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Abstract Recent advances in wireless sensor networks and positioning technologies
have boosted new applications that manage moving objects. In such applications, a
dynamic index is often built to expedite evaluation of spatial queries. However, the
development of efficient indexes is a challenge due to frequent object movement. In
this paper, we propose a new update-efficient index method for moving objects in
road networks. We introduce a dynamic data structure, called adaptive unit, to group
neighboring objects with similar movement patterns. To reduce updates, an adaptive
unit captures the movement bounds of the objects based on a prediction method,
which considers road-network constraints and the stochastic traffic behavior. A
spatial index (e.g., R-tree) for the road network is then built over the adaptive unit
structures. Simulation experiments, carried on two different datasets, show that an
adaptive-unit based index is efficient for both updating and querying performances.

Keywords Spatial-temporal databases · Moving objects · Index structure ·
Road networks

1 Introduction

Recent advances in wireless sensor networks and positioning technologies have
enabled a variety of new applications such as traffic management, fleet management,
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and location-based services that manage continuously changing positions of moving
objects [25], [27]. In such applications, a dynamic index is often built to expedite
evaluation of spatial queries. However, existing dynamic index structures (e.g.
B-tree and R-tree) suffer from poor performance due to the large overhead of keep-
ing the index updated with the frequently changing position data. The development
of efficient indexes to improve the update performance is an important challenge.

Current work on reducing the index updates of moving objects mainly contains
three kinds of approaches. First, most efforts [9], [18], [19], [36] focus on the
update optimization of the existing multi-dimensional index structures especially
the adaptation and extension of the R-tree [12]. To avoid the multiple paths search
operation in the R-tree during the top-down update, some recent works propose
the bottom-up approach [18], [19] and memo-based [36] structure to reduce the
updates of the R-tree. Another method [9] exploits the change-tolerant property
of the index structure to reduce the number of updates that cross the minimized
boundary rectangle (MBR) boundaries of the R-tree.

However, the indexes based on MBRs exhibit high concurrency overheads during
node splitting, and each individual update is still costly. Therefore, some index meth-
ods based on a low-dimensional index structure (e.g. B+-tree) are proposed [14], [37],
which construct the second category of index methods. They combine the dimension
reduction and linearization technique with a single B+-tree to efficiently update the
index structure.

The third kind of approaches use a prediction method with a time-parameterized
function to reduce the index updates [27], [29], [32]. They describe a moving object’s
location by a linear function and the index is updated only when the parameters
of the function change, for example, when the moving object changes its speed or
direction. The MBRs of the index vary with the time as a function of the enclosed
objects. However, it is hard for the linear prediction to reflect the movement in
many real applications and therefore leads to a low prediction accuracy and frequent
updates.

Though these index structures solve the problem of index updates to some
extent, they are designed to index objects performing free movement in a two-
dimensional space. We focus on the index update problem in real life environments,
where the objects move within constrained networks, such as vehicles on roads.
In such a setting, the spatial property of objects’ movement is captured by the
network and the static information can be separated from the dynamic information.
Therefore, the spatial location of moving objects can be indexed by means of the
road-network index structure. For example, moving objects can be accessed by each
road segment which is indexed by the R-tree. Since the road network seldom changes
and objects just move from one part to the other part of the network, the R-tree
in this case remains fixed. Existing index work that handles network-constrained
moving objects [3], [11], [25] is based on this feature. These works separate spatial
and temporal components of the moving objects’ trajectories and index the spatial
aspect by the network with an R-tree. However, they are mostly concerned with
the historical movements and therefore they do not consider the problem of index
updates.

In this paper, we address the problem of efficient indexing of moving objects in
road networks to support heavy loads of updates. We exploit the constraints of the
network and the stochastic behavior of the real traffic to achieve both high updating
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and querying efficiency. We introduce a dynamic data structure, called adaptive
unit (AU for short) to group neighboring objects with similar movement patterns
in the network. A spatial index (e.g., R-tree) for the road network is then built
over the AUs to form the index scheme for moving objects in road networks. The
index scheme optimizes the update performance for the following reasons. (1) An
AU functions as a one-dimensional MBR in the TPR-tree [29], while it minimizes
expanding and overlaps by considering more movement features. (2) The AU
captures the movement bounds of the objects based on a prediction method, which
considers the road-network constraints and stochastic traffic behavior. (3) Since the
movement of objects is reduced to occur in one spatial dimension and attached to
the network, the update of the index scheme is only restricted to the update of the
AUs. Since the AU is approximated by its center object for efficiency, the query
will possibly has false negative result. For improving it, we refine the prediction
accuracy by simulating two trajectories based on different assumptions on the traffic
conditions and revising the trajectory bounds when prediction accuracy decreases
over time. We have carried out extensive experiments based on two datasets. The
results show that an adaptive-unit based index not only improves the efficiency of
each individual update but also reduces the number of index updates and is efficient
for both updating and querying performance.

The main contributions of this paper are:

• The introduction of the graph of cellular automata (GCA) model and the
simulation-based prediction (SP) model which capture traffic features and re-
duce the index updates.

• The introduction of AUs that optimize for frequent index updates and support
the predictive query on moving objects in road networks.

• An experimental evaluation and validation of the efficient update as well as
query performance of the proposed index structure.

The rest of the paper is organized as follows. Section 2 surveys related work.
Section 3 introduces our data model and trajectory prediction method. Section 4
describes the structure and algorithms of AUs for efficient updates and query
processing. Section 5 contains algorithm analysis and experimental evaluation. We
conclude and propose the future work in Section 6.

2 Related work

Many efforts have been made on reducing the need for index updates of moving
objects. In summary, they can be classified into three categories.

First, most work focuses on updating optimization of existing multi-dimensional
index structures especially in the adaptation and extension of the R-tree [12]. The
top-down update of an R-tree is costly since it needs several paths for searching the
right data item considering the MBR overlaps. In order to reduce the overhead,
Kwon et al. [18] develop the Lazy Update R-tree, which is updated only when
an object moves out of the corresponding MBR. With adding a secondary index
on the R-tree, it can perform the update operation in a bottom-up way. Recently,
by exploiting the change-tolerant property of the index structure, Cheng et al.
[9] present the CTR-tree to maximize the opportunity for applying lazy updates
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and reduce the number of updates that cross MBR boundaries. Lee et al. [19]
extends the main idea of [18] and generalizes the bottom-up update approach.
However, they are not suitable to the case where consecutive changes of objects
are large. Xiong and Aref [36] present the RUM-tree that processes R-tree updates
in a memo-based approach, which eliminates the need to delete the old data item
during an index update. Therefore, its update performance is stable with respect
to the changes between consecutive updates. In our index structure, however, the
R-tree remains fixed since it indexes the road network and only the AUs are
updated.

The second type of methods are based on the dimension reduction technique [25]
and a low-dimensional index [14], [37] (e.g. B+-tree). The Bx-tree [14], [37] combines
the linearization technique with a single B+-tree to efficiently update the index
structure. It uses space filling curves and a pre-defined time interval to partition the
representation of the locations of moving objects. This makes the B+-tree capable
of indexing the two-dimensional spatial locations of moving objects. Therefore,
the cost of individual updating of index is reduced. However, the two-dimensional
locations of objects are linearized by a space-filling curve and the time is also
partitioned by a pre-defined time interval. Therefore, the Bx-tree imposes discrete
representation and may not keep the precise values of location and time during
the partitioning. For our setting, the two-dimensional spatial locations of moving
objects can be reduced to the 1.5 dimensions [16] by the road network where objects
move.

The techniques in the third category use a prediction method represented as
the time-parameterized function to reduce the index updates [27], [29], [32]. They
store the parameters of the function, e.g. the velocity and the starting position of
an object, instead of the real positions. In this way, they update the index structure
only when the parameters change (for example, the speed or the direction of a
moving object changes). The Time-Parameterized R-tree (TPR-tree) [29] and its
variants (e.g. TPR*-tree) [27], [32] are examples of this type of index structures.
They all use a linear prediction model, which relates objects’ positions as a linear
function of the time. Actually, these methods also can support predictive queries
that are usually processed by the dual transformation technique in some index
methods [2], [23]. However, the linear prediction is hard to reflect the movement
in many real application especially in traffic networks where vehicles change their
velocities frequently. The frequent changes of the object’s velocity will incur repeated
updates of the index structure. Moreover, other prediction models with non-linear
prediction proposed by Aggarwal et al. [1] using quadratic predictive functions and
by Tao et al. [34] based on recursive motion functions for objects with unknown
motion patterns improve the precision in predicting the location of each object, but
they ignore the correlation of adjacent objects and may not reflect accurately some
complex and stochastic traffic movement scenarios. Our techniques also fall into this
category and apply an accurate prediction method when updating index structure
by considering more transportation features. Our prediction method also can be
applied to update policy of objects [8], a different research issue, which focuses
on how to minimize the number of location updates sampled by sensors or GPS
periodically from moving objects to the server database. However, for comparisons
with the TPR-tree in our experiments, we use the same update policy and location
representation of objects, but different prediction method in the index structure.
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Compared to the TPR-tree, our technique will reduce the indexing update costs when
the same amount of updated locations of one object are stored in a database in the
server.

There is some work on data models, indexing and query processing for moving
objects in road networks, which is also related to our work. Data models for network
constrained moving objects have been a focus of recent study [10], [28], [35] because
they form a foundation for data storage and query processing. Indexing techniques
for objects moving in road networks also become a focus of study [3], [11], [17], [25].
Pfoser et al. [25] propose to convert a 3-dimensional problem into two sub-problems
of lower dimensions through certain transformation of the networks and trajectories.
Another approach, known as the fixed network R (FNR)-tree [11], separates spatial
and temporal components of the trajectories and indexes time intervals that each
moving object spends on a given network link. The MON-tree approach [3] further
improves the performance of the FNR-tree by representing each edge by multiple
line segments (i.e. polylines) instead of just one line segment. However, they all
focus on the historical movement and cannot support frequent index updates.
There are also other work [22], [24], [31], all based on 3-dimensional variations of
R-trees [12] and R*-trees [4], to index the historical trajectory in Euclidean spaces.
Their goal is to minimize storage and query cost, which does not consider the index
update problem. Similar to our index structure, the IMORS method [17] focuses
on reducing the number of index updates on a road network with the same idea of
separating dynamic and static parts of an index structure. However, moving objects
are indexed by a static small road sector blocks and may move to different sectors
very soon, therefore their coordinates and bi-directional pointers to the road sector
are likely to be updated frequently when their locations especially velocity have been
changed. While the update performance can be improved by enlarging the length of
a road sector, it may result in a degradation of the query processing performance.
Instead, considering more traffic features, our AU index, a dynamic structure, groups
objects having similar moving patterns and can dynamically adapt itself to cover
the movement of the objects it contains by a more accurate prediction method.
Therefore, it reduces more index updates both by road-network features and by a
new prediction method. In addition, the AU index can also support the efficient
predictive queries on road networks, which is not implemented in the IMORS
method.

Query processing algorithms in spatial network databases have been developed
using network distance [6], [13], [15], [26], [30]. Most of them only work for static data
objects and do not monitor queries over moving objects in road networks. Mouratidis
et al. [20] study the continuous monitoring of nearest neighbors in highly dynamic
scenarios, where queries and data objects move frequently in the network. Similar
to our work, they target frequent data updates to support the NN queries on moving
objects in road networks. However, they store the network, objects and queries in
three memory-resident data structures: a spatial index on the network edges, an edge
table maintaining network and moving objects, and a query table with expansion tree
for each query. To incrementally monitor the NN queries, only updates from objects
falling in the expansion tree can alter the NN set of query. The expansion tree is
based on a query point and used to facilitate handling of query movements while
our AU structure is used to index the moving objects and predict their movement to
reduce the index updates.
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3 Data model and trajectory prediction

We use the GCA model we proposed in [7] to model the network and moving objects.
A road network is modeled as a GCA, where the nodes of the graph represent road
intersections and the edges represent road segments with no intersections. Each edge
consists of a cellular automaton (CA), which is represented, in a discrete mode, as a
finite sequence of cells. GCA is based on the work of [21] and adapts the CA model
for free traffic to represent the objects movement in road networks. Figure 1 shows
an example of a road network and its GCA model. Each node has a label which
represents an intersection of the road network. The wide lines represent edges and
each edge is treated as one CA connecting many cells.

We first recall the definition of CA in this context.

Definition 1 A CA consists of a finite oriented sequence of cells. In a configuration,
each cell is either empty or contains a symbol. During a transition, symbols can move
forward to subsequent cells, symbols can leave the CA and new symbols can enter
the CA.

An example of CA corresponding to edge (N1, N2) in Fig. 1b with a transition
between two configurations is given in Fig. 2. We now formally define a GCA.

Definition 2 The structure of a GCA is a directed weighted graph G = (V, E, l)
where V is a set of vertices, E is a set of edges and l : E → � is a function which
associates to each edge the number of cells of the corresponding CA.

We assume a countably infinite alphabet � : {a, b , c, · · · }, denoting moving ob-
ject’s names. Cells are denoted by the edge name and their indices in the edge. Let C
be the set of cells of a GCA. A configuration or an instance of a GCA, is a mapping
from the cells of the GCA to constants in � together with a given velocity. Intuitively,
the velocity is the number of cells an object can traverse during a time unit.

N1

N2

N3

N4

a
b

N5

N6

N7
c

d

e

CA

CA

(a) A Road Network (b) An instance of GCA

Fig. 1 An example of a road network and its GCA model
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Fig. 2 Transition of the GCA
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Definition 3 An instance I of a GCA is defined by two functions of the following
types:

μ : C → �
⋃{ε} (1-1 mapping)

v : � → �.

A moving object is represented as a symbol attached to a cell in the GCA and
it can move several cells ahead at each time unit. A moving object lies on exactly
one cell of an edge and its location can be obtained by computing the number of cells
relative to the starting node. For instance, object a lies on the edge (N1, N2) and there
are two cells away from N1 along the edge. Therefore, its position can be expressed
by (N1, N2, 2).

The motion of an object is represented as some (time, location) information.
Representing such information of a moving object as a trajectory is a typical ap-
proach [35]. In the GCA model, the trajectory of a moving object can be divided into
two types: the in-edge trajectory for the object’s movement in one edge (CA) and
the global trajectory for the object that may move cross several edges (CAs) during
its movement. The in-edge trajectory of an object is a polyline in a two-dimensional
space (one-dimensional relative distance, plus time), which can be defined as follows:

Definition 4 The in-edge trajectory of a moving object in a CA of length L is a piece-
wise function f : T → �, represented as a sequence of points (t1, l1), (t2, l2), . . . ,

(tn, ln)(t1 < t2 < . . . < tn, l1 < l2 < . . . < ln ≤ L), where li is the relative distance to
the starting node at the time of ti.

When an object moves across multiple edges, its global trajectory is defined as
functions mapping the time to the corresponding edge and the relative distance to
the starting node.

Definition 5 The global trajectory of a moving object in different CAs is a piece-
wise function f : T → (E,�), represented as a sequence of points (t1, e1, l1), . . . ,

(ti, e j, lk), . . . , (tz, em, ln)(t1 < t2 < . . . < tz).

Let i be an object moving along an edge. Let v(i) be its velocity, x(i) its position,
gap(i) the number of empty cells ahead (forward gap), and Pd(i) a randomized
slowdown rate which specifies the probability it slows down. We assume that Vmax

is the maximum velocity of moving objects. The position and velocity of each object
may change at each transition as shown in Definition 6.
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Definition 6 At each transition of the GCA, each object changes velocity and
position in a CA of length L according to the rules below:

1. if v(i) < Vmax and v(i) < gap(i) then v(i) ← v(i) + 1
2. if v(i) > gap(i) then v(i) ← gap(i)
3. if v(i) > 0 and rand() < Pd(i) then v(i) ← v(i) − 1
4. if (x(i) + v(i)) ≤ L then x(i) ← x(i) + v(i)

The first rule represents linear acceleration until the object reaches the maximum
speed Vmax. The second rule ensures that if there is another object in front of the
current object, it will slow down in order to avoid collision. In the third rule, Pd(i)
models an erratic movement behavior. Finally, the new position of object i is given
by the fourth rule as sum of the previous position and the new velocity if the object is
in the CA. Figure 2 shows the simulated movement of objects on a CA of the GCA
in two consecutive timestamps. We can see that at time t, the speed of the object a
is smaller than the gap (i.e. the number of cells between the object a and b). On the
other hand, the object b will reduce its speed to the size of the gap. According to the
fourth rule, the objects move to the corresponding positions based on their speeds at
time t + 1.

We use GCAs not only to model road networks, but also simulate the movements
of moving objects by the transitions of the GCA. Based on the GCA, the SP method
to anticipate future trajectories of moving objects is proposed. The SP method treats
the objects’ simulated results as their predicted positions to obtain its future in-
edge trajectory. To refine the accuracy, based on different assumptions on the traffic
conditions we simulate two future trajectories in discrete points for each object on its
edge. Then, by linear regression and translating, the trajectory bounds that contain
all possible future positions of a moving object on that edge can be obtained. When
the object moves to another edge in the GCA, another simulation and regression
will be executed to predict new future trajectory bounds. The SP method is shown
in Fig. 3.

t

d

slowest movement

fastest 

movement

road

cars t

d

AU

upper bound

lower bound

road

tq

d1

d2

Fig. 3 The simulation-based prediction
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Most existing work uses the CA model for traffic flow simulation in which the
parameter Pd(i) is treated as a random variable to reflect the stochastic, dynamic
nature of a traffic system. However, we extend this model for predicting future tra-
jectories of objects by setting Pd(i) to values that model different traffic conditions.
For example, laminar traffic can be simulated with Pd(i) set to 0 or a small value,
and the congestion can be simulated with a larger Pd(i). By giving Pd(i) two values,
we can derive two future trajectories, which describe, respectively, the fastest and
slowest movements of objects. In other words, the object future locations are most
probably bounded by these two trajectories. The value of Pd(i) can be obtained by
the experiences or by sampling from the given dataset. Our experiments show one of
methods to choose the value of Pd(i).

Through the SP model, we obtain two bounds of objects’ future trajectory. In the
sequel, we apply this technique in our index to a set of moving objects that have
similar movements and are treated as one object.

4 The adaptive unit

4.1 Structure and storage

Conceptually, an AU is similar to a one-dimensional MBR in the TPR-tree, which
expands with time according to the predicted movement of the objects it contains.
However, in the TPR-tree, it is possible that an MBR may contain objects moving in
opposite directions, or objects moving at different speeds. As a result, the MBR may
expand rapidly, which may create large overlaps with other MBRs. The AU avoids
this problem by grouping objects having similar moving patterns. Specifically, for
objects in the same GCA edge, we use a distance threshold and a speed threshold to
cluster the adjacent objects with the same direction and similar speed. The thresholds
are set according to the average length of road segments, the average maximum
speed on the segment and also the adaptation in the experimental data sets. In
comparison, the AU has no obvious enlargement because objects in the AU move in
a cluster.

We now formally introduce the AU. An AU is a 7-tuple:

AU = (auID,objSet,upperBound,lowerBound,

edgeID,enterTime,exitTime)

where auID is the identifier of the AU, objSet is a list that stores objects belonging
to the AU, upperBound and lowerBound are upper and lower bounds of predicted
future trajectory of the AU. The trajectory bounds are derived from the trajectory
bounds of the objects in the AU. We assume the functions of trajectory bounds as
follows:

upperBound : D(t) = αu + βu · t

lowerBound : D(t) = αl + βl · t

edgeID denotes the GCA edge that the AU belongs to, enterTime and exitTime
record the time when the AU enters and leaves the edge.
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In the GCA, multiple AUs are associated with a GCA edge. Since AUs in the
same edge are likely to be accessed together during query processing, we store
AUs by clustering on their edgeID. That is, the AUs in the same edge are stored
in the same disk pages. To access AUs more efficiently, we create a compact
summary structure called the direct access table for each edge, which is treated as
a secondary index of AUs can be accessed by a in-memory buffer. A direct access
table stores the summary information of each AU on an edge (i.e. number of objects,
trajectory bounds) and pointers to AU disk pages. Each AU corresponds to an entry
in the direct access table, which has the following structure (auID, upperBound,
lowerBound, auPtr, objNum), where auPtr points to a list of AUs in disk
storage and objNum is the number of objects included in the AU. Similar to AUs,
the entries of the same direct access table and of the different direct access table but
in the adjacent edge are grouped together so that we can get them into the buffer
more efficiently. For the simple network with small amount of AUs, we can keep all
direct access tables in the main memory since it only keeps the summary information
of AUs.

4.2 The index scheme

We build a spatial index (e.g., R-tree) for the GCA (road network) over the AUs
to form the index scheme for the network-constrained moving objects. The AU
index scheme is a two-level index structure. At the top level, it consists of a 2D
R-tree that indexes the spatial information of the road network. On the bottom
level, its leaves contain the edges representing multiple road segments (i.e. polylines)
included in the corresponding MBR of the R-tree and point to the lists of AUs.
Each of entry in a leaf node consists of a road segment, i.e., a line segment in
the polyline. The top level R-tree remains fixed during the lifetime of the index
scheme (unless there are changes in the network). The index scheme is developed
with the R-tree in this paper, but any existing spatial index can also be used without
change.

Figure 4 shows the structure of the AU index scheme, which also includes a direct
access table. The R-tree, the direct access table and AUs are stored in the disk.
However, the direct access table stores the summary information of some AUs on
the edge and is similar to a secondary index of AUs. In the index scheme, each leaf
node of the R-tree can be associated with its direct access table by its edgeID and
the direct access table can connect to corresponding AUs by auPtr in its entries.
Therefore, we only need to update the direct access table when AUs change, which
enhances the performance of the index scheme.

4.3 Optimizing for updates

When the updated locations are stored in a database in the server, the index structure
of moving objects may be updated frequently with the update of locations. Our task
is to reduce the cost of such indexing updates by a one-dimensional dynamic AU
structure and an accurate prediction method.

An important feature of the AU is that it groups objects having similar moving
patterns. The AU is capable of dynamically adapting itself to cover the movement of
the objects it contains. By tightly bounding enclosed moving objects for some time
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Fig. 4 Structure of the AU
index scheme
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in the future, the AU alleviates the update problem of MBR rapid expanding and
overlaps in the TPR-tree like methods.

For reducing updates further, the AU captures the movement bounds of the
objects based on the SP method, which considers the road-network constraints and
stochastic traffic behavior. Since objects in an AU have similar movements, we then
predict the movement of the AU by the SP method, as if it were a single moving
object. The specific locations of the individual objects inside AUs can be similar
and obtained by trajectory bounds of the AU. Through the SP method, we obtain
two predicted future trajectory bounds of objects. When an object’s position exceeds
the AU, the index needs to be updated to delete the object from the old AU and
insert the object to another AU. The accurate prediction of an AU’s movement
and expanding with objects’ movement makes it possible that the updated location
of each object seldom affects the changing of the AU structure (e.g. deleting and
inserting objects, creating and dropping AUs). Therefore, the SP method helps to
reduce the index updating costs.

The future trajectory bounds are predicted at each GCA node when an AU is
created. The trajectory bounds will not be changed along the edge that the AU
moves on until the objects in the AU move to another edge in the GCA. It is
evident that the range of predicted bounds of an AU will become wider with the
time, which leads to lower accuracy of future trajectory prediction. However, if we
issue another prediction when the predicted bounds are not accurate any more, the
costs of simulation and regression are high. Considering that the movement of objects
along one GCA edge is stable, we can assume the same trends of the trajectory
bounds and adjust only the initial locations when the prediction is not accurate.
Specifically, the AU treats its actual locations (the locations of the boundary objects)
at that time as the initial locations of the two trajectory bounds and follow the
same movement vector (e.g. slope of the bounds) as the previous bounds to provide
more accurate predicted trajectory bounds. In this way, the predicted trajectory
bounds can be effectively revised with few costs. Figure 3b shows the adaptation
of the trajectory bounds. tq is the adaptation time of future trajectory bound and
the d1,d2 are the actual locations of the first object and last object respectively in
the AU. The trajectory bounds are revised according to the actual locations and the
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original bounds’ slopes. Therefore, without executing more prediction, the prediction
accuracy of the objects’ future trajectories can be kept high.

Since the R-Tree indexes the GCA, it remains fixed, and the update of the AU
index scheme restricts to the update of AUs. Specifically, an AU is usually created
at the start of one edge and dropped at the end of the edge. Since the AU is a one-
dimensional structure, it performs update operations much more efficiently than the
two-dimensional indexes. We will describe these operations in details.

4.4 Update operations

The update of an AU can be of the following form: creating an AU, dropping an AU,
adding objects to an AU and removing objects from an AU.

Creating an AU To create an AU, we first compose the objSet - a list of objects
traveling in the same direction with similar velocities (velocity difference is not larger
than a speed threshold), and in close-by locations (location difference is not larger
than a distance threshold). We then predict the future trajectories of the AU by
simulation and compute its trajectory bounds. In fact, we treat the AU as one moving
object (the object closest to the center of the AU) and predict its future trajectory
bounds by predicting this object. The prediction starts when the AU is created and
ends at the end the edge. Finally, we write the created AU to the disk page and insert
the AU entry to its summary structure. Factually, AU is created in two cases: 1) at
the initial time with on bulk-loading at each network edge and 2) when the objects
leave original edge with a single object described in Algorithm 1.

Dropping an AU When objects in an AU move out of the edge, they may change
direction independently. So we need to drop this AU and create new AUs in adjacent
edges to regroup the objects. When the front of an AU touches the end of the edge,
some objects in the AU may start moving out of the edge. However, the AU cannot
be dropped because a query may occur at that time. Only after the last object in the
AU enters another edge and joins another AU, can the AU be dropped. Dropping an
AU is simple. Through its entry in direct access table, we find the AU and delete it.

Adding and removing objects from an AU When an object leaves an AU, we
remove this object from the AU and find another AU in the neighborhood to check
if the object can fit that AU. If it can, the object will be inserted into that AU,
otherwise, a new AU is created for this object. Specifically, when adding an object
into an AU, we first find the direct access table of the edge that the object lies and,
by its AU entry in the table, access the AU disk storage. Finally, we insert into the
objects list of the AU and update the AU entry in the direct access table. Removing
an object from an AU has the similar process.

Therefore, when updating an object in the AU index scheme, we first determine
whether the object is leaving the edge and entering another one. If it is moving to
another edge, we delete it from the old AU (if it is the last object in the old AU, the
AU is also dropped) and insert it into the nearest AU to the object in terms of the
network distance or create a new AU in the edge it is entering. Otherwise, we do not
update the AU that the object belongs to unless its position exceeds the bounds of
the AU. In that case, we execute the same updates as those when it moves to another
edge. When the AU is not updated, we check whether the object is the boundary



Geoinformatica

object of the AU and whether its actual position exceeds the predicted bounds of the
AU to a precision threshold ε (explained in the experiments of prediction accuracy),
for the purpose of adapting the trajectory bounds of the AU. Factually, we find, from
the experiment evaluation, that the chances that objects move beyond the trajectory
bounds of its AU on an edge are very slim. The algorithm 1 shows the update
algorithm when updating an object in the AU. Like the node capacity parameter in
the index tree, MAXOBJNUM in the algorithm 1 is also used to restrict the number
of object entries in an AU. It is set according to the object entry storage size and AU
storage size.

In summary, updating the AU-based index is easier than updating the TPR-tree.
It never invoke any complex node splitting and merging. Moreover, thanks to the
similar movement features of objects in an AU and the accurate prediction of the SP
method, the objects are seldom removed or added from their AU on an edge, which
reduces the number of index updates.

4.5 Query algorithm

In this part, we propose an algorithm for predictive range query in the AU index
scheme. It can also be extended to support the (K) Nearest Neighbor query
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and continuous query. A predictive range query captures all objects moving in a road
network whose locations are inside a specified region R during time interval [T1, T2]
in the future. Given a spatiotemporal window range with (X1, Y1, X2, Y2, T1, T2),
the query algorithm on the AU index scheme consists of the following steps:

1) We first perform a spatial window range search (X1, Y1, X2, Y2) in the top level
R-Tree to locate the edges (e.g. e1, e2, e3, . . .) that intersect the spatial query
range.

2) For each selected edge ei, we transform the original 3D search (X1, Y1, X2, Y2,

T1, T2) to a 2D search (S1, S2, T1, T2) (S1 ≤ S2, T1 ≤ T2), where S1 and S2 are
the relative distances from the start vertex along the edge ei. Figure 5a gives
an example when the query window range only intersects one edge e1. In the
case of multiple intersecting edges, we can divide the query range into several
sub-ranges by edges and apply the transformation method to each edge. The
method is also applicable to the various modes the query and edges intersect.
For space limitation, we only illustrate the case in Fig. 5a and compute its
relative distances S1 and S2. It can be easily extended to other cases. Suppose
Xstart, Ystart, Xend, Yend are the start vertex coordinates and the end vertex coor-
dinates of the edge e1. According to Thales Theorem about similar triangles, we
obtain S1 and S2 as follows:

r =
√

(Xstart − Xend)
2 + (Ystart − Yend)

2

S1 = X1 − Xstart

Xend − Xstart
r

S2 = Y1 − Ystart

Yend − Ystart
r

3) We further find the adjacent edges of e1 on which objects are possible to move
into the window range during the future period [T1, T2]. For supporting future
spatio-temporal range queries, the TPR-tree expands MBRs towards every
direction according to the maximum speed of objects, which, when applied to
the network, will result in large candidate result set including some objects that

Xstart,Ystart

Query

X1,Y1

X2,Y2

Xend,Yend

S2

S1

t

d

S1

S2

Q

T2T1

lowerBdupperBd AU1

AU2

upperBd

lowerBd

(a) (b)

Fig. 5 Window range query in the AU index scheme
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are impossible to move into the query range due to network constraint. There
are limited possibilities of objects’ movement in the road network. Therefore, we
filter the candidate AUs in the adjacent edges possibly intersecting the window
range by expanding along the network according to the maximum speed allowed
in the network, adjacent table of edges and future query time. Figure 6 gives an
example of network expanding in the query processing where arrow denotes the
direction of edge. Let Vmax the maximum speed and T0 (= 0 in our example)
the current time, it expands the network from the point of edge e1 intersecting
the spatial window (e.g. locations of S1 in Fig. 6a) towards the reverse direction
of e1 and then continue to the adjacent edges obtained from the reverse adjacent
table of e1 until a expanded distance Vmax ∗ (T2 − T0) is reached. The traversed
edges e2, e3 in this example are returned. The AUs on these edges (e.g. AU3
on e2 and AU4, AU5 on e3 in Fig. 6a) will be further checked whether they are
possible to intersect the query range during [T1, T2]. In this way, we can avoid
the false negative for objects in the other edges during the query processing.

4) The transformed query (S1, S2, T1, T2) is executed in each of the AUs in the
direct access table of the corresponding edge e1. As illustrated by Fig. 5b, an
AU is suitable to the query only if the 2D window range intersects the area
between the upper and lower trajectory bounds of the AU. Otherwise when the
query is below the lower bound (e.g. βl ∗ T1 + αl > S2) or above the upper bound
(e.g. βu ∗ T2 + αu < S1) of the AU, the query cannot contain objects in this AU.
The computations of transformed queries in adjacent edges e2 and e3 are also
together showed in Fig. 6b. For the adjacent edge e2 with the length of l(e2),
we revise the transformed query to (S1 + l(e2), S2 + l(e2), T1, T2) and filter AUs
suitable to the query by linking e2 and e1, which is showed in the t′-d coordinate
plane of Fig. 6b. We use the same method to filter AUs on the adjacent edge e3

by linking e3 and e1, which is showed in the t′′-d coordinate plane of Fig. 6b. This
is reasonable to treat these AUs as candidates since the objects in them are also

Query
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(b) Query process in AUs

Fig. 6 Network expanding in query processing
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likely to move to the query range in the future time. In our example, the query
returns AU2 in edge e1 and AU4 in adjacent edge e3. By the trajectory bounds
of the AU, we can determine whether the transformed query intersects the AU,
thus filtering out the unnecessary AUs quickly.

5) Finally, we access the selected AUs in disk storage and return the objects
satisfying the predictive query window.

Future spatio-temporal queries in a road network are more difficult to compute when
considering the objects cross the different road segment edge because the future
movement of objects in the road intersection is complex, but has limited possibilities
due to the network constraint. We compute the query results which are likely to move
to the road segment edge and location range in the near future that query intersects.

5 Performance analysis

In this section, we analyze the performance of the AU index scheme. We first analyze
the I/O cost of the query and update algorithm, and then perform experimental
evaluation.

5.1 Algorithms analysis

We follow the main assumptions of [33] in our analysis, in particular we assume that
rectangles, including the whole map, are square. Let M be the total number of edges
of the GCA, W be the width of the map, N be the total number of objects and n be
the average number of objects in an AU. The average number of AUs in an edge is
N/(nM). We assume that B is the maximum number of objects in a disk page. The
average number of AUs in a page is ceiling(B/n).

For a spatio-temporal query window (X1, Y1, X2, Y2, T1, T2), a spatial search
is first performed in the top level R-tree to locate the edges that intersect the
spatial window. Let Nr be the number of data rectangles of the R-tree, f be its
average fanout, h = 1 + �log f

Nr
f � its height, and Sl,x, Sl,y the average extents of node

rectangles at level l on X and Y coordinates. Assume that each node is in one disk
page, the average number of disk accesses for the spatial search (X1, Y1, X2, Y2) is
given by [33]:

h−1∑

l=1

Nr

f l

(
Sl,x + |X2 − X1|

) (
Sl,y + |Y2 − Y1|

)

W2

Since each entry in the leaf node of the R-tree only contains one edge, the average
number of edges intersecting the spatial query is given by:

M

(
S1,x + |X2 − X1|

) (
S1,y + |Y2 − Y1|

)

W2

For each selected edge, we scan its direct access table for the purpose of only
accessing relevant AUs. We compute the average number of AUs intersecting the
transformed query (S1, S2, T1, T2). In Fig. 3b, the two trajectory bounds of one AU
divide the coordinate plane into three parts: upper area (above the upper bound),
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middle area (between the upper and lower bounds) and lower area (below the
lower bound). We assume that the upper and lower areas represent respectively
the percentage of μu, μl of the total area of the plane. Factually, μu and μl are
the probabilities that a transformed point query is respectively above and below the
trajectory bounds of the AU. The probability that the query intersects the AU is
(1 − μ2

u − μ2
l ). It is not difficult to compute the average probabilities μu, μl of the

AUs on the edge using their bound functions and the length of the edge. Here we use
the same analysis method for the computations of transformed queries in adjacent
edges and ignore the cost of network expanding for simplicity. Now, we can get the
average number of relevant AUs as follows:

(
1 − μ2

u − μ2
l

) N
nM

Finally, for each relevant AU, we need to find the moving objects satisfying the
predictive query range. Since the AUs on the same edge are likely clustered in the
same disk page, the average I/O cost of accessing relevant AUs and moving objects
on each selected edge is given by:

(
1 − μ2

u − μ2
l

) N
MB

Therefore, the total I/O cost for a spatiotemporal window query in the AU index
scheme is given by:

1

W2

(
h−1∑

l=1

Nr

f l

(
Sl,x + |X2 − X1|

) (
Sl,y + |Y2 − Y1|

)

+ N
B

(
S1,x + |X2 − X1|

) (
S1,y + |Y2 − Y1|

) (
1 − μ2

u − μ2
l

)
)

For improving the efficiency of the prediction of AU, the trajectory bounds of
AU are computed based on the simulation not of all objects in it but of the object
closest to the center of the AU. In this way, it seems that the query processing in
the AU index will possibly not return correct query results (false negative) since
the extrapolated position of the object at the query time will be outside of the
bounds of the AU. However, this seldom happens for the following three reasons.
1) AU is constructed by a group of moving objects with similar moving pattern
and maintained by tightly bounding enclosed moving objects for some time in the
future. It is reasonable to approximate the AU by its center object. 2) In the SP
method, to refine the prediction accuracy, we simulate two trajectories based on
different assumptions on the traffic conditions (e.g. laminar and congested traffic)
and translate the regressed lines outside to contain all possible future position
of the object as soon as possible. 3) The adaptation of the trajectory bounds of
AU also further improves the accuracy of trajectory prediction over time. From
the experiments in Section 5.2.3, it is proved that such the approximation of AU
simulation by its center object can achieve high efficiency improvement by causing
very slim possibility of incorrect query results.

We then analyze the cost of updates in the AU index scheme. In order to update
an object, we first scan AUs from the entries in the direct access table corresponding
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to its edge. The average number of disk accesses to find the AU page that the object
belongs to (scan the pages of AUs on an edge) is N/2MB. If the object is entering
a new edge or exceeds bounds of its AU, it will be inserted into the nearest AU and
deleted from the old AU. This needs 1 disk accesses to read the nearest AU and 2
disk access to write the pages of the old AU and the new AU. If the object is the last
object in the old AU, the old AU with the last object will be dropped which costs
1 disk access to write the page of the old AU. If the object cannot be inserted into
the existing AU, a new AU will be created with 1 disk access. Therefore, the average
cost of an update is N/2MB + 3.

5.2 Experimental evaluation

Since the R-tree in our structure only indexes the static spatial information of
road networks, we compare it in the experiments with the TPR-tree-like method
(taking the most popular TPR-tree for example) in which the R-tree is used to index
the continuously changing moving objects. We measure the update performance
with the individual update, update frequency and total update costs and the query
performance of AU index scheme (denoted as “AU index”), the TPR-tree and the
AU index scheme when the direct access table is not used (denoted as “AU index
without DT”). We then study the effect of parameter Pd on the SP and finally
compare the prediction accuracy of the SP method with that of the linear prediction
method.

5.2.1 Datasets

We use two datasets for our experiments. The first is generated by the CA simulator,
and the second by the Brinkhoff’s Network-based Generator [5]. We use the CA
traffic simulator to generate a given number of objects in a uniform network of size
10000 × 10000 consisting of 500 edges. Each object has its route and is initially placed
at a random position on its route. The initial velocities of the objects follow a uniform
random distribution in the range [0, 30]. The location and velocity of every object is
updated at each time-stamp. The Brinkhoff’s Network-based Generator is used as a
popular benchmark in many related work. The generator takes a map of a real road
network as input (our experiment is based on the map of Oldenburg including 7035
edges). The positions of the objects are given in two dimensional X-Y coordinates.
We transform them to the form of (edgeid,pos), where edgeid denotes the edge
identifier and pos denotes the object relative position on the edge. The generator
places a given number of objects at random positions on the road network, and
updates their locations at each time-stamp. We implemented both the AU index
scheme and the TPR-tree in Java and carried out experiments on a Pentium 4,
2.4 GHz PC with 512 MB RAM running Windows XP. To improve the performance
of the index structure, we employed a LRU buffer of the same size (200K) as the one
used in the TPR-tree [29]. Especially, for the AU index with DT, the LRU buffer
is used for the R-tree nodes, AU pages, and DAT pages. The same amount of main
memory is allocated to buffers for all of the three compared index structure. Since
the map of Oldenburg is a relatively small network and the direct access tables are
frequently accessed, most of them are kept in the main memory in our experiments.
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Table 1 Parameters and their
settings Parameters Settings

Page size 4K
Node capacity 100
Numbers of queries 200
Numbers of mo(cars) 10K, ... , 50K, ... , 100K
Numbers of updates 100K, ... , 500K, ... , 1M
Dataset generator CA simulator, network-based generator

We summarize workload parameters in Table 1, where values in bold are default
values.

5.2.2 Update cost

We compare the cost of index update for the AU index and the TPR-tree in terms of
the average individual update cost, update frequency and total update cost.

Individual Update Cost We study the individual update performance of the index
while varying the number of moving objects and updates. Figure 7 shows the average
individual update cost when increasing the data size from 10K to 100K. Figure 8
shows how the performance varies over time. Clearly, updating the TPR-tree tends
to be costly, and the problem is exacerbated when the data size increases. In each
case of different data size and different number of updates, the AU index has much
lower update cost than the TPR-tree. The main reason can be explained as follows.
Each update of the TPR-tree involves the search of an old entry and a new entry,
as well as the modification of the index structure (node splitting, merging, and the
propagating of changes upwards). The cost increases with larger data size due to
more overlaps among MBRs. The changes of index structure with the increase of
data updates also affect the performance of the TPR-tree. However, the AU index
has better performance because its update only restricts to the AU’s update and
as a one-dimensional access structure, the AU has few overlaps and incurs no cost
associated with node splitting and the propagation of MBR updates.
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The direct access table of the AU index has a significant contribution in improving
update performance. This is because searching the specific AU is accelerated by the
secondary index structure.

Update Frequency Frequent updates of moving objects (a.k.a. data updates) may
lead to frequent updates of index. All data updates (that are received according
to some object update policy) should be recorded in the index, but may lead to
different numbers of “index update” for the AU and TPR-tree respectively. In our
experimental evaluations, “index update” for AU denotes an update of an object
that invalidates the objects AU. For example, when an object’s position exceeds
the bounds of AU, the index needs to be updated to delete the object from the
old AU and insert it to another one. For the TPR-tree, the bounding rectangles are
recomputed even if they are not invalidated. We did not count such re-computations
as “index update” and only counted the updates which invalidated the bounding
rectangles of TPR-tree. In this experiment, we measure the “index update rate”,
which is the ratio between number of such index update and number of data update,
for every 100K data updates and different data size. Figures 9 and 10 show that the
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Fig. 10 Index update frequency over time

update rate of the TPR-tree is nearly 4 to 5 times more than that of the AU index.
The index update rate depends on the prediction method. In the AU index, the future
positions of the object are predicted more accurately, so the object is likely to remain
in its AU, which leads to fewer index updates. As to the reduction in the object
update frequency when the SP method is used, we also evaluate the performance in
paper [8].

Total Update Costs The total update costs depend on the update frequency and the
average individual update cost, and it can reflect the index update performance more
accurately. From both Figs. 11 and 12, we can see that although the AU index has to
deal with the creation and dropping of AUs, the TPR-tree incurs much higher update
costs than the AU index and its performance deteriorates dramatically as data size
increases. This is mainly due to the inaccuracy of the linear prediction model and the
complex reconstruction of the TPR-tree (e.g. splitting and merging).

For each data size, the update costs of the two indexes in the Brinkhoff’s dataset
are both higher than those in the CA dataset due to the higher complexity of road
network and skewed spatial distribution of objects in the Brinkhoff’s dataset.

5.2.3 Query cost

Effect of Data Size We study the window range query performance of the TPR-
tree and the AU index while varying the number of moving objects from 10k to 100k.
Figure 13 shows the average number of I/O per query with query window size 50. In
each case, the query cost increases as the data size increases. However, the AU index
has much lower cost than the TPR-tree. This is because the AUs in the AU index
have much less overlaps than the MBRs in the TPR-tree, and the overlaps to a large
extent determine the range query cost.

The AU index with the direct access table achieves better performance than the
AU index without it. This is because the secondary index structure enables us to filter
some unnecessary AUs during the search of AUs that intersect the range query.
However, for the Brinkhoff’s dataset the benefit of the direct access table is not
obvious because the large number of small edges in the network reduces chances of
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Fig. 11 Total update cost with different datasize

filtering the AUs not included in the range query. The search costs of the two indices
in different datasets are also quite different for the same reasons as mentioned in
update performance.

Effect of Update We then study the window range query performance of the TPR-
tree and the AU index with different update settings. We increase the number of
updates from 100K to 1M to examine how query performance is affected. We issued
200 range queries with window size 50 for every 100K updates in a 1M dataset.
Figure 14 shows that the cost of the TPR-tree increases much faster as the number
of updates increases. The cost of the AU index is considerably lower and is less
sensitive to the number of updates. This is because as objects move apart, the amount
of dead space in the TPR-tree increases, which makes false hits more likely. Also,
updates lead to the expanding and overlaps of MBRs, which further deteriorate the
performance of the TPR-tree. For the AU index, the increase of the updates hardly
affect the total number of AUs, and the chances of overlaps of different AUs are
very slim.
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Fig. 13 Query performance with data size

Effect of Query Window Size To study the effect of query window size on per-
formance, we increase the window size from 10 to 100 (the fraction of the total
space from 1/1000 to 1/100) for 100K data size with a workload of 200 range queries.
Figure 15 shows the query cost as a function of the query window size. It is clear
that for all the indexes, query cost increases with the query window size. This is
so because larger windows contain more objects and therefore lead to more node
accesses. However, this effect is more obvious on the TPR-tree.

Query Recall With the same dataset and the window size 50, we measure the
query recall in AU index with the approximation of AU simulation by its center
object. By referencing the query results in the TPR-tree, we compute the false
negative and compare the efficiency of the AU index with approximation and without
approximation. The results show that the approximation of AU simulation by its
center object can achieve high efficiency improvement (average 25% increase of
efficiency) by causing very slim possibility (average 5% possibility) of incorrect query
results (average 6% false negative).

 0

 200

 400

 600

 800

 1000

 1200

900K700K500K300K100K

R
a

n
g

e
 q

u
e

ry
 I

/O
s

Number of data updates

AU-index
AU-index without DT

TPR-tree

 30

 40

 50

 60

 70

 80

 90

 100

900K700K500K300K100K

R
a

n
g

e
 q

u
e

ry
 I

/O
s

Number of data updates

AU-index
AU-index without DT

TPR-tree

Fig. 14 Effect of updates on query



Geoinformatica

 0

 100

 200

 300

 400

 500

 600

 700

 10  20  30  40  50  60  70  80  90  100

R
a

n
g

e
 q

u
e

ry
 I

/O
s

Query window size

AU-index
AU-index without DT

TPR-tree

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 10  20  30  40  50  60  70  80  90  100

R
a

n
g

e
 q

u
e

ry
 I

/O
s

Query window size

AU-index
AU-index without DT

TPR-tree

Fig. 15 Effect of query window size on query performance

5.2.4 Prediction accuracy

The SP method can be used in the AU index structure to reduce the indexing updates
cost in that it is more accurate in predicting the future trajectories of AU with some
similar objects than the linear prediction method. For simplicity, we study the effect
of simulation parameter and evaluate the prediction accuracy by applying prediction
method to the location update policy of object [8].

The Slowdown Rate Pd The simulation has an important effect on the prediction
accuracy and therefore affects the efficiency of query and update. We study the
effect of the choice of different Pd, which determines the two predicted trajectories
corresponding to the fastest and slowest movement. We test on the Brinkhoff’s
dataset with different data size and use Pd from 0 to 0.5 and measure the average
prediction accuracy by “average error” and “overflow rate”. The average error is the
average absolute error between the predicted and actual positions, and the overflow
rate represents the probability of predicted positions exceeding the actual positions.
The purpose of this metric is to find the closest two trajectories binding the actual one
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Fig. 17 Prediction accuracy with threshold

as future trajectories. In this way, we can choose the Pd both with lower average error
and overflow rate. Figure 16 shows the prediction accuracy of the SP with different
slowdown rates. We can see that when Pd is set to 0 and 0.1, both the average error
and overflow rate are lower than others. Therefore, we use the value 0 and 0.1 as
slowdown rates for the fastest movement bound and the slowest movement bound to
obtain better prediction results.

Prediction Accuracy and Cost Finally, we compare the precision of the SP method
with the LP method. We measure the prediction accuracy by “average error” but with
different threshold ε. The threshold ε represents the maximum deviation between
the predicted locations of an object and its real locations allowed in the prediction.
That means when the deviation exceeds the threshold ε, we make another predic-
tion. From Fig. 17, we observe that average error will increase when threshold
increases. This is because the larger the threshold is, the larger the deviation
becomes, which leads to the more errors. It is tenable in both the LP and SP method.
However, the SP method predicts more accurately than the LP method with any
threshold ε.

To measure the time cost of the prediction, we compute the average CPU time
when simulating and predicting the movement of one object along the edge with
length 1000 in different dataset sizes. The results show that the average cost of one
SP is about 0.25 ms. This is quite acceptable.

6 Conclusions and future work

Indexing objects moving in a constrained network especially the road network is
a topic of great practical importance. We focus on the index update issue for the
current positions of network-constrained moving objects. We introduce a new access
structure, AU that exploits as much as possible the characteristics of the movements
of objects. The updates of the structure are minimized by an accurate prediction
method which produces two trajectory bounds based on different assumptions on
the traffic conditions. The efficiency of the structure also results from the possible
reduction of dimensionality of the trajectory data to be indexed. Our experimental
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results performed on two datasets show that the efficiency of the index structure is
one order of magnitude higher than the TPR-tree.

We will extend the query algorithms to support the KNN query and continuous
query for moving objects in the road network.
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