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Abstract— Answering approximate queries on string collec-
tions is important in applications such as data cleaning, query
relaxation, and spell checking, where inconsistencies and errors
exist in user queries as well as data. Many existing algorithms use
gram-based inverted-list indexing structures to answer approxi-
mate string queries. These indexing structures are “notoriously”
large compared to the size of their original string collection.
In this paper, we study how to reduce the size of such an
indexing structure to a given amount of space, while retaining
efficient query processing. We first study how to adopt existing
inverted-list compression techniques to solve our problem. Then,
we propose two novel approaches for achieving the goal: one is
based on discarding gram lists, and one is based on combining
correlated lists. They are both orthogonal to existing compression
techniques, exploit a unique property of our setting, and offer
new opportunities for improving query performance. For each
approach we analyze its effect on query performance and develop
algorithms for wisely choosing lists to discard or combine.
Our extensive experiments on real data sets show that our
approaches provide applications the flexibility in deciding the
tradeoff between query performance and indexing size, and can
outperform existing compression techniques. An interesting and
surprising finding is that while we can reduce the index size
significantly (up to 60% reduction) with tolerable performance
penalties, for 20-40% reductions we can even improve query
performance compared to original indexes.

I. INTRODUCTION

Many information systems need to support approximate
string queries: given a collection of textual strings, such as
person names, telephone numbers, and addresses, find the
strings in the collection that are similar to a given query string.
The following are a few applications. In record linkage, we
often need to find from a table those records that are similar to
a given query string that could represent the same real-world
entity, even though they have slightly different representations,
such as spielberg versus spielburg. In Web search, many
search engines provide the “Did you mean” feature, which
can benefit from the capability of finding keywords similar to
a keyword in a search query. Other information systems such
as Oracle and Lucene also support approximate string queries
on relational tables or documents.

Various functions can be used to measure the similarity
between strings, such as edit distance (a.k.a. Levenshtein
distance), Jaccard similarity, and cosine similarity. Many algo-
rithms are developed using the idea of “grams” of strings. A
q-gram of a string is a substring of length q that can be used
as a signature for the string. For example, the 2-grams of the

string bingo are bi, in, ng, and go. These algorithms rely on
an index of inverted lists of grams for a collection of strings to
support queries on this collection. Intuitively, we decompose
each string in the collection to grams, and build an inverted
list for each gram, which contains the id of the strings with
this gram. For instance, Fig. 1 shows a collection of 5 strings
and the corresponding inverted lists of their 2-grams.

id string 
1 bingo 

2 bitingin 

3 biting 

4 boing 

5 going 

 (a) Strings.

 
gram  string ids 
bi → 1, 2, 3 
bo → 4 
gi → 2 
go → 1, 5 
in → 1, 2, 3, 4, 5 
it → 2, 3 
ng → 1, 2, 3, 4, 5 
oi → 4, 5 
ti → 2, 3 

 
(b) Inverted lists.

Fig. 1. Strings and their inverted lists of 2-grams.

The algorithms answer a query using the following obser-
vation: if a string r in the collection is similar enough to the
query string, then r should share a certain number of common
grams with the query string. Therefore, we decompose the
query string to grams, and locate the corresponding inverted
lists in the index. We find those string ids that appear at least
a certain number of times on these lists, and these candidates
are post-processed to remove the false positives.

Motivation: These gram-based inverted-list indexing struc-
tures are “notorious” for their large size relative to the size
of their original string data. This large index size causes
problems for applications. For example, many systems require
a very high real-time performance to answer a query. This
requirement is especially important for those applications
adopting a Web-based service model. Consider online spell
checkers used by email services such as Gmail, Hotmail,
and Yahoo! Mail, which have millions of online users. They
need to process many user queries each second. There is a
big difference between a 10ms response time versus a 20ms
response time, since the former means a throughput of 50
queries per second (QPS), while the latter means 20 QPS. Such
a high-performance requirement can be met only if the index
is in memory. In another scenario, consider the case where
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these algorithms are implemented inside a database system,
which can only allocate a limited amount of memory for the
inverted-list index, since there can be many other tasks in the
database system that also need memory. In both scenarios, it
is very critical to reduce the index size as much as we can to
meet a given space constraint.

Contributions: In this paper we study how to reduce the size
of such index structures, while still maintaining a high query
performance. In Section III we study how to adopt existing
inverted-list compression techniques to our setting [31]. That
is, we partition an inverted list into fixed-size segments and
compress each segment with a word-aligned integer coding
scheme. To support fast random access to the compressed lists,
we can use synchronization points [24] at each segment, and
cache decompressed segments to improve query performance.
Most of these compression techniques were proposed in the
context of information retrieval, in which conjunctive keyword
queries are prevalent. In order to ensure correctness, lossless
compression techniques are usually required in this setting.

The setting of approximate string search is unique in that
a candidate result needs to occur at least a certain number of
times among all the inverted lists, and not necessarily on all the
inverted lists. We exploit this unique property to develop two
novel approaches for achieving the goal. The first approach
is based on the idea of discarding some of the lists. We
study several technical challenges that arise naturally in this
approach (Section IV). One issue is how to compute a new
lower bound on the number of common grams (whose lists
are not discarded) shared by two similar strings, the formula
of which becomes technically interesting. Another question is
how to decide lists to discard by considering their effects on
query performance. In developing a cost-based algorithm for
selecting lists to discard, we need to solve several interesting
problems related to estimating the different pieces of time
in answering a query. For instance, one of the problems
is to estimate the number of candidates that share certain
number of common grams with the query. We develop a novel
algorithm for efficiently and accurately estimating this number.
We also develop several optimization techniques to improve
the performance of this algorithm for selecting lists to discard.

The second approach is combining some of the correlated
lists (Section V). This approach is based on two observations.
First, the string ids on some lists can be correlated. For
example, many English words that include the gram “tio” also
include the gram “ion”. Therefore, we could combine these
two lists to save index space. Each of the two grams shares the
union list. Notice that we could even combine this union list
with another list if there is a strong correlation between them.
Second, recent algorithms such as [20], [11] can efficiently
handle long lists to answer approximate string queries. As a
consequence, even if we combine some lists into longer lists,
such an algorithm can still achieve a high performance. We
study several technical problems in this approach, and analyze
the effect of combining lists on a query. Also, we exploit a
new opportunity to improve the performance of existing list-

merging algorithms. Based on our analysis we develop a cost-
based algorithm for finding lists to combine.

We have conducted extensive experiments on real datasets
for the list-compression techniques mentioned above (Sec-
tion VI). While existing inverted-list compression techniques
can achieve compression ratios up to 60%, they considerably
increase the average query running time due to the online de-
compression cost. The two novel approaches are orthogonal to
existing inverted-list-compression techniques, and offer unique
optimization opportunities for improving query performance.
Note that using our novel approaches we can still compute the
exact results for an approximate query without missing any
true answers. The experimental results show that (1) the novel
techniques can outperform existing compression techniques,
and (2) the new techniques provide applications the flexibility
in deciding the tradeoff between query performance and index-
ing size. An interesting and surprising finding is that while we
can reduce the index size significantly (up to a 60% reduction)
with tolerable performance penalties, for 20-40% reductions
we can even improve the query performance compared to
the original index. Our techniques work for commonly used
functions such as edit distance, Jaccard, and cosine. We mainly
focus on edit distance as an example for simplicity.

Due to space limitations, we leave more results in the 18-
page full version of this paper [4].

A. Related Work

In the literature the term approximate string query also
means the problem of finding within a long text string those
substrings that are similar to a given query pattern. See [25]
for an excellent survey. In this paper, we use this term to refer
to the problem of finding from a collection of strings those
similar to a given query string.

In the field of list compression, many algorithms [23], [30],
[7], [9] are developed to compress a list of integers using
encoding schemes such as LZW, Huffman codes, and bloom
filters. In Section III we discuss in more detail how to adopt
these existing compression techniques to our setting. One
observation is that these techniques often need to pay a high
cost of increasing query time, due to the online decompression
operation, while our two new methods could even reduce
the query time. In addition, the new approaches and existing
techniques can be integrated to further reduce the index size,
as verified by our initial experiments.

Many algorithms have been developed for the problem of
approximate string joins based on various similarity func-
tions [2], [3], [5], [6], [10], [27], [28], especially in the context
of record linkage. Some of them are proposed in the context
of relational DBMS systems. Several recent papers focused
on approximate selection (or search) queries [11], [20]. The
techniques presented in this paper can reduce index sizes,
which should also benefit join queries, and the corresponding
cost-based analysis for join queries needs future research. Hore
et al. [13] proposed a gram-selection technique for indexing
text data under space constraints, mainly considering SQL
LIKE queries. Other related studies include [17], [26]. There
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are recent studies on the problem of estimating the selectivity
of SQL LIKE substring queries [15], [18], and approximate
string queries [22], [16], [19], [12].

Recently a new technique called VGRAM [21], [29]
was proposed to use variable-length grams to improve
approximate-string query performance and reduce the index
size. This technique, as it is, can only support edit distance,
while the techniques presented in this paper support a variety
of similarity functions. Our techniques can also provide the
user the flexibility to choose the tradeoff between index size
and query performance, which is not provided by VGRAM.
Our experiments show that our new techniques can outperform
VGRAM, and potentially they can be integrated with VGRAM
to further reduce the index size (Section VI-E).

II. PRELIMINARIES

Let S be a collection of strings. An approximate string
search query includes a string s and a threshold k. It asks
for all r ∈ S such that the distance between r and s is
within the threshold k. Various distance functions can be used,
such as edit distance, Jaccard similarity and cosine similarity.
Take edit distance as an example. Formally, the edit distance
(a.k.a. Levenshtein distance) between two strings s1 and s2

is the minimum number of edit operations of single charac-
ters that are needed to transform s1 to s2. Edit operations
include insertion, deletion, and substitution. We denote the
edit distance between two strings s1 and s2 as ed(s1, s2). For
example, ed(“Levenshtein”, “Levnshtain”) = 2. Using
this function, an approximate string search with a query string
q and threshold k is finding all s ∈ S such that ed(s, q) ≤ k.

Let Σ be an alphabet. For a string s of the characters in
Σ, we use “|s|” to denote the length of s. We introduce two
characters α and β not in Σ. Given a string s and a positive
integer q, we extend s to a new string s′ by prefixing q − 1
copies of α and suffixing q − 1 copies of β. (The results in
the paper extend naturally to the case where we do not extend
a string to produce grams.) A positional q-gram of s is a pair
(i, g), where g is the substring of length q starting at the i-th
character of s′. The set of positional q-grams of s, denoted
by G(s, q), or simply G(s) when the q value is clear in the
context, is obtained by sliding a window of length q over the
characters of s′. For instance, suppose α =#, β = $, q = 3,
and s = irvine. We have: G(s, q) = {(1, ##i), (2, #ir),
(3, irv), (4, rvi), (5, vin), (6, ine), (7, ne$), (8, e$$)}. The
number of positional q-grams of the string s is |s|+q−1. For
simplicity, in our notations we omit positional information,
which is assumed implicitly to be attached to each gram.

We construct an index as follows. For each gram g of the
strings in S, we have a list lg of the ids of the strings that
include this gram (possibly with the corresponding positional
information). It is observed in [27] that an approximate query
with a string s can be answered by solving the following
generalized problem:

T -occurrence Problem: Find the string ids that ap-
pear at least T times on the inverted lists of the
grams in G(s, q), where T is a constant related to

the similarity function, the threshold in the query,
and the gram length q.

Take edit distance as an example. For a string r ∈ S that
satisfies the condition ed(r, s) ≤ k, it should share at least the
following number of q-grams with s:

Ted = (|s| + q − 1) − k × q. (1)

Several existing algorithms [20], [27] are proposed for an-
swering approximate string queries efficiently. They first solve
the T -occurrence problem to get a set of string candidates, and
then check their real distance to the query string to remove
false positives. Note that if the threshold T ≤ 0, then the entire
data collection needs to be scanned to compute the results.
We call it a panic case. One way to reduce this scan time
is to apply filtering techniques [10], [20]. To summarize, the
following are the pieces of time needed to answer a query:
• If the lower bound T (called “merging threshold”) is

positive, the time includes the time to traverse the lists
of the query grams to find candidates (called “merging
time”) and the time to remove the false positives (called
“post-processing time”).

• If the lower bound T is zero or negative, we need to spend
the time (called “scan time”) to scan the entire data set,
possibly using filtering techniques.

In the following sections we adopt existing techniques
and develop new techniques to reduce this index size. For
simplicity, we mainly focus on the edit distance function, and
the results are extended for other functions as well.

III. ADOPTING EXISTING COMPRESSION TECHNIQUES

There are many techniques [31], [7], [9] on list compression,
which mainly study the problem of representing integers on
inverted lists efficiently to save storage space. In this section
we study how to adopt these techniques to solve our problem
and discuss their limitations.

Most of these techniques exploit the fact that ids on an in-
verted list are monotonically increasing integers. For example,
suppose we have a list l = (id1, id2, . . . , idn), idi < idi+1 for
1 ≤ i < n. If we take the differences of adjacent integers to
construct a new list l′ = (id1, id2 − id1, id3 − id2, . . . , idn −
idn−1) (called the gapped list of l), the new integers tend
to be smaller than the original ids. Many integer-compression
techniques such as gamma codes, delta codes [7], and Golomb
codes [9] can efficiently encode the gapped lists by using
shorter representations for small integers. As an example,
we study how to adopt one of the recent techniques called
Carryover-12 [1].

An issue arises when using the encoded, gapped represen-
tation of a list. Many efficient list-merging algorithms in our
setting [20] rely heavily on binary search on the inverted
lists. Since decoding is usually achieved in a sequential
way, a sequential scan on the list might not be affected too
much. However, random accesses could become expensive.
Even if the compression technique allows us to decode the
desired integer directly, the gapped representation still requires
restoring of all preceding integers. This problem can be solved
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by segmenting the list and introducing synchronization points
[24]. Each segment is associated with a synchronization point.
Decoding can start from any synchronization point, so that
only one segment needs to be decompressed in order to read
a specific integer. We can make each segment contain the
same number of integers. Since different encoded segments
could have different sizes, we can index the starting offset of
each encoded segment, so that they can be quickly located
and decompressed. Figure 2 illustrates the idea of segmenting
inverted lists and indexing compressed segments.

Uncompressed List

Compressed List

Segment Index

Segment0 Segment1 Segment2 Segment3

Fig. 2. Inverted-list compression with segmenting and indexing

One way to access elements is by decoding the corre-
sponding segment for each random access. If multiple integers
within the same segment are requested, the segment might
be decompressed multiple times. The repeated efforts can be
alleviated using caching. We allocate a global cache pool for
all inverted lists. Once a segment is decoded, it will remain in
the cache for a while. All integer accesses to that segment will
be answered using the cache without decoding the segment.

Limitations: Most of these existing techniques were initially
designed for compressing disk-based inverted indexes. Using
a compressed representation, we can not only save disk space,
but also decrease the number of disk I/Os. Even with the
decompression overhead, these techniques can still improve
query performance since disk I/Os are usually the major
cost. When the inverted lists are in memory, these techniques
require additional decompression operations, compared to non-
compressed indexes. Thus, the query performance can only
decrease. These approaches have limited flexibility in trading
query performance with space savings. Next we propose two
novel methods that do not have these limitations.

IV. DISCARDING INVERTED LISTS

In this section we study how to reduce the size of an
inverted-list index by discarding some of its lists. That is, for
all the grams from the strings in S, we only keep inverted
lists for some of the grams, while we do not store those of the
other grams. A gram whose inverted list has been discarded
is called a hole gram, and the corresponding discarded list is
called its hole list. Notice that a hole gram is different from
a gram that has an empty inverted list. The former means the
ids of the strings with this gram are not stored in the index,
while the latter means no string in the data set has this gram.

We study the effect of hole grams on query answering. In
Section IV-A we analyze how they affect the merging thresh-
old, the list merging and post-processing, and discuss how the

new running time of a single query can be estimated. Based
on our analysis, we propose an algorithm to wisely choose
grams to discard in the presence of space constraints, while
retaining efficient processing. We develop various optimization
techniques to improve the performance (Section IV-B).

A. Effects of Hole Grams on a Query

1) Merging Threshold: Consider a string r in collection
S such that ed(r, s) ≤ k. For the case without hole grams, r
needs to share at least T = (|s|+q−1)−k×q common grams
in G(s) (Equation 1). To find such an r, in the corresponding
T -occurrence problem, we need to find string ids that appear
on at least T lists of the grams in G(s). If G(s) does have
hole grams, the id of r could have appeared on some of the
hole lists. But we do not know on how many hole lists r could
appear, since these lists have been discarded. We can only rely
on the lists of those nonhole grams to find candidates. Thus
the problem becomes deciding a lower bound on the number
of occurrences of string r on the nonhole gram lists.

One simple way to compute a new lower bound is the
following. Let H be the number of hole grams in G(s), where
|G(s)| = |s| + q − 1. Thus, the number of nonhole grams for
s is |G(s)| − H . In the worst case, every edit operation can
destroy at most q nonhole grams, and k edit operations could
destroy at most k×q nonhole grams of s. Therefore, r should
share at least the following number of nonhole grams with s:

T ′ = |G(s)| − H − k × q. (2)

We can use this new lower bound T ′ in the T -occurrence
problem to find all strings that appear at least T ′ times on the
nonhole gram lists as candidates.

The following example shows that this simple way to
compute a new lower bound is pessimistic, and the real lower
bound could be tighter. Consider a query string s = irvine
with an edit-distance threshold k = 2. Suppose q = 3. Thus
the total number of grams in G(s) is 8. There are two hole
grams irv and ine as shown in Figure 3. Using the formula
above, an answer string should share at least 0 nonhole grams
with string s, meaning the query can only be answered by
a scan. This formula assumes that a single edit operation
could potentially destroy 3 grams, and two operations could
potentially destroy 6 grams. However, a closer look at the
positions of the hole grams tells us that a single edit operation
can destroy at most 2 nonhole grams, and two operations
can destroy at most 4 nonhole grams. Figure 3 shows two
deletion operations that can destroy the largest number of
nonhole grams, namely 4. Thus, a tighter lower bound is
2 and we can avoid the panic case. This example shows
that we can exploit the positions of hole grams in the query
string to compute a tighter threshold. We develop a dynamic
programming algorithm to compute a tight lower bound on the
number of common nonhole grams in G(s) an answer string
needs to share with the query string s with an edit-distance
threshold k (a similar idea is also adopted in an algorithm
in [29] in the context of the VGRAM technique [21]). Our
experiments have shown that this algorithm can increase query



Fig. 3. A query string irvine with two hole grams. A solid horizontal line
denotes a nonhole gram, and a dashed line denotes a hole gram. The arrows
denote character deletions.

performance by tightening the bound. More details about the
algorithm and experiments are in [4].

2) List-Merging Time: The running time of some merging
algorithms (e.g. HeapMerge, ScanCount [20]) is insensitive
to the merging threshold T and mainly depends on the total
number of elements in all inverted lists. Therefore, their
running time can only decrease by discarding some lists.
Other merging algorithms (e.g., MergeOpt, DivideSkip [20])
separate the inverted lists into a group of long lists and a group
of short lists, and process them separately. The performance
of these algorithms depends on how the two groups are
formed, which is related to T . Thus their performance is
sensitive to changes in T . Another class of algorithms such
MergeSkip and DivideSkip [20] utilize T to skip irrelevant
elements on the lists. Decreasing T by discarding some lists
might negatively affect their performance. Meanwhile, we
might have fewer lists to process, possibly resulting in an
improvement of the query performance.

3) Post-Processing Time: For a given query, introducing
hole grams may only increase the number of candidates to
post-process if we use Equation 2. Surprisingly, if we use
the dynamic programming algorithm to derive a tighter T ′,
then the number of candidates for post-processing might even
decrease [4]. Take the example given in Fig. 3. Suppose the
edit-distance threshold k = 2. Say that some string id i only
appears on the inverted lists of irv and ine. Since T = 2,
it is a candidate result. If we choose to discard the grams
irv and ine as shown in Fig. 3, as discussed earlier, the new
threshold T ′ = 2. After discarding the lists, the string i is not
a candidate anymore, since all the lists containing it have been
discarded. Thus we can reduce the post-processing cost. Note
that any string id which appears only on irv and ine cannot
be an answer to the query and would have been removed from
the results during post-processing.

4) Estimating Time Effects on a Query: Since we are
evaluating whether it is a wise choice to discard a specific list
li, we want to know, by discarding list li, how the performance
of a single query Q will be affected using the indexing
structure. We now quantify these effects discussed above by
estimating the running time of a query with hole grams. In [4]
we discuss how to estimate the merging time and scan time.
We focus on estimating the post-processing time.

For each candidate from the T -occurrence problem, we need
to compute the corresponding distance to the query to remove
the false positives. This time can be estimated as the number
of candidates multiplied by the average edit-distance time.
Therefore, the main problem becomes how to estimate the

number of candidates after solving the T -occurrence problem.
This problem has been studied in the literature recently [22],
[16], [19]. While these techniques could be used in our
context, they have two limitations. First, their estimation is
not 100% accurate, and an inaccurate result could greatly
affect the accuracy of the estimated post-processing time, thus
affecting the quality of the selected nonhole lists. Second, this
estimation may need to be done repeatedly when choosing
lists to discard, and therefore needs to be very efficient.

We develop an efficient, incremental algorithm that can
compute a very accurate number of candidates for query Q
if list li is discarded. The algorithm is called ISC, which
stands for “Incremental-Scan-Count.” Its idea comes from an
algorithm called ScanCount developed in [20]. Although the
original ScanCount is not the most efficient one for the T -
occurrence problem, it has the nice property that it can be
run incrementally. Figure 4 shows the intuition behind this
ISC algorithm. First, we analyze the query Q on the original
indexing structure without any lists discarded. For each string
id in the collection, we remember how many times it occurs on
all the inverted lists of the grams in the query and store them
in an array C. Now we want to know if a list is discarded,
how it affects the number of occurrences of each string id.
For each string id r on list l belonging to gram g to be
discarded, we decrease the corresponding value C[r] in the
array by the number of occurrences of g in the query string,
since this string r will no longer have g as a nonhole gram.
After discarding this list for gram g, we first compute the new
merging threshold T ′. We find the new candidates by scanning
the array C and recording those positions (corresponding to
string ids) whose value is at least T ′.

Fig. 4. Intuition behind the Incremental-Scan-Count (ISC) algorithm.

For instance, in Fig. 5, the hole list includes string ids 0,
2, 5, and 9. For each of them, we decrease the corresponding
value in the array by 1 (assuming the hole gram occurs once
in the query). Suppose the new threshold T ′ is 3. We scan the
new array to find those string ids whose occurrence among
all non-hole lists is at least 3. These strings, which are 0, 1,
and 9 (in bold face in the figure), are candidates for the query
using the new threshold after this list is discarded.

B. Choosing Inverted-Lists to Discard

We now study how to wisely choose lists to discard in
order to satisfy a given space constraint. The following are
several simple approaches: choosing the longest lists to discard
(LongList), choosing the shortest lists to discard (ShortList),
or choosing random lists to discard (RandomList). These
naive approaches blindly discard lists without considering the
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Fig. 5. Running the ISC algorithm (T ′ = 3).

effects on query performance. Clearly, a good choice of lists
to discard depends on the query workload. Based on our
previous analysis, we present a cost-based algorithm called
DiscardLists, as shown in Figure 6. Given the initial set of
inverted lists, the algorithm iteratively selects lists to discard,
based on the size of a list and its effect on the average query
performance for a query workload Q if it is discarded. The
algorithm keeps selecting lists to discard until the total size of
the remaining lists meets the given space constraint (line 2).

Algorithm: DiscardLists
Input: Inverted lists L = {l1, . . . , ln}

Constraint B on the total list size
Query workload Q = {Q1, . . . , Qm}

Output: A set D of lists in L that are discarded
Method:
1. D = ∅;
2. WHILE (B < (total list size of L)) {
3. FOR (each list li ∈ L) {
4. Compute size reduction Δi

size if discarding li
5. Compute difference of average query time Δi

time

for queries in Q if discarding li
}

6. Use Δi
size’s and Δi

time’s of the lists to decide what
lists to discard

7. Add discarded lists to D
8. Remove the discarded lists from L

}
9. RETURN D

Fig. 6. Cost-based algorithm for choosing inverted lists to discard.

In each iteration (lines 3-8), the algorithm needs to evaluate
the quality of each remaining list li, based on the expected
effect of discarding this list. The effect includes the reduction
Δi

size on the total index size, which is the length of this list.
It also includes the change Δi

time on the average query time
for the workload Q after discarding this list. (Surprisingly,
Δi

time can be both positive and negative, since in some cases
discarding lists can even reduce the average running time for
the queries.) In each iteration (line 6), we need to use the
Δi

size’s and Δi
time’s of the lists to decide what lists should

be really discarded. There are many different ways to make
this decision. One way is to choose a list with the smallest
Δi

time value (notice that it could be negative). Another way
is to choose a list with the smallest Δi

time/Δi
space ratio.

There are several ways to reduce the computation time of
the estimation: (1) When discarding the list li, those queries
whose strings do not have the gram of li will not be affected,

since they will still have the same set of nonhole grams as
before. Therefore, we only need to re-evaluate the performance
of the queries whose strings have this gram of li. In order to
find these strings efficiently, we build an inverted-list index
structure for the queries, similar to the way we construct
inverted lists for the strings in the collection. When discarding
the list li, we can just consider those queries on the query
inverted list of the gram for li. (2) We run the algorithm on
a random subset of the strings. As a consequence, (i) we can
make sure the entire inverted lists of these sample strings can
fit into a given amount of memory. (ii) We can reduce the
array size in the ISC algorithm, as well as its scan time to find
candidates. (iii) We can reduce the number of lists to consider
initially since some infrequent grams may not appear in the
sample strings. (3) We run the algorithm on a random subset
of the queries in the workload Q, assuming this subset has
the same distribution as the workload. As a consequence, we
can reduce the computation to estimate the scan time, merging
time, and post-processing time (using the ISC algorithm). (4)
We do not discard those very short lists, thus we can reduce
the number of lists to consider initially. (5) In each iteration
of the algorithm, we choose multiple lists to discard based on
the effect on the index size and overall query performance.
In addition, for those lists that have very poor time effects
(i.e., they affect the overall performance too negatively), we
do not consider them in future iterations, i.e., we have decided
to keep them in the index structure. In this way we can reduce
the number of iterations significantly.

V. COMBINING INVERTED LISTS

In this section, we study how to reduce the size of an
inverted-list index by combining some of the lists. Intuitively,
when the lists of two grams are similar to each other, using a
single inverted list to store the union of the original two lists
for both grams could save some space. One subtlety in this
approach is that the string ids on a list are treated as a set
of ordered elements (without duplicates), instead of a bag of
elements. By combining two lists we mean taking the union
of the two lists so that space can be saved. Notice that the
T lower bound in the T -occurrence problem is derived from
the perspective of the grams in the query. (See Equation 1
in Section II as an example.) Therefore, if a gram appears
multiple times in a data string in the collection (with different
positions), on the corresponding list of this gram the string id
appears only once. If we want to use the positional filtering
technique (mainly for the edit distance function) described
in [10], [20], for each string id on the list of a gram, we
can keep a range of the positions of this gram in the string, so
that we can utilize this range to do filtering. When taking the
union of two lists, we need to accordingly update the position
range for each string id.

We will first discuss the data structure and the algorithm for
efficiently combining lists in Section V-A, and then analyze the
effects of combining lists on query performance in Section V-
B. We also show that an index with combined inverted
lists gives us a new opportunity to improve the performance



of list-merging algorithms (Section V-B.1). We propose an
algorithm for choosing lists to combine in the presence of
space constraints (Section V-C).

A. Data Structures for Combining Lists

In the original inverted-list structure, different grams have
different lists. Combining two lists l1 and l2 will produce a
new list lnew = l1 ∪ l2. The size reduction of combining two
lists l1 and l2 can be computed as

Δ(1,2)
size = |l1| + |l2| − |l1 ∪ l2| = |l1 ∩ l2|.

All grams that shared l1 and l2 (there could be several grams
due to earlier combining operations) will now share list lnew.
In this fashion we can support combining more than two lists
iteratively. We use a data structure called Disjoint-Set with
the algorithm Union-Find [8] to efficiently combine more than
two lists, as illustrated in Figure 7. More details are in [4].

g1g3

g2

1 23

g1

g2

1 2 3

g3
After the 

combination

Fig. 7. Combining list of g2 with list of g3 using Union-Find

B. Effects of Combining Lists on Query Performance

We study how combining lists affects query performance.
For a similarity query with a string s, if the lists of the grams in
G(s) are combined (possibly with lists of grams not in G(s)),
then the performance of this query can be affected in the
following ways. (1) Different from the approach of discarding
lists, the lower bound T in the T -occurrence problem remains
the same, since an answer still needs to appear at least this
number of times on the lists. Therefore, if a query was not in
a panic case before, then it will not be in a panic case after
combining inverted lists. (2) The lists will become longer. As
a consequence, it will take more time to traverse these lists to
find candidates during list merging, and more false positives
may be produced to be post-processed.

1) List-Merging Time: As inverted lists get combined, some
of them will become longer. In this sense it appears that
combining lists can only increase the list-merging time in
query answering. However, the following observation opens up
opportunities for us to further decrease the list-merging time,
given an index structure with combined lists. We notice that a
gram could appear in the query string s multiple times (with
different positions), thus these grams share common lists. In
the presence of combined lists, it becomes possible for even
different grams in G(s) to share lists. This sharing suggests
a way to improve the performance of existing list-merging
algorithms for solving the T -occurrence problem [27], [20].
A simple way to use one of these algorithms is to pass
it a list for each gram in G(s). Thus we pass |G(s)| lists
to the algorithm to find string ids that appear at least T

times on these (possibly shared) lists. We can improve the
performance of the algorithm as follows. We first identify the
shared lists for the grams in G(s). For each distinct list li, we
also pass to the algorithm the number of grams sharing this
list, denoted by wi. Correspondingly, the algorithm needs to
consider these wi values when counting string occurrences. In
particular, if a string id appears on the list li, the number
of occurrences should increase by wi, instead of “1” in
the traditional setting. Thus we can reduce the number of
lists passed to the algorithm, thus possibly even reducing its
running time. The algorithms in [27] already consider different
list weights, and the algorithms in [20] can be modified slightly
to consider these weights.1

2) Post-processing Time: We want to compute the number
of candidates generated from the list-merging algorithm. Be-
fore combining any lists, the candidate set generated from a
list-merging algorithm contains all correct answers and some
false positives. We are particularly interested to know how
many new false positives will be generated by combining two
lists l1 and l2. The ISC algorithm described in Section IV-A.4
can be modified to adapt to this setting.

In the algorithm, a ScanCount vector is maintained for a
query Q to store the number of grams Q shares with each
string id in the collection. The strings whose corresponding
values in the ScanCount vector are at least T will be candidate
answers. By combining two lists l1 and l2, the lists of those
grams that are mapped to l1 or l2 will be conceptually
extended. Every gram previously mapped to l1 or l2 will now
be mapped to l1∪l2. The extended part of l1 is ext(l1) = l2\l1.
Let w(Q, l1) denote the number of times grams of Q reference
l1. The ScanCount value of each string id in ext(l1) will be
increased by w(Q, l1). Since for each reference, all string ids
in ext(l1) should have their ScanCount value increased by one,
the total incrementation will be w(Q, l1) (not w(Q, l2)). The
same operation needs to be done for ext(l2) symmetrically.
It is easy to see the ScanCount values are monotonically
increasing as lists are combined. The strings whose ScanCount
values increase from below T to at least T become new false
positives after l1 and l2 are combined.

Figure 8 shows an example, in which l1 = {0, 2, 8, 9},
l2 = {0, 2, 3, 5, 8}. Before combining l1 and l2, two grams
of Q are mapped to l1 and three grams are mapped to l2.
Therefore, w(Q, l1) = 2 and w(Q, l2) = 3. For every string
id in ext(l1) = {3, 5}, their corresponding values in the
ScanCount vector will be increased by w(Q, l1). Let C denote
the ScanCount vector. C[3] will be increased from 6 to 8, while
C[5] will be increased from 4 to 6. Given the threshold T = 6,
the change on C[5] indicates that string 5 will become a new
false positive. The same operation is carried out on ext(l2).

C. Choosing Lists to Combine

We use two steps to combine lists: discovering candidate
gram pairs, and selecting some of them to combine.

1Interestingly, our experiments showed that, even for the case we do not
combine lists, this optimization can already reduce the running time of existing
list-merging algorithms by up to 20%.
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Fig. 8. Example of ISC for computing new false positives after combining
lists l1 and l2.

Step 1: Discovering Candidate Gram Pairs: We are only
interested in combining correlated lists. We can use Jaccard
similarity to measure the correlation of two lists, defined
as jaccard(l1, l2) = |l1∩l2|

|l1∪l2| . Two lists are considered to be
combined only if their correlation is greater than a threshold.
Clearly it is computationally prohibitive to consider all pairs
of grams. There are different ways for generating such pairs.
One way is using adjacent grams. We only consider pairs of
adjacent grams in the strings. If we use q-grams to construct
the inverted lists, we can just consider those (q + 1)-grams.
Each such gram corresponds to a pair of q-grams. For instance,
if q = 3, then the 4-gram tion corresponds to the pair
(tio, ion). For each such adjacent pair, we treat it as a
candidate pair if the Jaccard similarity of their corresponding
lists is greater than a predefined threshold. One limitation
of this approach is that it cannot find strongly correlated
grams that are not adjacent in strings. In the literature there
are efficient techniques for finding strongly correlated pairs
of lists. One of them is called Locality-Sensitive Hashing
(LSH) [14]. Using a small number of so-called MinHash
signatures for each list, we can use LSH to find those gram
pairs whose lists satisfy the above correlation condition with
a high probability.

Step 2: Selecting Candidate Pairs to Combine: The
second step is selecting candidate pairs to combine. One
basic algorithm is the following. We iteratively pick gram
pairs and combine their lists if their correlation satisfies the
threshold. Notice that each time we process a new candidate
gram pair, since the list of each of them could have been
combined with other lists, we still need to verify their (possibly
new) correlation before deciding whether we should combine
them. After processing all these pairs, we check if the index
size meets a given space constraint. If so, the process stops.
Otherwise, we decrease the correlation threshold and repeat
the process above, until the new index size meets the given
space constraint.

This basic algorithm does not consider the effect of combin-
ing two lists on the overall query performance. We propose a
cost-based algorithm to wisely choose lists to combine in the
second step. Figure 9 shows the cost-based algorithm which
takes the estimated cost of a query workload into consideration

when choosing lists to combine. It iteratively selects pairs
to combine, based on the space saving and the impact on
the average query performance of a query workload Q. The
algorithm keeps selecting pairs to combine until the total size
of the inverted lists meets a given space constraint B. For each
gram pair (gi, gj), we need to get their current corresponding
lists, since their lists could have been combined with other
lists (lines 3 and 4). We check whether these two lists are
the same list as reference (line 5), and also whether their
correlation is above the threshold (line 6). Then we compute
the size reduction (line 8) and estimate the average query time
difference and the ISC algorithm (line 9), based on which we
decide the next list pair to combine (lines 10 and 11).

Algorithm: CombineLists
Input: Candidate gram pairs P = {(gi, gj)}

Constraint B on the total list size
Query workload Q = {Q1, . . . , Qm}

Output: Combined lists.
Method:
1. WHILE ((expected total index size) > B ) {
2. FOR (each gram pair (gi, gj) ∈ P ) {
3. li = current list of gi

4. lj = current list of gj

5. if (li and lj are the same list as reference
6. or corr(li, lj) < δ)
7. remove (gi, gj) from P and continue

8. Compute size reduction Δ
(li,lj)

size if combining li, lj

9. Compute difference of average query time Δ
(li,lj)

time

for queries in Q if combining li, lj
}

10. Use Δ
(li,lj)

size ’s and Δ
(li,lj)

time ’s of the gram pairs to decide
which pair to combine

11. Combine the two lists li and lj based on the decision
12. Remove the combined gram pair from P

}
Fig. 9. Cost-based algorithm to select gram pairs to combine.

We can use similar optimization techniques as described in
Section IV to improve the performance of CombineLists.

VI. EXPERIMENTS

We used three real data sets. (1) IMDB Actor Names:
It consists of the actor names downloaded from the IMDB
website (http://www.imdb.com). There were 1,199,299 names.
The average string-length was 17 characters. (2) WEB Corpus
Word Grams: This data set (http://www.ldc.upenn.edu/Catalog,
number LDC2006T13) contained word grams and their ob-
served frequency counts on the Web. We randomly chose 2
million records with a size of 48.3MB. The number of words
of a string varied from 3 to 5. The average string-length was
24. (3) DBLP Paper Titles: It includes paper titles downloaded
from the DBLP Bibliography site (http://www.informatik.uni-
trier.de/∼ley/db). It had 274,788 paper titles. The average
string-length was 65.

For all experiments the gram length q was 3, and we applied
length filtering [10]. The inverted-list index was held in main
memory. Also, for the cost-based DiscardLists and Com-
bineLists approaches, by doing sampling we guaranteed that



the index structures of sample strings fit into memory. We used
the DivideSkip algorithm described in [20] to solve the T -
occurrence problem due to its high efficiency. From each data
set we used 1 million strings to construct the inverted-list index
(unless specified otherwise). We tested query workloads using
different distributions, e.g., a Zipfian distribution or a uniform
distribution. To do so, we randomly selected 1,000 strings from
each data set and generated a workload of 10,000 queries
according to some distribution. We conducted experiments
using edit distance, Jaccard similarity, and cosine similarity.
We mainly focused on the results of edit distance (with a
threshold 2). We report additional results of other functions
in Section VI-D. All the algorithms were implemented using
GNU C++ and run on a Dell PC with 2GB main memory, and
a 3.4GHz Dual Core CPU running the Ubuntu OS.

A. Evaluating the Carryover-12 Compression Technique

We adopted the Carryover-12 compression technique as
discussed in Section III into our problem setting. We varied
the segment size to achieve different index-size reduction
ratios. We measured the corresponding query performance.
Figure 10(a) shows the results for the IMDB and Web Corpus
datasets as the reduction ratio increased. (Notice that the two
data sets used different reduction ratios because of the limita-
tion of the technique.) Consider the Web Corpus dataset. The
original average query running time (without compression)
was about 1.6ms. After compressing the index, the query time
increased significantly. For example, when the reduction ratio
was about 41%, the query time increased to 5.7ms. The time
kept increasing as we compressed the index further.

Figure 10(b) shows how the query time was affected as we
increased the cache size. (The cache size was significantly
smaller than the compressed index size.) On the WebCorpus
data set, when we used no cache, the average query time
was 64.4ms, which is more than 8 times the average query
time with a cache of 5000 slots. Since the whole purpose of
compressing inverted list is to save space, it is contradictory to
improve query performance by increasing the cache size too
much. As we allocated more cache to the compressed index,
the query time did decrease. Notice that if we allocate enough
cache for the entire compressed index, the performance can
become almost the same as that of the original index (without
considering the cache lookup overhead). As the cache size
is typically much smaller than the original index size, the
performance should always be worse than the original case
due to the online decompression cost.

B. Evaluating the DiscardLists Algorithm

In this section we evaluate the performance of the Dis-
cardLists algorithm for choosing inverted-lists to discard. In
addition to the three basic methods to choose lists to discard
(LongList, ShortList, RandomList), we also implemented
the following cost-based methods. (1) PanicCost: In each
iteration we discard the list with the smallest ratio between
the list size and the number of additional panic cases. Another
similar approach, called PanicCost+, discards the list with the
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Fig. 10. Carryover-12 compression.

smallest number of additional panic cases, disregarding the
list length. (2) TimeCost: It is similar to PanicCost, except
that we use the ratio between the list size and the total time
effect of discarding a list (instead of the number of additional
panics). Similarly, an approach called TimeCost+ discards the
list with the smallest time effect.

The index-construction time consisted of two major parts:
selecting lists to discard and generating the final inverted-list
structure. The time for generating samples was negligible. For
the LongList, ShortList, and RandomList approaches, the
time for selecting lists to discard was small, whereas in the
cost-based approaches the list-selection time was prevalent. In
general, increasing the size-reduction ratio also increased the
list-selection time. For instance, for the IMDB dataset, at a
70% reduction ratio, the total index-construction time for the
simple methods was about half a minute. The construction
time for PanicCost and PanicCost+ was similar. The more
complex TimeCost and TimeCost+ methods needed 108s
and 353s, respectively.
Different Methods to Choose Lists to Discard: We first con-
sidered the three simple methods, namely LongList, Short-
List, RandomList. Experiments [4] showed that in most cases,
the LongList method gave us the best query performance,
while the RandomList method was the best for high reduction
ratios. The ShortList was always the worst.

For those cost-based approaches, we used a sampling ratio
of 0.1% for the data strings and a ratio of 25% for the
queries. Figure 11(b) shows the benefits of employing the cost-
based methods to select lists to discard. Most noteworthy of
which is the TimeCost+ method, which consistently delivered
good query performance. As shown in Fig. 11(b), the method
achieved a 70% reduction ratio while increasing the query
processing time from the original 5.8ms to 7.4ms only. All
the other methods increased the time up to at least 96ms for
that reduction ratio. Notice that TimeCost+ ignored the list
size when selecting a list to discard. TimeCost+ over-topped
all the other methods because it can balance the merging time,
post-processing time, and scan time.
Surprising Improvement on Performance: Figs. 12(a) shows
more details when the reduction ratio was smaller (less than
40%). A surprising finding is that, for low to moderate
reduction ratios, discarding lists could even improve the query
performance! All the methods reduced the average query time
from the original 5.8ms to 3.5ms for a 10% reduction ratio.
The main reason of the performance improvement is that
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Fig. 11. Reducing index size by discarding lists (IMDB).

by discarding long lists we can help list-merging algorithms
solve the T -occurrence problem more efficiently. We see that
significantly reducing the number of total list-elements to
process can overcompensate for the decrease in the threshold.
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Fig. 12. Improving query performance using two new approaches (IMDB).

Scalability: For each data set, we increased its number
of strings, and used 50% as the index-size-reduction ratio.
Fig. 11(d) shows that the TimeCost+ method performed
consistently well, even outperforming the corresponding un-
compressed indexes (indicated by “original”). At 100,000
data strings, the average query time increased from 0.61ms
to 0.78ms for TimeCost+. As the data size increased,
TimeCost+ began outperforming the uncompressed index.

C. Evaluating the CombineLists Algorithm

We evaluated the performance of the CombineLists algo-
rithm on the same three data sets. In step 1, we generated
candidate list pairs by using both (q + 1)-grams and LSH.
In step 2, we implemented both the basic and the cost-based
algorithms for iteratively selecting list pairs to combine.
Benefits of Improved List-Merging Algorithms: We first
evaluated the benefits of using the improved list-merging
algorithms to solve the T -occurrence problem for queries on
combined inverted lists, as described in Section V-B. As an
example, we compared the DivideSkip algorithm in [20] and
its improved version that considers duplicated inverted lists in
a query. We used the basic algorithm to select lists to combine.
Figure 13 shows the average running time for the algorithm
and its improved version (marked as “Improved”). When the
reduction ratio increased, more lists were combined, and the
improved algorithm did reduce the average query time.
Choosing Lists to Combine: We compared the basic al-
gorithm with the cost-based algorithm for choosing lists to
combine, and the results are shown in Figure 14(a). The
average query time was plotted over different reduction ratios
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for both algorithms. We observe that on all three data sets, the
query running time for both algorithms increased very slowly
as we increased the index size reduction ratio, until about 40%
to 50%. That means, this technique can reduce the index size
without increasing the query time! As we further increased the
index size reduction, the query time started to increase. For
the cost-based algorithm, the time increased slowly, especially
on the IMDB data set. The reason is that this cost-based
algorithm avoided choosing bad lists to combine, while the
basic algorithm blindly chose lists to combine.

Figure 12(b) shows that when the reduction ratio is less
than 40%, the query time even decreased. This improve-
ment is mainly due to the improved list-merging algorithms.
Figure 14(b) shows how the algorithms of combining lists
affected query performance as we increased the data size, for
a reduction ratio of 40%.

D. Extension to Other Similarity Functions

For simplicity, our discussion so far mainly focused on the
edit distance metric. We can generalize the results to com-
monly used similarity measures such as Jaccard and cosine.
To reduce the size of inverted lists based on those similarity
functions, the main procedure of algorithms DiscardLists and
CombineLists remains the same. The only difference is that in
DiscardLists, to compute the merging threshold T for a query
after discarding some lists, we need to subtract the number of
hole lists for the query from the formulas proposed in [20].
In addition, for the estimation of the post-processing time, we
also need to replace the estimation of the edit distance time
with that of Jaccard and cosine time respectively. Figure 15
shows the average running time for the DBLP data using
variants of the TimeCost+ algorithm for these two functions.
The results on the other two data sets were similar. We see
that the average running time continuously decreased when
the reduction ratio increased to up to 40%. For example, at a



40% reduction ratio for the cosine function, the running time
decreased from 1.7ms to 0.8ms.
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Fig. 15. Jaccard and Cosine functions (DiscardLists, DBLP titles)

The performance started degrading at a 50% reduction ratio
and increased rapidly at a ratio higher than 60%. For a 70%
ratio, the time for the cosine and jaccard functions increased to
150ms and 115ms for LongList. For high reduction ratios the
TimeCost and TimeCost+ methods became worse than the
panic-based methods, due to the inaccuracy in estimating the
merging time. Note that the Cosine and Jaccard functions are
expensive to compute, therefore the punishment (in terms of
post-processing time) for inaccurately estimating the merging
time can be much more severe than that for the edit distance.

E. Comparing Different Compression Techniques

We implemented the compression techniques discussed so
far as well as the VGRAM technique. Since Carryover-12 and
VGRAM do not allow explicit control of the compression ratio,
for each of them we reduced the size of the inverted-list index
and computed their compression ratio. Then we compressed
the index using DiscardLists and CombineLists separately
to achieve the same compression ratio.
Comparison with Carryover-12: Figure 16(a) compares the
performance of the two new techniques with Carryover-12.
For Carryover-12, to achieve a good balance between the
query performance and the index size, we used fixed-size
segments of 128 4-byte integers and a synchronization point
for each segment. The cache contained 20,000 segment slots
(approximately 10MB). It achieved a compression ratio of
58% for the IMDB dataset and 48% for the WebCorpus
dataset. We see that its online decompression has a profound
impact on the performance. It increased the average running
time from an original 5.85ms to 30.1ms for the IMDB dataset,
and from an original 1.76ms to 7.32ms for the WebCorpus
dataset. The CombineLists method performed significantly
better at 22.15ms for the IMDB dataset and 2.3ms for the
WebCorpus dataset. The DiscardLists method could even
slightly decrease the running time compared to the original
index to 5.81ms and 1.75ms for the IMDB and WebCorpus
datasets, respectively.
Comparison with VGRAM: Figure 16(b) compares the per-
formance of two new techniques with VGRAM. We set its
qmin parameter to 4. We did not take into account the memory
requirement for the dictionary trie structure because it was
negligible. The compression ratio was 30% for the IMDB
dataset and 27% for the WebCorpus dataset. Interestingly,
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Fig. 16. Comparing DiscardLists and CombineLists with existing techniques
at the same reduction ratio. In each figure, the left scale corresponds to the
WebCorpus data set, and the right scale corresponds to the IMDB data set.

all methods could outperform the original, uncompressed
index. As suspected, VGRAM can considerably reduce the
running time for both datasets. For the IMDB dataset, it
reduced the time from an original 5.85ms to 4.02ms, and
for the WebCorpus dataset from 1.76ms 1.55ms. Surprisingly,
the CombineLists method reduced the running time even
more than VGRAM to 3.34ms for the IMDB dataset and to
1.47ms for the WebCorpus dataset. The DiscardLists method
performed competitively for the IMDB dataset at 3.93ms
and slightly faster than the original index (1.67ms) on the
WebCorpus dataset.
Summary: (1) CombineLists and DiscardLists can signif-
icantly outperform Carryover-12 at the same memory re-
duction ratio because of the online decompression required
by Carryover-12. (2) For small compression ratios Com-
bineLists performs best, even outperforming VGRAM. (3) For
large compression ratios DiscardLists delivers the best query
performance. (4) While Carryover-12 can achieve reductions
up to 60% and VGRAM up to 30%, neither allows explicit con-
trol over the reduction ratio. DiscardLists and CombineLists
offer this flexibility with good query performance.

F. Integrating Several Approaches

The methods studied in this paper are indeed orthogonal,
thus we could even use their combinations to further reduce the
index size and/or improve query performance. As an example,
we integrated CombineLists with Carryover-12. We first
compressed the index using CombineLists approach with a
reduction α, and then applied Carryover-12 on the resulting
index. We varied α from 0 (no reduction for CombineLists)
to 60% in 10% increments. The results of the overall re-
duction ratio and the average query time are shown in the
“CL+Carryover-12” curve in Figure 17. The leftmost point
on the curve corresponds to the case where α = 0. For
comparison purposes, we also plotted the results of using the
CombineLists alone shown on the other curve. The results
clearly show that using both methods we can achieve high
reduction ratios with a better query performance than using
CombineLists alone. Consider the first point that only uses
Carryover-12. It could achieve a 48% reduction with an
average query time of 7.3ms. By first using CombineLists
at a 30% ratio (4th point on the curve) we could achieve a
higher reduction ratio (61%) at a lower query time (6.34ms).
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Fig. 17. Reducing index size using CombineLists with Carryover-12.

One way to integrate multiple methods is to distribute
the global memory constraint among several methods. Notice
since Carryover-12 and VGRAM do not allow explicit control
of the index size, it is not easy to use them to satisfy an
arbitrary space constraint. Several open challenging problems
need more future research. First, we need to decide how to
distribute the global memory constraint among different meth-
ods. Second, we need to decide in which order to use them.
For example, if we use CombineLists first, then we never
consider discarding merged lists in DiscardLists. Similarly, if
we run DiscardLists first, then we never consider combining
any discarded list in CombineLists.
Additional Experiments: In [4] we included many additional
experimental results, including experiments on more data sets,
performance of different methods to choose candidate pairs
to combine, and how the techniques perform in the presence
of query-workload changes. We also discuss how to utilize
filtering techniques for compression.

VII. CONCLUSIONS

In this paper, we studied how to reduce the size of
inverted-list index structures of string collections to support
approximate string queries. We studied how to adopt existing
inverted-list compression techniques to achieve the goal, and
proposed two novel methods for achieving the goal: one
is based on discarding lists, and one based on combining
correlated lists. They are both orthogonal to existing com-
pression techniques, exploit a unique property of our setting,
and offer new opportunities for improving query performance.
We studied technical challenges in each method, and proposed
efficient, cost-based algorithms for solving related problems.
Our extensive experiments on real data sets show that our
approaches provide applications the flexibility in deciding the
tradeoff between query performance and indexing size and can
outperform existing compression techniques.
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