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Protecting Location Privacy against
Location-Dependent Attacks in Mobile Services

Xiao Pan, Jianliang Xu, and Xiaofeng Meng

Abstract—Privacy protection has recently received considerable attention in location-based services. A large number of location
cloaking algorithms have been proposed for protecting the location privacy of mobile users. In this paper, we consider the scenario
where different location-based query requests are continuously issued by mobile users while they are moving. We show that most of
the existing k-anonymity location cloaking algorithms are concerned with snapshot user locations only and cannot effectively prevent
location-dependent attacks when users’ locations are continuously updated. Therefore, adopting both the location k-anonymity and
cloaking granularity as privacy metrics, we propose a new incremental clique-based cloaking algorithm, called ICliqueCloak, to defend
against location-dependent attacks. The main idea is to incrementally maintain maximal cliques needed for location cloaking in an
undirected graph that takes into consideration the effect of continuous location updates. Thus, a qualified clique can be quickly identified
and used to generate the cloaked region when a new request arrives. The efficiency and effectiveness of the proposed ICliqueCloak
algorithm are validated by a series of carefully designed experiments. The experimental results also show that the price paid for
defending against location-dependent attacks is small.

Index Terms—Location privacy, mobile data management, location-based services.
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1 INTRODUCTION

W ITH advances in wireless communication and mo-
bile positioning technologies, location-based ser-

vices (LBSs) have been gaining increasingly popularity
in recent years. This is evident from a recent report
from ABI Research, which forecasts that LBS revenue is
expected to reach an annual global total of $13.3 billion
by 2013 [2]. But on the other hand, the privacy threat of
revealing a mobile user’s personal information through
his/her location has become a key issue to be concerned.
For example, the EU Commission has regulated the use
of location data in its Directive on Privacy and Electronic
Communications.1

A lot of research has been conducted concerning how
to enjoy location-based services while protecting the
location privacy of mobile users [12], [13], [19], [25], [29],
[31]. For example, using her PDA phone, Alice wants to
find out “the nearest hospital with specialty in ophthal-
mology” while hiding her exact location (e.g., being in
a clinic or at home) and the sensitive information that it
is her (Alice) who made this query. A straightforward
method is to replace her identity with a pseudonym
before sending the query to the service provider. But
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1. It demands that location data may only be processed when it is
made anonymous or with the consent of the user for the duration
necessary for the provision of a service [9].

this is not enough. Location information included in the
query can be used as a quasi-identifier to re-identify the
user [20], [26], [33], [34]. Suppose the query was issued
from Alice’s home; it can then be linked to Alice with
some background knowledge (e.g., telephone directory).
We consider the location privacy is under threat when
an adversary can obtain unauthorized access to raw
location data and sensitive information due to location
disclosing [28].

To address the location privacy issue, location k-
anonymity [19] and cloaking granularity [31] are two com-
monly used privacy metrics:

• Location k-Anonymity. A mobile user is considered
location k-anonymous if and only if the location
information sent to the service provider is made
indistinguishable from that of at least k-1 other
users. To achieve location k-anonymity, exact user
locations are extended to cloaked regions such that
each region covers at least k users.

• Cloaking Granularity. It requires the area of
cloaked region to be larger than a user-specified
threshold.2

While the location k-anonymity protects the user iden-
tity (out of k users), it may not be able to prevent
the location disclosure (e.g., a cloaked region covering
k users in populated areas could be very small). On
the other hand, the cloaking granularity prevents the
location disclosure but cannot defend against attacks
for user identifies in the cases where user locations are
publicly known and there is only one user in the cloaked
region [19].

2. The location privacy can be better protected with a larger cloaking
region, which however may degrade the quality of service.
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Fig. 1. Example of location-dependent attacks (k=3)

Most of the existing privacy-aware algorithms (e.g.,
[13], [19], [22], [31]), which comply with location k-
anonymity model, are concerned with snapshot user
locations only. They have not considered the effect of
continuous location updates. This may result in serious
privacy breaches when different one-shot queries are
frequently issued by a mobile user.3 If an attacker (e.g.,
the service provider) can collect the historical cloaked
regions of a user as well as the mobility pattern (e.g.,
speed limit), the location privacy of the user might be
compromised. Continuing with the above example, Alice
gets the address of the hospital; and at some time on the
way to the hospital, Alice wants to gas up her car. Thus,
she issues another query “list all the gas stations in 5km
around me.” As shown in Fig. 1(a), users A (Alice), B,
and C are cloaked into region RA,ti

at time ti, when she
issues the hospital query; users A, E, and F are cloaked
into region RA,ti+1

at time ti+1, when she asks for the
gas stations. If an attacker knows the last cloaked region
RA,ti

and the maximum speed vA (e.g., speed limit of
the road), it can be inferred that the possible location of
A at ti+1 should be limited to the maximum movement
boundary (MMB) MMBA,ti,ti+1

, a round rectangle that
extends RA,ti

by a radius of vA · (ti+1 − ti). As a
consequence, the attacker can deduce that A must be
located in the overlapped area of MMBA,ti,ti+1

and
RA,ti+1

(i.e., the shaded area) at ti+1. In the worst case, if
the overlapped area is just a location point, the exact user
location will be disclosed. Similarly, the user’s previous
location at an earlier time could also be under attack. As
shown in Fig. 1(b), the location of A would be limited to
the intersection area of the maximum arrival boundary
(MAB) MABA,ti+1,ti

and RA,ti
, where MABA,ti+1,ti

is
a round rectangle that extends RA,ti+1

by a radius of
vA ·(ti+1− ti). We call the above types of attacks location-
dependent attacks.

Location-dependent attacks have been studied in some
previous work [7], [14], [37]. However, the prior so-
lutions in [7], [14], [37] only considered the cloaking
granularity as the privacy metric, which, as discussed
earlier, may fail to protect the user identity in case
there is only one user in the cloaked region. Thus, in

3. It is noted that the contents of the queries issued at different time
instances might be different. However, we assume that the pseudonym
id of the user remains the same for these different queries. We will
elaborate this issue in Section 3.2.

Fig. 2. ICliqueCloak algorithm (k=3)

this paper, we adopt both the cloaking granularity and
location k-anonymity as privacy metrics. We propose a
new location cloaking algorithm, called ICliqueCloak, to
incorporate the effect of continuous location updates in
the process of location cloaking. As illustrated in Fig. 2,
at time ti+1, the cloaking algorithm is aware of RA,ti

and
MMBA,ti,ti+1

, and attempts to find the cloaked region
for A within MMBA,ti,ti+1

. Supposing that G and H are
found in MMBA,ti,ti+1

at ti+1, A, G, and H can form
a cloaking set and generate a cloaked region RA,ti+1

.
Thus, even if the attacker knows each user’s speed limit,
he/she still cannot tell the exact location of A in RA,ti

and RA,ti+1
.

We use a graph model to formulate this problem.
Each location-based query request is represented by a
node in the graph; an edge exists between two nodes
only if they are within the MMB of each other and can
be potentially cloaked together. To meet the location k-
anonymity requirement, the problem becomes to find k-
node cliques in the graph such that all the nodes within
a clique form a cloaking set. To reduce the computa-
tional complexity, we propose to maintain the maximal
cliques incrementally. That is, all maximal cliques are
identified at the beginning of the process; they are then
incrementally maintained based on three classes: positive
candidates, negative candidates and non-candidates. Thus, a
qualified clique can be quickly identified and used to
generate the cloaked region when a new request arrives.

We conduct a series of experiments to evaluate the
performance of the proposed ICliqueCloak algorithm
using both location data generated from a well-known
road network simulator [36] and adapted from a real
dataset [1]. Experimental results show that ICliqueCloak
is efficient in terms of various performance metrics in-
cluding the cloaking time, the request processing time,
and the cloaking success rate, while its anonymization
cost is only slightly increased in comparison with the
existing algorithm.

The remainder of this paper is organized as follows.
We review the related work on privacy protection in
LBS in Section 2. The problem under study is formally
defined in Section 3. A new efficient cloaking algorithm
called ICliqueCloak is proposed in Section 4. Section
5 presents the performance evaluation results of our
proposed algorithm. Finally, the paper is concluded in
Section 6.
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2 RELATED WORK
In this section, we review the existing work in terms of
attack models. We survey the techniques for preventing
snapshot location attacks, location-dependent attacks,
query tracking attacks, and trajectory attacks in Sections
2.1–2.4, respectively.

2.1 Preventing Snapshot Location Attacks

When exact snapshot locations are disclosed, two kinds
of attacks may happen: location linking attacks [19] and
query sampling attacks [8]. Location linking attacks refer to
the scenario where the location information included in
a user query is used as a quasi-identifier to re-identify the
user. For example, if a location exclusively belongs to
some owner, the corresponding query can thus be linked
to the location owner. The location k-anonymity model
was proposed to prevent this kind of attacks [19]. The
basic idea is to extend an exact user location to a cloaked
region that covers at least k users. In [19], a Quad-tree-
based cloaking algorithm is used to generate cloaked
regions. In [31], each user can specify the minimum
tolerable area of a cloaked region as well as the smallest
privacy level k, and a variant Quad-tree is used to
compute cloaked regions. More recently, [11] proposed
a cloaking algorithm called hilbASR, which makes use
of Hilbert curve to approximate the spatial proximity
between query requests.

However, even if the locations are cloaked, an adver-
sary may still be able to link a query to its user in
case user locations are publicly known. For example,
suppose there are three users A, B, and C, and they issue
three queries QA, QB , and QC , respectively. Assume
k=2. Following the location k-anonymity model, user A
might be cloaked into a region R1 that covers A and
B, and users B and C might be cloaked into another
region R2 that covers both of them. Then, an adversary
can infer that QA must be issued by A since only QA

is with R1 and only A must be covered by R1 (B can
be covered by R1 or R2). This kind of attacks is called
query sampling attacks [8]. To deal with such attacks, [8]
suggested employing k-sharing regions, i.e., a cloaked
region should not only cover at least k users, but the
region is also shared by at least k of these users.

In [13], a clique-based cloaking algorithm, called
CliqueCloak, was proposed to find k-sharing cloaked
regions. It models user-specified privacy requirements
using an undirected graph and identifies the cloaking
sets through finding cliques in the graph. Our work also
employs a graph model to facilitate location cloaking,
but differs from [13] in several aspects. First, the un-
derlying problems are different. The clique-based cloak-
ing algorithm in [13] is concerned with QoS support
in privacy protection for snapshot locations and hence
could suffer from location-dependent attacks, whereas
the aim of our cloaking algorithm is to protect location
privacy against location-dependent attacks. Second, the
methods for finding cliques in a graph are different. In

[13], every time a new request arrives, the algorithm
needs to recursively search the neighbors of the node
representing the request. In contrast, in our approach we
incrementally maintain the maximal cliques in the graph;
thus a cloaking set is found in some maximal clique
instead of recursively searching the neighbors. Third,
the requests with privacy levels higher than that of the
newly arrived request cannot be cloaked in [13]. This
limitation, however, does not exist in our approach: those
requests still have a chance to be cloaked successfully as
long as their k is less than the clique size.

2.2 Preventing Location-Dependent Attacks

Location-dependent attacks (illustrated in Fig. 1) are the
focus of this paper. This problem was first pointed out
in [7] and [10]. To prevent location-dependent attacks,
[7] proposed two simple solutions, namely patching and
delaying. The first solution, called patching, enlarges the
current cloaked region to cover the last one so that
the overlapped area with the MMB is at least as large
as the last cloaked region. The drawback is that the
size of the cloaked region would increase significantly
as time evolves. The second solution, called delaying,
suspends the request by ∆t time until the MMB grows
large enough to fully contain the current cloaked region.
However, the user may have already changed her lo-
cation and is no longer in the cloaked region at time
ti+1 + ∆t. [14] also proposed to postpone requests, and
they considered the scenario where the attacker has prior
knowledge about the placement of sensitive regions on
a map. [10], [37] developed a mobility-aware cloaking
technique by considering mobility patterns in location
cloaking. However, different from our work, the privacy
metric employed in these previous studies is only the
granularity of cloaked regions (without considering the
location k-anonymity).

Another related work is [38], which employed entropy
of information theory to measure the location anonymity
level by considering the probabilities of users being in a
cloaked region. As entropy does not care whether user
locations are actually different, the exact user location
would be disclosed if all k users are at the same location.
To overcome the limitations of the previous work, in
this paper we employ both the cloaking granularity and
location k-anonymity as privacy metrics.

2.3 Preventing Query Tracking Attacks

The location privacy of continuous queries has been
considered in [8]. For a continuous query, the query
results would be continuously returned for a designated
time period (called query lifetime). For example, consider
a sample query ”finding the nearest gas station in the
next five minutes.” The query lifetime is five minutes.
Query tracking attacks become possible if a user is cloaked
with different users at different time instances during
the query lifetime [8]. Consider a continuous query CQA

issued by a user A. Suppose A is cloaked with B into a
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region Rt1 at time t1, and cloaked with C into a region
Rt2 at time t2. Then, by linking the snapshots at time t1
and t2, an adversary may infer that CQA must be issued
by A if CQA is the only common query between these
two snapshots and A is the only user residing in both
Rt1 and Rt2 . In order to defend against query tracking
attacks, an idea is to exploit the memorization property —
the same set of users should always be cloaked together
during the query lifetime [8]. Clearly, query tracking
tracks are different from the location-dependent attacks
considered in this paper. Even if the users are prevented
from query tracking attacks by applying the memorization
property to each continuous query, they may still suffer
from location-dependent attacks. Suppose two different
continuous queries are issued by a mobile user at some
time interval. If the user is cloaked with different sets
of users for these two continuous queries, the location-
dependent attack shown in Fig. 1 may still happen. On
the other hand, if the user is always cloaked with the
same set of users, the cloaked region would eventually
expand to the whole service region when the users move
apart and issue more and more queries over time.

2.4 Preventing Trajectory Attacks

When a trajectory is published, the owner might be
inferred by attackers, even though the identifier has been
removed. This type of attacks is called trajectory attacks.
The problem of trajectory anonymization is to publish
trajectories in such a way that the anonymity of each tra-
jectory is preserved, while the utility of published data is
maximized. The existing work can be classified into two
categories: trajectory anonymization in free space [3], [5],
[15], [17], [21], [35], [39], [40] and in constrained space
[18], [27]. Our work also applies to free space, but differs
from the trajectory anonymization problem. In addition,
trajectory anonymization is typically an off-line process.
In contrast, location cloaking considered in this paper is
an online process that is invoked during processing of
location-based queries. Moreover, trajectory anonymiza-
tion requires a series of locations on a trajectory to be
cloaked all at once. But in our location cloaking problem,
user locations are cloaked on the fly along with new
requests. Therefore, existing methods for anonymizing
trajectories are not applicable to our problem.

3 PRELIMINARIES
In this section, we formally define the problem under
study. Section 3.1 describes the system architecture. The
privacy model and the cloaking set are defined in Sec-
tions 3.2 and 3.3, respectively.

3.1 System Architecture

Like most existing work [4], [16], [24], [31], we consider
a system consisting of many mobile users, a trusted
anonymizing proxy, and an un-trusted service provider
(see Fig. 3). A mobile user sends location-based query

Fig. 3. System architecture

requests (e.g., “finding the nearest gas station”), in the
form of (id, l, P , q), to the anonymizing proxy through an
authenticated and encrypted connection, where id is the
real user identity, l is the user location, P contains the
privacy parameters (to be detailed in Section 3.2), and q
represents the query content.4

The anonymizing proxy consists of a cloaking engine,
a cloaked repository, and a results refiner. Upon receiv-
ing a location-based query request, we check whether
the user had made any queries before. If this is a first-
time user, the cloaking engine replaces the user’s id
with a new pseudonym id’; otherwise it replaces id
with the user’s existing pseudonym id’. Next, the query
request is forwarded to the cloaking process to generate
a cloaked region R in accordance with the user’s privacy
requirements. When the cloaking succeeds, the cloaked
request is saved in the cloaked repository in the form
of (id, id′, P , Rti

, ti), where Rti
is the user’s cloaked

region at time ti. Afterwards, the anonymizing proxy
forwards the modified query request (id’, R, q) to the
service provider.

On the service provider side, upon receiving a
location-based query request (id’, R, q), it will search and
return all candidate results that are potentially query
results of some location point within R. After that,
these candidate results will be further refined by the
anonymizing proxy using the user’s exact location l.
Finally, the refined results will be securely returned to
the mobile user. In this paper, we focus on the location
cloaking algorithm, which is concerned with how to ex-
tend a location l to a cloaked region R without violating
user-specified privacy requirements.

3.2 Privacy Model and Attacks

We now define the privacy model.

Definition 1. ((k, A, dt)-Location Privacy Model). In order
to accommodate personalized privacy requirements, each user
can specify three parameters for protecting the location privacy
[13], [19], [31]:

4. We assume in this paper that a new request is not issued until
the last one is serviced. In other words, at each time instance, a user
can be associated with only one query request. Therefore, we do not
distinguish ”request”, ”query”, and ”user” whenever they are clear in
the context.
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• k: It represents the anonymity level in the location k-
anonymity model. More specifically, each cloaked region
should cover at least k different users. The larger is the
value of k, the more privacy is offered.

• Amin: It specifies the minimum area that a cloaked region
should have. This is to prevent the cloaked region from
being too small for highly populated areas.

• dt: It is the maximum tolerable cloaking delay, which is
a QoS parameter. The larger is the dt value, the worse
is the service quality, since the user will have a higher
chance of moving away from the location where the query
was issued.

It is noted that the maximum area of a cloaked region
could also be used as a QoS parameter. Nevertheless, to
simplify our privacy model, we do not require limiting
the maximum area of a cloaked region, but instead
use the area of the cloaked region as a measure of
the anonymization cost (see Definition 6). As will be
shown in Section 5.7, the computed cloaked regions are
of acceptable size (1-4 km2 in most cases).

Before giving the formal definition of location-
dependent attacks, we elaborate some assumptions for
the attacker.

Definition 2. (Knowledge of the Attacker). Any party
owning the following knowledge can be a potential attacker:

• a set of historical cloaked regions;
• the maximum moving speed of the user.

In the previous example shown in Fig. 1(a), the service
provider could be a potential attacker since it knows
cloaked regions RA,ti

and RA,ti+1
, as well as the max-

imum movement speed of the user, which might be
inferred from the speed limit of the road and/or the user
type. For example, if the user is driving, the speed may
not exceed 150 km/h; and if the user is walking, the speed
cannot be higher than 5 km/h.

Definition 3. (Location-dependent Attacks). Assume that

• Ru,ti
and Ru,tj

are user u’s cloaked regions at times ti
and tj , respectively;

• the maximum speed of user u is vu.

The maximum movement boundary (MMBu,ti,tj
) of u at tj

is a round rectangle that extends Ru,ti
by a radius of vu ·(tj −

ti). Denote by MMu,ti,tj
the intersection area between Ru,tj

and MMBu,ti,tj
:

MMu,ti,tj
= MMBu,ti,tj

⋂
Ru,tj

.

Similarly, the maximum arrival boundary (MABu,tj ,ti
) of

u at tj is a round rectangle that extends Ru,tj
by a radius

of vu · (tj − ti). Denote by MAu,tj ,ti
the intersection area

between Ru,ti
and MABu,tj ,ti

:

MAu,tj ,ti
= MABu,tj ,ti

⋂
Ru,ti

.

If any inequality below holds:

• MMu,ti,tj
6= Ru,tj

for any ti and tj ,
• MAu,tj ,ti

6= Ru,ti
for any ti and tj ,

i

j

1

2

3

4

Fig. 4. MaxMin Distance

the location privacy of u might be compromised. This attack
is termed as location-dependent attack.

In the previous example of Fig. 1(a), MMA,ti,ti+1
of

user A is the shaded area. Since MMA,ti,ti+1
6= RA,ti+1

,
A could suffer from location-dependent attacks. For
another example in Fig. 1(b), since the shaded area
MAA,ti+1,ti

6= RA,ti
, the location of A at time ti may

also be disclosed.
We remark that, in order to protect the user from

location-dependent attacks, the anonymizing proxy may
assign different pseudonym ids for different queries of
the same user such that the attacker cannot correlate
consecutive cloaked regions. However, this is not favor-
able in practice since it would disable the provisioning
of personalized services and complicate the billing of
service charges [5], [30]. On the other hand, even without
knowing the identities, the attacker is still able to identify
the requests from the same user by employing muti-
target tracking (MTT) [32] or clustering based on query
interest and spatial locality. Therefore, in this paper, we
simply assume that a user is always assigned the same
pseudonym id for all the queries the user issued.

3.3 Cloaking Set

Definition 4. (MaxMin Distance). Let Ri and Rj be two
cloaked regions. The MaxMin distance from Ri to Rj is
defined as:

MaxMinD(Ri, Rj) = max
p∈Ri

min
q∈Rj

distance(p, q).

MaxMinD(Ri, Rj) implies the maximum distance be-
tween a point p ∈ Ri and its closest point q ∈ Rj . For re-
gions Ri and Rj in Fig. 4, MaxMinD(Ri, Rj)=|P1P2|=2

√
5

and MaxMinD(Rj, Ri)=|P4P3|=2
√

2.
From Definition 3, if Rj (Ri) is free of

location-dependent attacks, it should be fully
covered by MMBu,ti,tj

(MABu,tj,ti
), which

indicates MaxMinD(Ri, Rj) ≤ vu · (tj − ti)
(MaxMinD(Rj, Ri) ≤ vu · (tj − ti)). Therefore, we
define cloaking set as follows:

Definition 5. (Cloaking Set) Let CS be a user set and
its minimum bounding rectangle (MBR) be Ru,ti

at time ti.
Denote the previous cloaked region of each user u by Ru,ti−1

.
CS is a cloaking set if and only if for any user u ∈ CS,

1) MaxMinD(Ru,ti
, Ru,ti−1

) ≤ vu · (ti − ti−1);
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2) MaxMinD(Ru,ti−1
, Ru,ti

) ≤ vu · (ti − ti−1);
3) the privacy level ku ≤ |CS|;
4) the minimum area Aminu

≤ Area(MBR(CS)).

The first two conditions ensure that the cloaked re-
gion at any time is free of location-dependent attacks;
the third condition is to protect the user identity by
following the k-anonymity requirement; and the fourth
condition ensures that the area of the cloaked region
is not too small in a populated area. Taking the user
set {A, G, H} in Fig. 2 as an example. RA,ti+1

(RA,ti
) is

totally covered by MMBA,ti,ti+1
(MABA,ti+1,ti

); thus the
first two conditions in the above definition are satisfied.
Suppose kA=kG=kH=3 and AminA

= AminG
= AminH

=
0. Thus, the last two inequations are also established.
Therefore, {A, G, H} can be a cloaking set and its MBR
RA,ti+1

is the cloaked region.
Similarly to the existing work [6], [8], [23], we employ

the average area of the cloaked region for each query as
a measure for anonymnization cost.

Definition 6. (Anonymization Cost) Consider a series of
cloaking sets CU . For any cloaking set U ∈ CU , its total
anonymization cost is the product of the MBR area of U and
the number of users in U :

Total Cost(U) = Area(MBR(U)) × |U |.

Thus, the average anonymization cost of CU is:

Average Cost(CU) =

∑
U∈CU

Total Cost(U)

∑
U∈CU

|U | .

In this paper, we consider cloaking of the current
user location with respect to the last cloaked region
concerning location-dependent attacks. Earlier cloaked
regions are not considered, as prior work [14], [37] has
proved that the location-disclosure safety property is
transitive.

4 ICLIQUECLOAK ALGORITHM
In this section, we first give the overview of ICliqueCloak
algorithm in Section 4.1, and then elaborate each step of
the algorithm in Sections 4.2–4.5.

4.1 Overview of ICliqueCloak

Intuitively, we want to use the MaxMin distance to find
the safe cloaked region Ru,ti

for a newly arrived request
u at time ti. But on the other hand, we require Ru,ti

as
the input in computing the MaxMin distance. Therefore,
the basic idea of our algorithm is to find a candidate
cloaking set first, and then extend some sides of the
cloaked region until every user in the cloaking set is free
of location-dependent attacks.

The proposed ICliqueCloak algorithm involves four
main steps. First, upon the arrival of a new request
u, the existing requests that are in u’s MMB and vice
versa are detected and modelled in an undirected graph.

Fig. 5. Illustration of graph model

Then, a cloaking set that satisfies location k-anonymity,
if any, is found from the undirected graph, and the MBR
of the cloaking set is considered a candidate cloaked
region. Next, the candidate cloaked region is checked
whether it needs to be adjusted in order to prevent from
location-dependent attacks. Finally, the graph will be
updated accordingly if the cloaking is successful or some
request(s) are found expired.

Now, let’s formally define the graph model.

Definition 7. (Graph Modeling). Let G(V, E) be an undi-
rected graph where V is a set of nodes representing the users
who submitted location-based query requests, and E is a set of
edges. Assume that the last cloaked region of user u is Ru,ti−1

at ti−1, and that the current time is ti. There exists an edge
euw between two nodes u and w, if and only if

• u 6= w,
• u is covered by MMBw,ti−1,ti

,
• w is covered by MMBu,ti−1,ti

.

These three conditions collectively ensure that the
first condition of Definition 5 is satisfied as they have
different ids and are within each other’s MMB.

To find cloaking sets satisfying location k-anonymity
in a graph G(V, E), which is the third condition in
Definition 5, it has been shown in [13] that this problem
is equivalent to the problem of finding k-node cliques
(i.e., k-node complete subgraphs) in the graph. Once a
k-node clique is found, all the users within the clique
may form a candidate cloaking set CSti

and the MBR
of their locations can be used as the candidate cloaked
region CRti

. Then, for each user u ∈ CSti
, compute

its MaxMinD(Ru,ti−1
, CRti

). If the second condition of
Definition 5 is violated, CRti

is enlarged until its new
MAB covers Ru,ti−1

. The overview of ICliqueCloak is
given in Algorithm 1.

We use a simple example to illustrate the algorithm.
Fig. 5(a) shows four requests u1, u2, u3, u4 from dif-
ferent users with their MMBui,ti−1,ti

at time ti. Each
MMBui,ti−1,ti

is extended from the previous cloaked
region Rui,ti−1

. We can see that u1 is covered by
MMBu2,ti−1,ti

and MMBu3,ti−1,ti
, and that u2 and u3

are both covered by MMBu1,ti−1,ti
. Thus, an edge exists

between u1 and u2, as well as between u1 and u3.
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Algorithm 1 Overview of ICliqueCloak

Input: a set of requests awaiting for anonymization, a
new query request u
Output: a set of cloaked requests

1: Step 1: incrementally update the max-clique set for
the new request u (Section 4.2)

2: Step 2: find the cloaking set CSti
satisfying location

k-anonymity from the max-clique set (Section 4.3)
3: Step 3: generate the cloaked region for CSti

(Sec-
tion 4.4)

4: Step 4: update the max-clique set upon request
cloaking or expiration (Section 4.5)

Fig. 6. Illustration of extending cloaked region

Similarly, an edge exists between u1 and u4, as well as
between u2 and u3, as shown in Fig. 5(b). Now suppose
that a new request u5 arrives; new edges between u1 and
u5, u2 and u5, and u3 and u5 are added to the graph
(dashed lines in Fig. 5(b)). As a result, a clique {u1, u2,
u3, u5} can be found. Assume that ku1

= ku2
= ku3

=
ku4

= 4 and ku5
= 3. The size of the clique is 4, which

is no smaller than any k value. Meanwhile, assuming
Area(MBR({u1, u2, u3, u5})) ≥ max

u∈{u1,u2,u3,u5}
Aminu

, the

MBR of {u1, u2, u3, u5} can be a candidate cloaked region
CRti

for this set of users.

Next, for each user in {u1, u2, u3, u5}, the algorithm
checks whether the user’s previously cloaked region at
time ti−1 is covered by MAB of CRti

. For simplicity,
we take user u5 as an example. As shown in Fig. 6, the
rectangle with solid lines is the cloaked region Ru5,ti−1

of u5 at time ti−1, and the rectangle with dotted-dashed
lines (i.e., P1P2P3P4) is its cloaked region Ru5,ti

at ti.
The round rectangle with dotted-dashed lines is the
MABu5,ti,ti−1

of u5 from ti to ti−1. From the figure, we
can see that MABu5,ti,ti−1

cannot fully cover Ru5,ti−1
. As

such, u5 would suffer from location-dependent attacks.
Therefore, the cloaked region P1P2P3P4 is extended,
where the edge of P1P4 moves to P ′

1P
′
4. As a result,

Ru5,ti−1
can be fully covered by the new MAB (the

round rectangle with solid lines). Further assuming that
the new cloaked region P ′

1P2P3P
′
4 is still in each user’s

MMB, it will then be returned as the cloaked region for
{u1, u2, u3, u5}. Finally, u1, u2, u3, and u5 are removed
from the graph.

Fig. 7. Example of adding a new edge

4.2 Incremental Maximal Cliques

In this and subsequent subsections, we detail each step
of Algorithm 1. To find a candidate cloaking set in the
graph upon the arrival of a new request, the cloaking
algorithm proposed in [13] exhaustively searches the
graph for cliques covering the new request. In the follow-
ing, we present a new more efficient cloaking algorithm
based on incremental maintenance of maximal cliques.

For a graph without any edges, each node is a 1-node
clique. Denote this set of maximal cliques by MCSet.
MCSet will then be dynamically maintained with more
edges added. To facilitate our presentation, we first give
a few preliminaries.

Definition 8. (t-Parameterized Graph). Consider an undi-
rected graph G = (V, E), where V is the set of nodes and E
is the set of edges. Define G0 = (V, ∅). Traversing each edge
euw ∈ E, G can be parameterized as

Gt = (V, Et),

where t = 1, 2, . . . , |E|, Et is the set of edges visited so far,
Et − Et−1 = euw.

For a t-parameterized graph Gt, let Ct be the set of
maximal cliques and Cu t be the set of maximal cliques
which contain node u. Before a new edge euw is added,
the cliques in Ct can be partitioned into three classes:

• the cliques containing node u (Cu t);
• the cliques containing node w (Cw t);
• the cliques containing neither u nor w.

It is easy to see that adding edge euw to the graph can
alter only the maximal cliques in Cu t or Cw t.

Theorem 1. The maximal cliques which contain neither u
nor w are still maximal after edge euw is added.

Taking Fig. 7 as a running example,
there are six nodes in the graph Gt, V =
{A, B, C, D, E, F}. The set of maximal cliques Ct is
{{A, B, C}, {A, E, F}, {A, C, D}, {A, D, E}, {A, B, F}}
before edge CE is added (see Fig. 7(a)). The maximal
clique {A, B, F} is not contained in CC t or CE t. After
edge CE is added, from Fig. 7(b) we can see that the
clique {A, B, F} is still maximal for Gt+1.

Following Theorem 1, for incremental updating of
maximal cliques when a new edge euw is added, we
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only need to consider the cliques in Cu t and Cw t. In
particular, some of the cliques involving both u and w
may form a new (maximal) clique owing to the new
edge euw. To find those cliques, let us first examine two
properties of maximal cliques.

Property 1: Any subset of a maximal clique is also a clique.

Property 2: The intersection of two maximal cliques is also
a clique. For example, {A, C, D} ∩ {A, D, E} = {A, D} is
also a clique.

Now we define the intersection of two max-clique sets.

Definition 9. (Intersection of Max-Clique Sets). Given two
max-clique sets Cu t and Cw t,

Cu t⋓Cw t = {ci∩cj |ci∩cj 6⊂ c′i∩c′j , ci, c
′
i ∈ Cu t, cj , c

′
j ∈ Cw t}.

For our running example in Fig. 7, CC t ⋓ CE t =
{{A, B, C}, {A, C, D}}⋓{{A, E, F}, {A, D, E}}. We have
{A, B, C} ∩ {A, E, F} = {A}, {A, B, C} ∩ {A, D, E} =
{A}, {A, C, D}∩{A, E, F} = {A}, {A, C, D}∩{A, D, E} =
{A, D}. Since {A} ⊂ {A, D}, we get CC t ⋓ CE t =
{{A, D}}.

Theorem 2. For any clique c ∈ Cu t ⋓ Cw t, c∪ {u, w} is a
new maximal clique after edge euw is added.

Proof: Let c′ = c ∪ {u, w}. It is easy to verify that
c′ is a clique. Next, we prove c′ is a maximal clique
by contradiction. Assume on the contrary c′ is not a
maximal clique. There must exist a node n 6∈ c′, n
is connected to u and w as well as all nodes in c.
Thus, by definition, {n} ∪ c is also a clique. As a result,
c /∈ Cu t ⋓ Cw t since c ⊂ ({n} ∪ c). This contradicts with
our condition c ∈ Cu t ⋓ Cw t. Therefore, the theorem
follows.

For the example of Fig. 7, since CC t⋓CE t = {{A, D}},
we have a new maximal clique {A, D} ∪ {C, E} =
{A, D, C, E} after edge eCE is added.

Finally, we need to check whether the cliques in Cu t

and Cw t are still maximal. For any clique ci ∈ Cu t ∪
Cw t and each ck ∈ Cu t ⋓ Cw t, if ci ⊂ ck ∪ {u, w}, ci

is no longer a maximal clique in Ct+1 for Gt+1. For the
example of Fig. 7, {A, C, D} and {A, D, E} are no longer
maximal cliques as we now have a new maximal clique
{A, D, C, E}.

As a summary, given the graph shown in Fig. 7(a),
after edge eCE is added, the maximal cliques contained
in Fig. 7(b) include those maximal cliques containing
neither C and E (i.e., {A, B, F}), c ∪ {C, E} where c
∈ CC t ⋓ CE t (i.e., {A, D, C, E}), and those retaining as
maximal cliques in CC t and CE t (i.e., {A, B, C} and
{A, E, F}).

Algorithm 2 gives the formal procedure for incremen-
tally updating the max-clique set when a new query
request arrives. First of all, a new node u is added to the
graph and initialized as a 1-node clique (Line 1). In Lines
2-3, if the user of u had not issued any query before, the
last cloaked region is set to be the whole service area

so that its MMB can cover all existing nodes. Then, we
find u’s neighbors according to the conditions specified
in the graph definition (see Definition 7), and push all
edges connecting u and its neighbors to a queue named
EdgeQueue (Lines 4-5). Next, in Lines 6-18, we process
all edges in EdgeQueue one after one, and incrementally
maintains the set of maximal cliques as described in the
last few paragraphs.

Algorithm 2 Incremental updating max-clique set

Input: max-clique set MCSet, a new request u
Output: updated max-clique set
MCSet

1: add a new clique {u} to MCSet
2: if the user of u had not issued any query before then
3: set u’s last cloaked region to the whole service area
4: find u’s neighbors according to Definition 7
5: push all edges connecting u and its neighbors to

EdgeQueue
6: while EdgeQueue is not empty do
7: MCSet′ = ∅
8: pop up the first edge euw from EdgeQueue
9: find clique sets Cu t and Cw t in MCSet

10: compute C = Cu t ⋓ Cw t

11: for each c ∈ C do add c ∪ {u, w} to MCSet′

12: C = MCSet′

13: for each ci ∈ Cu t ∪ Cw t do
14: for each ck ∈ C do
15: if ci 6⊂ ck then add ci to MCSet′

16: for each ci ∈ MCSet − Cu t − Cw t do
17: add ci to MCSet′

18: MCSet = MCSet′

Note that Algorithm 2 involves a lot of set operations
on the maximal cliques. Thus, in the actual implemen-
tation, we represent each maximal clique by a bit vector
to ease the computation. For example, suppose that
there are five nodes in the graph {A, B, C, D, E}. Given
a maximal clique of {A, C, D}, it is represented by a
bit vector of <10110>. The length of the bit vector is
equal to the number of nodes in the graph. Even for a
large system with 10K users, only 1.2 Kbytes are needed
to store a bit vector, which is acceptable to today’s
computer.

As for the time complexity, in each while-loop it-
eration, the most expensive operations are computing
Cu t⋓Cw t (Line 10) and identifying non-maximal cliques
(Lines 13-15), both of which take O(|MCSet|2) time.
Since EdgeQueue has a size of |V | in the worst case,
where |V | is the number of nodes in the graph, the worst-
case time complexity of Algorithm 2 is O(|V |·|MCSet|2).
Nevertheless, as we observe in the experiments (Sec-
tion 5), |EdgeQueue| and |MCSet| are typically small
(10−200 for over 10K users); the practical complexity of
Algorithm 2 is not high.
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4.3 Finding the Cloaking Set

After incrementally updating the max-clique set, the
cliques where the new request is involved might be
candidates for the cloaking set. They can be classified
into three classes: positive candidates, negative candidates,
and non-candidates.

Definition 10. Given a candidate clique c, define |c| to be its
size, MBR(c) the area of the minimum bounding rectangle for
all requests in c, max k (min k) the maximum (minimum)
privacy level k specified by the requests in c, and Âmin the
maximum Amin specified by the requests in c. Denote the
newly arrived request by u and its privacy level by ku. We
have:

• c is a positive candidate if |c| ≥ max k and

MBR(c) ≥ Âmin;
• c is a negative candidate if max(ku, min k) < |c| <

max k and MBR(c) ≥ Âmin;
• c is a non-candidate if MBR(c) < Âmin or |c| ≤

max(ku, min k).

For a positive candidate clique, all requests contained
in it forms a candidate cloaking set to generate the
cloaked region (Section 4.4), since they satisfy both the
location k-anonymity and minimum area requirements.
If there are more than one positive candidate, the largest
clique will be chosen.

However, for a negative candidate clique, the location
k-anonymity is not satisfied for requests with a privacy
level k higher than the clique size. Therefore, we try to
transform a negative candidate to a positive one or a
non-candidate by greedily removing some request(s). To
do so, the algorithm first sorts the requests in the clique
by their descending order of privacy level k. Then, it
repeatedly removes the user with the highest privacy
level until (|c| ≥ max k and MBR(c) ≥ Âmin) or
MBR(c) < Âmin. If the former condition is satisfied, this
negative candidate has been transformed to a positive
candidate. On the other hand, if the latter condition is
satisfied, it has been transformed to a non-candidate. For
example, suppose that we have c = {A, B, C, D, E, F},
where kA = 8, kB = kC = 5, kD = 4, kE = kF = 2. The
clique size |c| = 6. Assume that E is the newly arrived
request. Since |c| < max k = 8, c is a negative candidate.
As kA has the highest value of k, A is dropped from
the clique. After that, the clique size becomes 5, which
is no smaller than the current max k = 5. Thus, the
remaining users {B, C, D, E, F} can form a cloaking set
if their MBRs also satisfy the minimum area requirement.
The detailed procedure for finding the cloaking set in a
negative candidate is described in Algorithm 3. The time
complexity of Algorithm 3 is O(|c| · log |c|).

In summary, given a new request, we examine all
maximal cliques involving the new request in descend-
ing order of clique size, until a positive candidate is
found. The procedure for classifying candidates and
finding the cloaking set is described in Algorithm 4.
For the time complexity, the sorting process in Line 2

Algorithm 3 Finding cloaking set in negative candidate
clique

Input: negative candidate clique c
Output: candidate cloaking set CSti

1: sort the requests in c in descending order of their
privacy level k

2: while |c| < max k and MBR(c) ≥ Âmin do
3: drop the request with the highest k from c

4: update |c|, max k, MBR(c), and Âmin

5: if |c| ≥ max k and MBR(c) ≥ Âmin then
6: CSti

= the set of current requests in c
7: else
8: CSti

= ∅

Algorithm 4 Finding the cloaking set

Input: max-clique set MCSet, the new request u
Output: candidate cloaking set CSti

1: canCR = {c ∈ MCSet | u ∈ c}
2: sort canCR in descending order of clique size
3: for each c in canCR do
4: find max k, min k, Âmin for c
5: if |c| ≥ max k and Âmin ≤ MBR(c) then
6: CSti

= the set of requests in c; break
7: if |c| < max(ku, min k) or MBR(c) < Âmin then
8: not a candidate; continue
9: else

10: CSti
= returned result of invoking Algorithm 3

11: if CSti
6= ∅ then break

takes O(|canCR| · log |canCR|) time. In each for-loop
iteration, the most expensive operation is finding the
cloaking set in a negative candidate clique (Line 10),
which has a complexity of O(|c| · log |c|). In the worst
case, |c| = |V |. Thus, the time complexity of Algorithm 4
is O(|canCR| · (log |canCR| + |V | · log |V |)).

4.4 Generating the Cloaked Region

Recall that a cloaking set should satisfy four conditions
(see Definition 5). However, the cloaking set obtained
from Algorithm 4 satisfies all the conditions except the
second one. In order to resolve this, we may need to
extend the boundary of the cloaking set, such that for
each request u ∈ CSti

, its previous cloaked region Ru,ti−1

is covered by the new MAB. The algorithm works as fol-
lows. After we get the cloaking set CSti

, its MBR is com-
puted as the candidate cloaked region CRti

. For each
request u ∈ CSti

, compute d = MaxMinD(Ru,ti−1
, CRti

).
If d > vu · (ti − ti−1), δd = d− vu · (ti − ti−1). Then, CRti

is extended by δd on the direction where Ru,ti−1
locates

w.r.t. CRti
. Finally, the enlarged region is returned as the

cloaked region Rti
of the cloaking set. The pseudo-code

is given in Algorithm 5.
Again take user u5 in Fig. 6 as an example. Let

the cloaked region at ti−1 be Rti−1
. First, the rectangle

P1P2P3P4 is computed as the MBR of CRti
. We find
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Algorithm 5 Generating the cloaked region

Input: cloaking set CSti

Output: cloaked region Rti

1: CRti
= the MBR of CSti

2: for each request u in CSti
do

3: δd = MaxMinD(Ru,ti−1
, CRt−i) − vu · (ti − ti−1)

4: dirs = directions where Ru,ti−1
locates w.r.t. CRti

5: for each direction dir in dirs do
6: if mddir < δd then
7: mddir = projected distance of δd on dir
8: extend CRti

to Rti
by mddir on each dir

9: for each request u in CSti
with new boundary Rti

do
10: if Rti

is not covered by u’s MMBu,ti−1,ti
then

11: return false
12: return Rti

as the cloaked region

that Rti−1
is on the left of P1P2P3P4. Compute δd =

MaxMinD(Rti−1
, P1P2P3P4) − vu5

· (ti − ti−1). Then, the
boundary edge P1P4 should be shifted to the left by
δd, so that u5 can be free of location-dependent attacks.
Note that for a request from a first-time user, its Ri−1 is
regarded as the whole service space, thus the MaxMin
distance is 0. Next, Lines 9 to 11 of Algorithm 5 are to
check whether the new boundary of the extended region
is still covered by each user’s previous MMB. If not,
this cloaking process fails. Otherwise, it succeeds and
proceeds to update the max-clique set, as will be detailed
in the next subsection.

For the time complexity, Algorithm 5 has two for-
loops (Lines 2-7 and Lines 9-11), each of which takes
O(|CSti

|) time. Since |CSti
| = |V | in the worse case, the

time complexity of Algorithm 5 is O(|V |).

4.5 Update the Max-Clique Set for Leaving Requests

The requests will leave the system after they have been
successfully cloaked or failed to be cloaked due to expiry
of their tolerable cloaking delays. To efficiently identify
expired requests, we employ a min-heap to keep track
of the set of alive requests, where the key is the expiry
time.

For both successfully cloaked requests and expired
requests, they are seen as leaving requests. When they
leave, the max-clique set should be updated accordingly.
Specifically, for each leaving request, it should be re-
moved from the maximal cliques where it is involved.
Recall that a subset of a maximal clique is still a clique,
but not guaranteed a maximal clique. Thus, we need to
check whether the updated cliques are still maximal. To
do so, we examine each of such cliques against other
cliques remaining in the system. If it is a subset of any
other clique, it is not a maximal clique and should be
removed from the max-clique set. For example, assume
MCSet = {{A, B, C}, {A, C, D}}. After the request D
expires, it should be removed from {A, C, D}. {A, C, D}
is updated to {A, C}, which is no longer a maximal

clique since it is a subset of {A, B, C}. Hence, MCSet
= {{A, B, C}} after removing D. The procedure for
updating the max-clique set due to leaving requests
is described in Algorithm 6. The time complexity of
Algorithm 6 is O(|MCSet|2).

Algorithm 6 Updating max-clique set for leaving request

Input: max-clique set MCSet, leaving request u
Output: updated max-clique set
MCSet

1: remove u from the min-heap
2: for each c in MCSet where u ∈ c do
3: for each c′ in MCSet do
4: if c ⊂ c′ then
5: remove c from MCSet; break

5 PERFORMANCE EVALUATION

In this section, the effectiveness and efficiency of our pro-
posed ICliqueCloak are experimentally evaluated under
various system settings. We first describe the experiment
setup in Section 5.1, followed by the performance eval-
uation results presented in Sections 5.2–5.7.

5.1 Experiment Setup

We compare three algorithms, namely IClique, MMB-
Clique, and OptClique. IClique is short for our proposed
ICliqueCloak. MMBClique is revised from the cloaking
algorithm proposed in [13] with a new definition of
node connectivity, where the tolerable maximum cloak-
ing region is replaced with the MMB to prevent from
location dependent attacks. MMBClique is included for
comparison because we are interested in finding out what
and how much is improved by our proposed incremental
cloaking algorithm. OptClique is a modified version
of IClique without considering the effect of location-
dependent attacks. That is, in OptClique the MMB is
set to be infinite (such that all users are connected with
each other in the underlying graph). As such, OptClique
cannot prevent from location-dependent attacks; but it is
included for comparison to show the cost required for
defending against location-dependent attacks. As none
of the existing cloaking algorithms (e.g., [7], [10], [14]),
that are immune to location-dependent attacks, employ
the location k-anonymity model, we do not include
these existing cloaking algorithms for comparison. The
evaluation metrics we used include the cloaking success
rate, the anonymization cost (Definition 6), the cloaking
time, and the processing time for successful requests.

To the best of our knowledge, due to privacy and
commercial interest reasons, no real large-scale moving-
objects datasets have been publicly released to date.
Therefore, in most of our experiments, we use the well-
known Thomas Brinkhoff Network-based Generator of
Moving Objects [36] to generate the moving objects in
the system. The input of the generator is the road map
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TABLE 1
Default System Settings

Parameter Default setting
Number of users 50,000

Speed profile Medium
Privacy level k Randomly chosen from [2, 10]

Tolerable cloaking delay 0.1s
Amin 0.005% to 0.01% of the space

Query Interval 60s

of Oldenburg County. In the default setting, a total of
50,000 moving objects are generated at the beginning of
the simulation. In the generator, three speed profiles can
be configured for the moving objects: slow, medium, and
fast.5 The default speed setting is medium. The time of
the first query request for each user is randomly chosen
from [0, 60s]. The query interval is set at 60s. Thus,
about 1/60 of all users issue queries in each second.
By default, every request sets its privacy level k with
a random number in the range of [2, 10]. The tolerable
cloaking delay is set shorter than the query interval,
which guarantees that a new request is not issued until
the last request is successfully cloaked or expired. For
each request, Amin is set to 0.005%−0.01% of the space.
Table 1 lists the default system settings.

In addition to the simulated data, we also adapt the
real trucks data [1] to validate the effectiveness of our
IClique algorithm. All cloaking algorithms are imple-
mented in C++ and run on a desktop PC with a dual
AMD 780MHz processor and 2GB main memory.

5.2 Impact of Privacy Level

In this section, we investigate the impact of privacy level
k on the performance of cloaking algorithms from two
aspects: increasing the privacy levels and enlarging the
privacy level range.

In the first set of experiments, we fix the privacy levels
at a similar range, but increase both the lower and upper
bound, which implies that the privacy requirement of
every request becomes more constrained. From Fig. 8(a),
it is interesting to observe that the success rates of
OptClique and IClique increase slightly with increasing
privacy level. They reach up to 99% when the privacy
level range is [10, 20]. The reason is that both OptClique
and IClique find cloaking sets from the maximal cliques,
and prefer to return the largest clique (see Lines 3-11
in Algorithm 4) when there are more than one positive
candidate. Thus, they are very suitable for cloaking
requests with higher privacy requirements. Comparing
OptClique and IClique, only a success rate of 2% is sac-
rificed for protecting against location-dependent attacks
in IClique in the worst case. In contrast, MMBClique
has the worst performance. Its success rate decreases

5. According to the generator [36], each setting of speed is five times
faster than the previous one on average. Denote by vmin (vmax) the
minimum (maximum) speed in each speed setting. Then, 80% object
speeds are selected from [vmin , vmax

3
].

significantly with increasing k. This is mainly because
MMBClique becomes much slower to find a cloaking set
with a larger k (see Fig. 8(c)). As a result, more requests
in MMBClique are likely to expire before they can be
successfully cloaked. This signifies the importance of the
proposed incremental clique maintenance method.

Fig. 8(b) shows the average anonymization cost for
all cloaking algorithms. As expected, the cost increases
when the privacy level increases, because more requests
need to be cloaked together to meet a higher privacy
requirement. MMBClique shows a smaller anonymiza-
tion cost than the other two algorithms for the first
two settings. The reason is that given a number of
requests with various privacy levels, MMBClique prefers
to cloak the neighboring requests with lower privacy
levels; but OptClique and IClique favor the requests
with higher privacy levels and hence incur some more
anonymization cost. However, when the privacy level
increases to [10, 20], the cost of MMBClique exceeds
that of the other two algorithms. As explained above,
in this case much more requests in MMBClique expire
and farther requests have to be cloaked together.

The cloaking time of a request is the time used to
update the max-clique set, find the cloaking set, and
generate the cloaked region, but does not include the
time awaiting to be cloaked. As shown in Fig. 8(c), the
cloaking times of all algorithms increase due to a more
constrained privacy requirement when the privacy level
increases. Obviously, OptClique and IClique require a
much shorter cloaking time than MMBClique, since both
of them can quickly find the cloaking set from the set
of incrementally maintained maximal cliques. We also
measure the processing time for successful requests,
which is the time period from when the request is
received to when the request is successfully cloaked. It
includes the cloaking time and the time awaiting for
cloaking. As shown in Fig. 8(d), in most cases the waiting
time dominates in the overall processing time, and the
average processing time increases with increasing pri-
vacy level. In particular, MMBClique cannot scale up to
a large privacy level and its processing time worsens
dramatically.

Next, we evaluate the impact of enlarging the privacy
level range, which implies not only more constrained
but also more diversified privacy requirements. From
Figs. 9(b)-9(d), the anonymization cost, the cloaking
time, and the processing time show similar trends as
those observed in Figs. 8(b)-8(d). However, different
from Fig. 8(a), in Fig. 9(a) the success rates of OptClique
and IClique decrease with much more diversified pri-
vacy levels. Nevertheless, they are still above 84% and
82%, respectively, even when the maximum privacy level
reaches at 15. In contrast, the success rate of MMBClique
drops more quickly. When the maximum privacy level
is 15, its success rate drops down to about 60%. The
main reason is that MMBClique finds the cloaking set
only from the neighbors whose privacy levels are less
than that of the new request. Thus, a request with a
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Fig. 9. Different diversities of privacy levels: (a) Success
rate (b) Anonymization cost (c) Cloaking time (d) Process-
ing time

high privacy level is hard to be cloaked successfully in
MMBClique.

5.3 Impact of Tolerable Cloaking Delay

This section examines the impact of varying tolerable
cloaking delay dt, while the privacy level k is randomly
chosen between 2 to 10. As shown in Fig. 10(a), the suc-
cess rates of all cloaking algorithms generally increase
with prolonging dt, as each request has more time to
wait for successful cloaking. However, for OptClique
and IClique, their cloaking time is very short so that
the requests have little chance to expire due to cloaking
delay. Thus, prolonging dt for them has only little effect
on the success rate. For example, when dt=0.05s, the
success rate of IClique is 95%, and it is slightly increased
to 98% when dt is prolonged to 2s. In contrast, the
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Fig. 10. Different tolerable cloaking delays: (a) Success
rate (b) Anonymization cost (c) Cloaking time (d) Process-
ing time

cloaking success rate of MMBClique greatly increases
from 77% to 83% when dt is prolonged from 0.05s to
0.5s, and becomes stable after that.

Fig. 10(b) shows that for all the three cloaking al-
gorithms the average anonymization cost is not af-
fected much by prolonging the tolerable cloaking delay.
Fig. 10(c) shows that the average cloaking time under
different tolerable cloaking delays. A longer tolerable
cloaking delay dt means that a request can stay longer
in the system, thereby increasing the connectivity of
the modelled graph. From Fig. 10(c), we can see that
the average cloaking time of MMBClique significantly
increases with prolonging dt. This is because it requires
more time to find a clique involving the new request
for a more highly connected graph. However, for both
OptClique and IClique, a longer dt does not imply much
more maximal cliques. Thus, their average cloaking time
is not affected much and fixed at around 1.1ms and
1.3ms, respectively, for all dt settings tested. As more
requests could be waiting with prolonging dt, Fig. 10(d)
shows that the average processing times of all algorithms
increase as expected.

5.4 Impact of Movement Speed

As the size of MMB is a factor that affects the cloaking
success rate and anonymization cost directly, IClique,
OptClique, and MMBClique are also evaluated under
different moving speeds. A slower speed means a
smaller size of MMB for a user, which indicates the
condition for finding a cloaked region is much more con-
strained. It consists of two aspects: one is the condition
of having an edge between two nodes, and the other is
the free space in MMB for a candidate cloaked region to
extend. From Fig. 11(a), we can see that the speed has no
effect on the cloaking success rate of OptClique, since its
MMB is set to be infinitely large regardless of the moving
speed. Its success rate can still reach 98% with slow
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speeds. In contrast, the cloaking success rates of IClique
and MMBClique drop slightly with decreasing the speed.
However, as shown in Fig. 11(b), their anonymiation
cost increases greatly with slowing down the speed. The
reason is that a request needs to find farther neighbors
to form the cloaking set when the speed is slower. Thus,
the price paid for defending against location-dependent
attacks is higher for a slower moving speed.

5.5 Effect of Amin

Recall that our privacy model consists of the privacy
level k, the minimum area Amin, and the tolerable cloak-
ing delay dt. The effects of k and dt have been evaluated
in the previous sections. The parameter Amin is not
used in the graph model, but used when a candidate
result is to be verified whether it is a positive candidate.
Therefore, it is expected that Amin has little influence
on the cloaking time for each successful request. What
might be affected by Amin is the processing time, the
cloaking success rate, and the anonymization cost. Since
MMBClique [13] does not consider the Amin require-
ment, in this section we evaluate the effect of Amin for
IClique and OptClique.

Fig. 12(c) validates that the cloaking time is not af-
fected much by the setting of Amin as expected. The av-
erage cloaking time is about 1.2ms, fluctuating between
1.1ms and 1.3ms. It is interesting to observe in Fig. 12(c)

that the processing time is not affected much when
Amin is not very large. But the processing time increases
significantly at the last three Amin settings. We observe a
similar phenomenon from Fig. 12(a), where the cloaking
success rate remains constant for different Amin settings
except the last three ones. This implies that IClique has
to find a larger cloaked region to meet an increased
Amin requirement when Amin exceeds a threshold, and
this also lengthens the waiting time. However, having a
larger cloaked region may violate the MMB constraint,
and thus more requests fail to be cloaked. Fig. 12(b)
shows that the average anonymization cost increases
linearly to meet an increased Amin requirement.

5.6 Scalability

We now evaluate the effect of number of users on
the performance of cloaking algorithms. The number of
users indicates two aspects: the user density of the ser-
vice area and the workload of the anonymizing system.
We vary the number of users from 10,000 to 100,000.

As shown in Fig. 13(a), the success rates of all the three
algorithms slightly decrease with increasing number of
users. This is mainly because of the increased workload
(see Fig. 13(c)), which makes more requests to expire
and fail to be cloaked. Comparing the three cloaking
algorithms, MMBClique has the worst success rate for
all the settings tested. Fig. 13(b) shows the effect of user
number on the average anonymization cost. Increasing
the number of users implies increasing the user density.
When the user density is higher, each cloaked region
tends to be smaller. As expected, the average anonymiza-
tion costs of all the three algorithms generally reduce
when the the number of users increases.

The cloaking time and processing time are shown in
Figs. 13(c) and 13(d), respectively. It is clear that Opt-
Clique and IClique outperform MMBClique for all the
settings. The reason is as explained earlier. MMBClique
finds the cloaking set from the cliques centered around
the new request online. However, IClique and Optclique
exploit the intermediate searching results, namely in-
crementally maintained maximal cliques, and find the
cloaking set from these maximal cliques. Thus, a new
request only needs to check the maximal cliques where
it is contained as a member. For both OptClique and
IClique, their cloaking time increases gradually with
increasing number of users, since more users imply
more maximal cliques and longer search time. For MM-
BClique, its cloaking time is also lengthened due to the
need to search a larger graph when the number of users
increases.

5.7 Real Dataset Results

As mentioned earlier, no real large-scale moving-objects
datasets are publicly available. Thus, we adapt the
Athens trucks dataset available at [1]. As the original
trucks dataset contains the movement trajectories of 50
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Fig. 13. Different dataset sizes: (a) Success rate (b)
Anonymization cost (c) Cloaking time (d) Processing time

trucks only, it is too small for our performance evalu-
ation. Hence, we randomly select 80,000 trajectory seg-
ments (each with 500 location updates) from the original
trajectories to represent 80,000 users. At each timestamp,
12.5% of the users make query requests. That is, the
number of effective users at each timestamp is 10,000.
We report the evaluation results in Figs. 14(a)-14(d).

The performance trends on the success rate and cloak-
ing/processing time are similar to that of the simulation
results in Section 5.2. As observed from Fig. 14(a), the
success rate of MMBClique decreases significantly with
increasing privacy level. Its success rate is dropped to
52% when k ∈ [2, 15]. In contrast, IClique still gets a
success rate of about 71% at the same setting. Fig. 14(c)
shows that IClique performs even better than MMB-
Clique for larger k values in terms of the cloaking and
processing time. When k ∈ [2, 15], IClique is about
36 (144) times faster than MMBClique in terms of the
cloaking (processing) time.

Fig. 14(b) compares the average anonymization costs
of IClique and MMBClique. Similar to the results ob-
tained from the simulation data (Fig. 9(b)), both of
IClique and MMBClique get a worse performance when
the privacy level increases. MMBClique has a smaller
anonymization cost than IClique when k ∈ [2, 5]. How-
ever, MMBClique has a slightly higher cost than IClique
when k ∈ [2, 10] and k ∈ [2, 15], which is different from
the results obtained in Fig. 9(b). The is mainly because
compared to the simulation data, here MMBClique has
an even lower cloaking success rate for these two set-
tings. As a consequence, a new request has to find farther
neighbors to form a cloaking set.

In Fig. 14(d), we show the cumulative distribution
function (CDF) results of the cloaking area. As can be
seen, over 60% of the cloaking areas are less than 1km2

for a low privacy level (k=2), less than 2.5km2 for a
medium privacy level (k=5), and less than 4km2 for a
high privacy level (k=8 or k=10). We believe that such
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Fig. 14. Real dataset results: (a) Success rate (b) Aver-
age anonymization cost (c) Cloaking time and processing
time (d) CDF of Cloaking Area

a cloaking region size would be acceptable in terms of
server query processing overhead while protecting loca-
tion privacy of mobile users for most LBS applications.

6 CONCLUSIONS

In this paper, we investigated cloaking algorithms that
protect location privacy against location-dependent at-
tacks. We showed that most of the existing location
cloaking algorithms cannot effectively defend against
location-dependent attacks as they are concerned with
snapshot user locations only. To address this problem, we
have employed a graph model to formalize the problem
and transformed it to the problem of finding k-node
cliques in the graph. We have proposed an incremental
clique-based cloaking algorithm called ICliqueCloak to
generate cloaked regions. A series of experiments has
been conducted to evaluate ICliqueCloak under various
system settings. The experimental results show that the
price paid for location-dependent attacks is small. The
average processing time is only 5.7ms and the cloaking
success rate is about 97% for most cases, which validate
the efficiency and effectiveness of the proposed IClique-
Cloak algorithm.
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