. [The reality is that] after a couple
of joins, you have no clue how many tuples are going to come out. You don’t know whether [the
values of the attributes in the columns being joined] are correlated or not correlated; you don’t
know whether your histograms are accurate---maybe you don’t even have histograms. So [query
optimizers] are making assumptions about joins five or six levels up in the tree based on just
wishful thinking.

My personal view is that we need to revisit how we do optimization and execution. Right now,
we optimize and then we execute. Instead, I think we need to look at something [like,] for
example, optimize a little bit, execute a little bit, optimize a little bit more, execute a little bit
more. [We should just try] something different, because that’s one area where the technology has
not improved.

And this is not to say that Pat [Selinger] didn’t make a huge contribution in her work. When you
write one paper and that finishes off the field, that obviously is a superstar paper, and Pat is a true
superstar! But now we’ve gotten so capable at the execution side, we need to go back and redo
optimization. And just adding better histograms is not going to solve the problem. I don’t know
how to do it, but that’s one [direction I think is important].

[When you] singled out query optimization and I/O[, what did you mean by I/O?]
What I mean by I/O is that disks keep getting slower and slower. If you actually look at the
transfer rate, disks are getting faster; but if you divide transfer rate by capacity, disks are actually
getting [slower.]

Some people will advocate that what you ought to do is put a SQL processor in the disk
controller, [creating] an intelligent disk. I think that’s not going to help the problem; I think
intelligent disks look just like an old database machine, where you had a processor and a disk
together.

We’re looking at [an approach to this problem] at Wisconsin: we’re trying to see if we can make
vertical partitioning work. It’s a very old idea; the Bubba project at MCC did it, [calling it the]
decomposition storage model. […] The idea is if you only need one or two or three or a handful
of columns from a table, why do you read the whole [table]? Vertical partitioning makes
hardware caching work really well; it makes compression easy to do; it may greatly increase the
effectiveness of the I/O device that you’re trying to use.

[O]bviously, as database people, we can’t go and change how the disks get manufactured. We
have to live with commodity disks. And they [are] going to be a half terabyte in a couple of
years, a terabyte two years after that; by 2010 they’ll probably be a couple of terabytes.
Databases aren’t growing as fast as disks are growing, unless you are doing imagery or video.

[In sum,] I just think I/O is a big problem, and right now vendors just throw disks at the problem,
because disks are becoming so cheap. Maybe there’s something interesting that we can do in the
I/O area.

Any other core areas that you’d like to single out as needing extra attention?

I’m sure there are others, but those are the two that I been thinking about recently.
I think there’s a fundamental problem in the way SIGMOD
and VLDB papers get reviewed. I had a paper recently that
was rejected from SIGMOD [but received a] best paper
[award] at VLDB. … I think [the randomness of the
process] must be very hard for junior faculty members.

Do you have any favorite hot areas? Bandwagons that you are glad to see people jumping onto?

Obviously XML is a hot area. The thing that I think is interesting about XML is that the
[database] community failed to do distributed relational database systems, and I think XML is
neat because if it really happens, and people serve up XML and their web sites run XQUERY,
you can think about building a big gigantic distributed database system [on top of that]. I think
that’s a pretty exciting area that the community can work in. [I] think solving distributed
database problems in a huge scale will be an interesting challenge for us to work on over the next
few years. [But] there are already too many people working on XML and XML databases.

[XML databases] is not a core area, but I guess that is the hot area [that I would single out as
particularly interesting]. And that leads into the question: can we do something that connects with
the artificial intelligence community with regard to semantics? [J]ust XML alone is not going to
do it, in terms of being able to do something intelligent with large amounts of data [that need to
be integrated].

There’s a feeling among some people in the database community that students are publishing
more delta papers than they used to, because it’s easier to get a paper published at a top
conference if it’s a delta paper, because it’s easier to plug all the holes that a reviewer might
complain about in a delta paper, and students have to have many more publications than they
used to, if they want to get a good job. Is this really happening? Are there more delta papers
now than there used to be, and if so, does it mean that there’s a problem, and if there is a
problem, what is the solution?

I’m not sure that there are that many more delta papers.

I think there’s a fundamental problem in the way SIGMOD and VLDB papers get reviewed. I
had a paper recently that was rejected from SIGMOD that [received a] best paper [award] at

VLDB. The paper was basically unchanged between the two submissions. Now, there’s
something wrong if [a] paper is rejected by one conference and [the same paper is] recognized as
a good piece of work by another conference.

I don’t know what’s gone wrong with the refereeing process. I think it’s becoming a random
event [whether] you get a paper accepted or not accepted. I think we either need to introduce a
cycle of feedback into the refereeing process for conferences, in which you would submit your
paper, the program committee would review it, would give you the comments back and give you
a chance to rebut it before the program committee met; or we need to go through a multi-round
process.

[I] think [that] right now the process of getting a paper accepted is a total crap shoot. I think it
must be very hard for junior faculty members. As a senior faculty member, I get frustrated when
my papers get accepted, and [that’s true even though whether they are accepted] doesn’t matter
[for my job prospects]! Especially since I’m the chair [of my department, so] the dean sets my
raise (and I don’t get reviewed by my colleagues), and the dean doesn’t look to see whether I had
my two VLDB papers rejected[.] But for a junior person who is untenured, it must be very very
unnerving to see what you think are good papers rejected---and for reasons that are not clear.

The fix that you mentioned sounds a lot like the journal refereeing process. Are you proposing
that SIGMOD turn into TODS, say?

Certainly
not, because
[TODS] is
nothing but
theory
papers these
days.

I’ve been going to SIGMOD since 1979 [and]
it’s always the same---let’s do something
different for a change! … I think it would help
[if] SIGMOD were twice a year

I hope not!

The journal process is open ended, but [the] program committee process is not open ended. Right
now the time line is absolutely ridiculous. We submit papers the first of November and we
publish in June. That, by my count, is eight months. We all know that the papers are already
typeset. The process of going from camera ready [copy] to production is a non-event. There is a
long window, from basically November 1st until March or April, over which we could carry out
the refereeing process. It wouldn’t be like a journal, because it’s just one round [of review and
discussion]. You submit your papers; you get your comments from [the] reviewers on the
program committee; you have a chance to write a rebuttal to the referees; and you don’t change
your paper [during this process]. And then the committee acts.

[I’m suggesting this alternative because] I think sometimes committee members either review
papers [in areas] that they don’t know very well, or they misinterpret what someone writes. I
think we need to try something a little bit different, because I think there’s too much uncertainty
in the process in terms of what papers should and should not get accepted.

I also think that we should accept more papers than we present. Some people give good talks;
some people give bad talks. I think it wouldn’t hurt us to[, for example, out of] 250 papers
submitted to SIGMOD, maybe [accept] 75 or 100 for a proceedings ([rather than] 50), and then

pick 25 to 30 to [be presented in talks]. I think [that] you don’t necessarily have to present every
single paper that is [accepted]. Some papers would make better presentations than others.

I think that the worst thing
a junior faculty member
can do is spread himself or
herself too thin across
multiple areas. … I think a
junior faculty member
should not have more than
three or four students at
the very most

When you pick those 25 to 30 [papers], how
would you know that you were picking the
papers that had the good presenters?

I don’t really know. I just think, let’s do
something different! It’s like introductory
computer science classes: we’ve been doing
the same thing [for so long---] I’ve been going
to SIGMOD since 1979 [and] it’s always the
same---let’s do something different for a
change!

Would it help if SIGMOD were twice as big,
had twice as many acceptances; [would it]
make [the acceptance process] less random?

I think it would help [if] SIGMOD were twice a year, or if VLDB were some place more
reasonable than Hong Kong or wherever it’s going to be next year, which is very far away.

Well, that [choice of locale] is very reasonable for everyone who lives in Hong Kong, of course.

[Yes, it’s] very reasonable for everybody who lives in Hong Kong, but most of the people come
from the United States and Europe. Organizing two SIGMOD conferences a year [would be]
difficult [under the current system,] because [currently] we have [each SIGMOD conference]
someplace different. Big organizations have trade shows, and they hire people to run their trade
shows[, which are often in the same place each year]. Doing the program committee part of
SIGMOD or VLDB is not that difficult. [The hard part is to do] all the local arrangements. I
think that we have enough people in the field that we could stand to have an additional
conference in the United States every year.

Sounds interesting.

Do you have any words of advice for fledgling or midcareer database researchers or
practitioners?

I think [that my words of advice are] no different than I’d give to any junior faculty member.
(Being a department chair, you have to worry about these things.) I think it’s important to pick
one or two areas and do a really good job in whatever areas you pick. I think that the worst thing
a junior faculty member can do is spread himself or herself too thin across multiple areas. If you
want to do data mining, well, become one of the best people in data mining. Don’t try to do data
mining, cubes, XML, [and] main memory databases. Pick one or two areas, and focus your
efforts on those areas.

My other piece of advice is, don’t take on too many students too early. I think a junior faculty
member should not have more than three or four students at the very most, because students are a
great resource and if you have too many of them, you simply can’t work with them in an effective
fashion.

How many [students]
do you usually have?

Too many! I currently
have seven or eight,
and I’m trying to get
back to three or four.

Seven or eight PhD students?

I think CISE puts far too much money into
supercomputers and terascale and grid
computing and all the things that [the
interviewer's school] gets.

Mostly PhD students and a couple of undergraduate students. I’m
starting to get more and more into hiring undergraduates.

They can be useful sometimes.

They can be very useful.

If you could do one thing at work that you’re not doing now, what would
it be?

[I] don’t have a good answer for that question… go to the pool and swim
more?

If you could change one thing about yourself as a computer science research

I wish I had a stronger mathematical background. I think there are a lot of th
understand that I wish I could understand. I was a chemistry major as an und
didn’t take a lot of math [courses]. I think there’s a whole set of research tha
simply can’t participate in. That’s one thing I guess I wish I could change.

Are you saying that if you had this background, you’d be doing more databa

Possibly. I never was able to [do that kind of work]. I never was smart enou
theory work. I have one PODS paper, which sometimes people kid me abou
student’s [paper], it wasn’t mine. […]

Thank you very
much for being
with us today. [TODS] is nothing but theory pa

these days.
Thank you for
hosting me.

[We] failed to do distributed relational databa
systems, and [XML] is neat because if it reall
… you can think about building a big gigantic
distributed database system [on top].
I never
was
smart
enough
to do
database
theory
work.
er, what would it be?

ings I don’t
ergraduate, so I
t goes on that I

se theory work?

gh to do database
t. But it was the

pers

se
y happens

,

	I hope not!
	How many [students] do you usually have?
	Seven or eight PhD students?
	If you could do one thing at work that you’re not

