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BigTable
HBase BigTable-like

HyperTable
Hive

GreenPlum
CouchDB
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| BigTable — Basic Information

= To manage structured data that is designed to scale

to a very large size: petabytes of data across
thousands of commodity servers

Motivations

o Scale is too large for most commercial databases

o Evenifit weren’t, cost would be very high

o Low-level storage optimizations help performance significantly

Google
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‘ BigTable — Goals

= Fault-tolerant, persistent

= Scalable
o 1000s of servers

o Millions of reads/writes, efficient scans

= Self-managing
= Simple!
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| BigTable — Applications

= Based on: GFS(Google File System)

= Applications: CGoogle 3
Google maps

= Scale of servers:

Google finance
GOugle Analytics

No. of tablet servers

No. of clusters

0...19 259
20...49 47
50 ... 99 20
100 ... 499 50
>500 12
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http://www.google.com/analytics/index.html
http://earth.google.com/index.html
http://www.google.com/finance

BigTable — Data Model

It is a sparse, distributed, persistent
multidimensional sorted map.

column key =column family:qualifier
A

((\Q - I
66\’0 "contents:” "anchor:ennsi.com”  "anchormy.look.ca”

. T { T

<& R |
o= === R T P

row key "com.cnn.www" — "CNN.com" = tg

______ N N —

' |

: [

The map is indexed by a row key, column key, and a timestamp;
each value in the map is an uninterpreted array of bytes.
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BigTable — Storage

Column family — oriented storage(key->value)
a (row:string, column:string, time:int64) ->string

row=row0, column=anchor:cnnsi.com, timestamp=1174184619081 > XXXXXXXXX
row=row0, column=anchor:my.look.ca, timestamp=1174184620720 - XXXXXXXXX
row=row0, column=anchor:my.look.ca, timestamp=1174184617161 > XXXXXXXXX
row=row1, column=anchor:cnnsi.com, timestamp=1174184619081 > XXXXXXXXX
row=row1, column=anchor:my.look.ca, timestamp=1174184620721 > XXXXXXXXX
row=row1, column=anchor:my.look.ca, timestamp=1174184617167 > XXXXXXXXX
row=row2, column=anchor:cnnsi.com, timestamp=1174184619081 > XXXXXXXXX
row=row2, column=anchor:my.look.ca, timestamp=1174184620724 > XXXXXXXXX
row=row2, column=anchor:my.look.ca, timestamp=1174184617167 > XXXXXXXXX
row=row3, column=anchor:cnnsi.com, timestamp=1174184619081 > XXXXXXXXX
row=row3, column=anchor:my.look.ca, timestamp=1174184620724 > XXXXXXXXX
row=row3, column=anchor:my.look.ca, timestamp=1174184617168 > XXXXXXXXX
row=row4, column=anchor:cnnsi.com, timestamp=1174184619081 > XXXXXXXXX
row=row4, column=anchor:my.look.ca, timestamp=1174184620724 > XXXXXXXXX
row=row4, column=anchor:my.look.ca, timestamp=1174184617168 > XXXXXXXXX
row=row>5, column=anchor:cnnsi.com, timestamp=1174184619082 > XXXXXXXXX
row=row>5, column=anchor:my.look.ca, timestamp=1174184620725 > XXXXXXXXX
row=row>5, column=anchor:my.look.ca, timestamp=1174184617168 > XXXXXXXXX
row=rows, column=anchor:cnnsi.com, timestamp=1174184619082 > XXXXXXXXX
row=row8, column=anchor:my.look.ca, timestamp=1174184620725 > XXXXXXXXX
row=row8, column=anchor:my.look.ca, timestamp=1174184617168 > XXXXXXXXX
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‘ HBase

= A clone project of BigTable using Java

= Developers: Apache Software Foundation

= Runs on top of Hadoop core

» Production users: REEEH =sieany openplaces
n@ A Y_Z-&:E[C)(D.’®

) §

HBASE
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‘ Hypertable

= A clone project of BigTable in C++
= Developers: ¢avents Bai & rediff.com

= Runs on top of CloudStore(KFS,Kosmos File
System)
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http://www.openplaces.org/

BigTable-like VS RDBMS

Fast Query Rate

o No Joins, No SQL support, column-oriented
database

o Uses one Bigtable instead of having many
normalized tables

Is not even in INF in a traditional view
Support historial queries

11/31

Hive - Basic Information

A system for managing and querying
structured data built on top of Hadoop

o Map-Reduce for execution

o HDFS for storage

o Metadata on raw files

Key Building Principles:

o SQL as a familiar data warehousing tool

o Extensibility - Types, Functions, Formats, Scripts
o Scalability and Performance
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HadoopDB-Philosophy

Two largest components of the data
management market

o Transactional data management
. ~  Moved
o Analytical datamanagement o \é’eudto

. O

Q/]vo technol_ogies used for data analysis in a
ared-nothing MPP architecture

o Parallel database

o MapReduce-based system
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| HadoopDB-Philosophy

v

Scalability | Tolerance | High Performance
Parallel x x ’
database
MapReduce , ’ x
What we want ’ ’

Scalability:1000 nodes

High Performance:Queries on structured data

15/31

| Query Tolerance

A \\

SQL

Method1:Redo the
whole SQL

Method2:Redo the
failed part
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‘ HadoopDB-Philosophy

= Goals
o Performance
o Tolerance |Trans|ati0nlayer--Hive |
0 Scalability |CommunicationIayer--Hadoop |
o Flexible query interface

- Design idea _

o Multiple, independent, single-node databases coordinated
by Hadoop

17/31

PNUTS

= Developer: YaHOO!
= Applications: Social network, advertising application

= Application characteristic:
o Scalability

Geographic scope

Fast response requirement

High availability

Simplified query needs

Relaxed consistency needs

0O 0 0O O O
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‘ SQL Azure

= A relational database service on the Windows
Azure Platform that is built on SQL Server
technologies

= Objects can be created on SQL Azure:
a Tables

Indexes

Views

Stored Procedures

Triggers

19/31
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Outline

Systems surveyed
Comparison of Systems
Experiment Benchmark
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Characteristic of Cloud Database

Performance
Scalability

o Ability to scale by adding resources with minimal
operational effort and minimal impact on system
performance

o Performance increases with the scale of the system
extends

High Availability and Fault Tolerance
Ability to run in a heterogeneous environment
All applications are read-only or read-mostly
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| Summary of Applications

= Data Analysis
o Internet Service
a Private Cloud

= Web Applications

o Some operations t
consistency

BigTable HBase HyperTable
Hive HadoopDB...

an tolerate relaxed
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‘ Architecture
MapReduce-based DBMS-based
BigTable HBase SQL Azure PNUTS
Hypertable Hive Voldemort

© scalability
@© fault tolerance
© abilityto runin a

24 /31



Data Model

= Big Map Model
o BigTable,HBase,Hypertable

= Simple Relational Data Model
o Hive, PNUTS, SQL Azure and HadoopDB

It depends on the real application!
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Consistency

BigTable,HBase,
. Hive,Hypertable,HadoopDB
= Two kinds of

consistency:

o strong consistency —
ACID(Atomicity
Consistency Isolation
Durability)

o weak consistency —
BASE(Basically Available
Soft-state Eventual
consistency)

PNUTS
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‘ A tailor
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‘ Outline

= Systems surveyed
= Comparison of Systems

= Experiment Benchmark
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‘ Experiment Benchmark MapReduce

DBMS
lysis
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A Benchmark for Hive, PIG and Hadoop'

Yuntao Jia, Zheng Shao

July 12th. 2009
Y HadoopDB
6. BENCHMARKS Hadoop
In this section we evaluate HadoopDB, comparing it with a DBMS
MapReduce implementation and two parallel database imple-

mentations, using a benchmark first presented in  [23]*. This
benchmark consists of five tasks. The first task is taken directly
from the original MapReduce paper [8] whose authors claim is
representative of common MR tasks. The next four tasks are
analytical queries designed to be representative of traditional
structured data analysis workloads that HadoopDB targets.
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‘ Experiment Benchmark

= Tasks:
o Data Load
o Grep Task
o Selection Task
o Join Task
o Aggregation Task
= Data
Grep
UserVisits :> Structured data

a
o Rankings
a

Documents E——— > Unstructured data

O
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