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Abstract—Deep Web contents are accessed by queries submitted to Web databases and the returned data records are enwrapped in

dynamically generated Web pages (they will be called deep Web pages in this paper). Extracting structured data from deep Web pages

is a challenging problem due to the underlying intricate structures of such pages. Until now, a large number of techniques have been

proposed to address this problem, but all of them have inherent limitations because they are Web-page-programming-language-

dependent. As the popular two-dimensional media, the contents on Web pages are always displayed regularly for users to browse.

This motivates us to seek a different way for deep Web data extraction to overcome the limitations of previous works by utilizing some

interesting common visual features on the deep Web pages. In this paper, a novel vision-based approach that is Web-page-

programming-language-independent is proposed. This approach primarily utilizes the visual features on the deep Web pages to

implement deep Web data extraction, including data record extraction and data item extraction. We also propose a new evaluation

measure revision to capture the amount of human effort needed to produce perfect extraction. Our experiments on a large set of Web

databases show that the proposed vision-based approach is highly effective for deep Web data extraction.

Index Terms—Web mining, Web data extraction, visual features of deep Web pages, wrapper generation.
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1 INTRODUCTION

THE World Wide Web has more and more online Web
databases which can be searched through their Web

query interfaces. The number of Web databases has
reached 25 millions according to a recent survey [21].
All the Web databases make up the deep Web (hidden
Web or invisible Web). Often the retrieved information
(query results) is enwrapped in Web pages in the form of
data records. These special Web pages are generated
dynamically and are hard to index by traditional crawler-
based search engines, such as Google and Yahoo. In this
paper, we call this kind of special Web pages deep Web
pages. Each data record on the deep Web pages corre-
sponds to an object. For instance, Fig. 1 shows a typical
deep Web page from Amazon.com. On this page, the
books are presented in the form of data records, and each
data record contains some data items such as title, author,
etc. In order to ease the consumption by human users,
most Web databases display data records and data items
regularly on Web browsers.

However, to make the data records and data items in
them machine processable, which is needed in many
applications such as deepWeb crawling and metasearching,
the structured data need to be extracted from the deep Web
pages. In this paper, we study the problem of automatically

extracting the structured data, including data records and
data items, from the deep Web pages.

The problem of Web data extraction has received a lot of
attention in recent years and most of the proposed solutions
are based on analyzing the HTML source code or the tag
trees of the Web pages (see Section 2 for a review of these
works). These solutions have the following main limita-
tions: First, they are Web-page-programming-language-
dependent, or more precisely, HTML-dependent. As most
Web pages are written in HTML, it is not surprising that all
previous solutions are based on analyzing the HTML source
code of Web pages. However, HTML itself is still evolving
(from version 2.0 to the current version 4.01, and version 5.0
is being drafted [14]) and when new versions or new tags
are introduced, the previous works will have to be
amended repeatedly to adapt to new versions or new tags.
Furthermore, HTML is no longer the exclusive Web page
programming language, and other languages have been
introduced, such as XHTML and XML (combined with
XSLT and CSS). The previous solutions now face the
following dilemma: should they be significantly revised or
even abandoned? Or should other approaches be proposed
to accommodate the new languages? Second, they are
incapable of handling the ever-increasing complexity of
HTML source code of Web pages. Most previous works
have not considered the scripts, such as JavaScript and CSS,
in the HTML files. In order to make Web pages vivid and
colorful, Web page designers are using more and more
complex JavaScript and CSS. Based on our observation from
a large number of real Web pages, especially deep Web
pages, the underlying structure of current Web pages is
more complicated than ever and is far different from their
layouts on Web browsers. This makes it more difficult for
existing solutions to infer the regularity of the structure of
Web pages by only analyzing the tag structures.

Meanwhile, to ease human users’ consumption of the
information retrieved from search engines, good template
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designers of deep Web pages always arrange the data
records and the data items with visual regularity to meet
the reading habits of human beings. For example, all the
data records in Fig. 1 are clearly separated, and the data
items of the same semantic in different data records are
similar on layout and font.

In this paper, we explore the visual regularity of the data
records and data items on deep Web pages and propose a
novel vision-based approach, Vision-based Data Extractor
(ViDE), to extract structured results from deep Web pages
automatically. ViDE is primarily based on the visual features
human users can capture on the deep Web pages while also
utilizing some simple nonvisual information such as data
types and frequent symbols to make the solution more
robust. ViDE consists of two main components, Vision-
based Data Record extractor (ViDRE) and Vision-based Data
Item extractor (ViDIE). By using visual features for data
extraction, ViDE avoids the limitations of those solutions
that need to analyze complex Web page source files.

Our approach employs a four-step strategy. First, given a
sample deep Web page from a Web database, obtain its
visual representation and transform it into a Visual Block
tree which will be introduced later; second, extract data
records from the Visual Block tree; third, partition extracted
data records into data items and align the data items of the
same semantic together; and fourth, generate visual
wrappers (a set of visual extraction rules) for the Web
database based on sample deep Web pages such that both
data record extraction and data item extraction for new
deep Web pages that are from the same Web database can
be carried out more efficiently using the visual wrappers.

To our best knowledge, although there are already some
works [3], [4], [23], [26], [28] that pay attention to the visual
information on Web pages, our work is the first to perform
deep Web data extraction using primarily visual features.
Our approach is independent of any specific Web page
programming language. Although our current implementa-
tion uses the VIPS algorithm [4] to obtain a deep Web
page’s Visual Block tree and VIPS needs to analyze the
HTML source code of the page, our solution is independent
of any specific method used to obtain the Visual Block tree

in the sense that any tool that can segment the Web pages
into a tree structure based on the visual information, not
HTML source code, can be used to replace VIPS in the
implementation of ViDE.

In this paper, we also propose a new measure, revision, to
evaluate the performance of Web data extraction tools. It is
the percentage of the Web databases whose data records or
data items cannot be perfectly extracted (i.e., at least one of
the precision and recall is not 100 percent). For these Web
databases, manual revision of the extraction rules is needed
to achieve perfect extraction.

In summary, this paper has the following contributions:
1) A novel technique is proposed to perform data extraction
from deep Web pages using primarily visual features. We
open a promising research direction where the visual
features are utilized to extract deep Web data automatically.
2) A new performance measure, revision, is proposed to
evaluate Web data extraction tools. This measure reflects
how likely a tool will fail to generate a perfect wrapper for a
site. 3) A large data set consisting of 1,000 Web databases
across 42 domains is used in our experimental study. In
contrast, the data sets used in previous works seldom had
more than 100 Web databases. Our experimental results
indicate that our approach is very effective.

The rest of the paper is organized as follows: Related
works are reviewed in Section 2. Visual representation of
deep Web pages and visual features on deep Web pages are
introduced in Section 3. Our solutions to data record
extraction anddata itemextraction aredescribed in Sections 4
and 5, respectively. Wrapper generation is discussed in
Section 6. Experimental results are reported in Section 7.
Finally, concluding remarks are given in Section 8.

2 RELATED WORK

A number of approaches have been reported in the literature
for extracting information from Web pages. Good surveys
about previous works on Web data extraction can be found
in [16] and [5]. In this section, we briefly review previous
works based on the degree of automation in Web data
extraction, and compare our approach with fully automated
solutions since our approach belongs to this category.

2.1 Manual Approaches

The earliest approaches are the manual approaches in which
languages were designed to assist programmer in construct-
ing wrappers to identify and extract all the desired data
items/fields. Someof the best known tools that adoptmanual
approaches are Minerva [7], TSIMMIS [11], and Web-OQL
[1]. Obviously, they have low efficiency and are not scalable.

2.2 Semiautomatic Approaches

Semiautomatic techniques can be classified into sequence-
based and tree-based. The former, such as WIEN [15], Soft-
Mealy [12], and Stalker [22], represents documents as
sequences of tokens or characters, and generates delimiter-
based extraction rules through a set of training examples.
The latter, such as W4F [24] and XWrap [19], parses the
document into a hierarchical tree (DOM tree), based on
which they perform the extraction process. These ap-
proaches require manual efforts, for example, labeling some
sample pages, which is labor-intensive and time-consuming.
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2.3 Automatic Approaches

In order to improve the efficiency and reducemanual efforts,
most recent researches focus on automatic approaches
instead of manual or semiautomatic ones. Some representa-
tive automatic approaches are Omini [2], RoadRunner [8],
IEPAD [6], MDR [17], DEPTA [29], and the method in [9].
Some of these approaches perform only data record
extraction but not data item extraction, such as Omini and
the method in [9]. RoadRunner, IEPAD, MDR, DEPTA,
Omini, and the method in [9] do not generate wrappers, i.e.,
they identify patterns and perform extraction for each Web
page directly without using previously derived extraction
rules. The techniques of these works have been discussed
and compared in [5], andwe do not discuss them any further
here. Note that all of them mainly depend on analyzing the
source code of Web pages. As a result, they cannot avoid the
inherent limitations described in Section 1. In addition, there
are several works (DeLa [27], DEPTA, and the method in
[20]) on data item extraction, which is a preparation step for
holistic data annotation, i.e., assigning meaningful labels to
data items. DeLa utilizes HTML tag information to construct
regular expression wrapper and extract data items into a
table. Similar to DeLa, DEPTA also operates on HTML tag
tree structures to first align data items in a pair of data
records that can be matched with certainty. The remaining
data items are then incrementally added. However, both
data alignment techniques are mainly based on HTML tag
tree structures, not visual information. The automatic data
alignment method in [20] proposes a clustering approach to
perform alignment based on five features of data items,
including font of text. However, this approach is primarily
text-based and tag-structure-based, while our method is
primarily visual-information-based.

The only works that we are aware of that utilize some
visual information to extract Web data are ViNTS [30],
ViPERS [25], HCRF [32], and VENTex [10]. ViNTs use the
visual content features on the query result pages to capture
content regularities denoted as Content Lines, and then,
utilize the HTML tag structures to combine them. ViPER
also incorporates visual information on a Web page for data
records extraction with the help of a global multiple
sequence alignment technique. However, in the two
approaches, tag structures are still the primary information
utilized, while visual information plays a small role. In
addition, both of them only focus on data record extraction,
without considering data item extraction. HCRF is a
probabilistic model for both data record extraction and
attribute labeling. Compared to our solution, it also uses
VIPS algorithm [4] to represent Web pages, but the tag
information is still an important feature in HCRF. And
furthermore, it is implemented under an ideal assumption
that every record corresponds to one block in the Visual
Block tree, but this assumption is not always correct
according to our observation to the real Web pages (about
20 percent of deep Web pages do not meet this assump-
tion). VENTex implements the information extraction from
Web tables based on a variation of the CSS2 visual box
model. So, it can be regarded as the only related work using
pure visual features. The main difference between our
approach and VENTex is their objectives. VENTex aims to

extract various forms of tables that are embedded in
common pages, whereas our approach focuses on extract-
ing regularly arranged data records and data items from
deep Web pages.

3 VISUAL BLOCK TREE AND VISUAL FEATURES

Before the main techniques of our approach are presented,
we describe the basic concepts and visual features that our
approach needs.

3.1 Visual Information of Web Pages

The information on Web pages consists of both texts and
images (static pictures, flash, video, etc.). The visual
information of Web pages used in this paper includes
mostly information related to Web page layout (location and
size) and font.

3.1.1 Web Page Layout

A coordinate system can be built for every Web page. The
origin locates at the top left corner of the Web page. The
X-axis is horizontal left-right, and the Y-axis is vertical top-
down. Suppose each text/image is contained in a minimum
bounding rectangle with sides parallel to the axes. Then, a
text/image can have an exact coordinate (x, y) on the Web
page. Here, x refers to the horizontal distance between the
origin and the left side of its corresponding rectangle, while
y refers to the vertical distance between the origin and the
upper side of its corresponding box. The size of a text/
image is its height and width.

The coordinates and sizes of texts/images on the Web
page make up the Web page layout.

3.1.2 Font

The fonts of the texts on a Web page are also very useful
visual information, which are determined by many attri-
butes as shown in Table 1. Two fonts are considered to be the
same only if they have the same value under each attribute.

3.2 Deep Web Page Representation

The visual information of Web pages, which has been
introduced above, can be obtained through the program-
ming interface provided by Web browsers (i.e., IE). In this
paper, we employ the VIPS algorithm [4] to transform a deep
Web page into a Visual Block tree and extract the visual
information. AVisual Block tree is actually a segmentation of
a Web page. The root block represents the whole page, and
each block in the tree corresponds to a rectangular region on
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the Web page. The leaf blocks are the blocks that cannot be
segmented further, and they represent the minimum
semantic units, such as continuous texts or images. Fig. 2a
shows a popular presentation structure of deep Web pages
and Fig. 2b gives its corresponding Visual Block tree. The
technical details of building Visual Block trees can be found
in [4]. An actual Visual Block tree of a deep Web page may
contain hundreds even thousands of blocks.

Visual Block tree has three interesting properties. First,
block a contains block b if a is an ancestor of b. Second, a
and b do not overlap if they do not satisfy property one.
Third, the blocks with the same parent are arranged in the
tree according to the order of the corresponding nodes
appearing on the page. These three properties are
illustrated by the example in Fig. 2. The formal represen-
tations for internal blocks and leaf blocks in our approach
are given below. Each internal block a is represented as
a ¼ ðCS; P ; S; FS; ISÞ, where CS is the set containing its
child blocks (note that the order of blocks is also kept), P
is the position of a (its coordinates on the Web page), S is
its size (height and width), FS is the set of the fonts
appearing in a, and IS is the number of images in a. Each
leaf block b is represented as b ¼ ðP; S; F ; L; I; CÞ, where
the meanings of P and S are the same as those of an inner
block, F is the font it uses, L denotes whether it is a
hyperlink text, I denotes whether it is an image, and C is
its content if it is a text.

3.3 Visual Features of Deep Web Pages

Web pages are used to publish information to users, similar
to other kinds of media, such as newspaper and TV. The
designers often associate different types of information with
distinct visual characteristics (such as font, position, etc.) to
make the information on Web pages easy to understand. As
a result, visual features are important for identifying special

information on Web pages. Deep Web pages are special
Web pages that contain data records retrieved from Web
databases, and we hypothesize that there are some distinct
visual features for data records and data items. Our
observation based on a large number of deep Web pages
is consistent with this hypothesis. We describe the main
visual features in this section and show the statistics about
the accuracy of these features at the end of this Section 3.3.

Position features (PF s). These features indicate the
location of the data region on a deep Web page.

. PF1: Data regions are always centered horizontally.

. PF2: The size of the data region is usually large
relative to the area size of the whole page.

Since the data records are the contents in focus on deep
Web pages, Web page designers always have the region
containing the data records centrally and conspicuously
placed on pages to capture the user’s attention. By investigat-
ing a large number of deep Web pages, we found two
interesting facts. First, data regions are always located in the
middle section horizontally on deep Web pages. Second, the
size of a data region is usually large when there are enough
data records in the data region. The actual size of a data
region may change greatly because it is not only influenced
by the number of data records retrieved, but also by what
information is included in each data record. Therefore, our
approachuses the ratio of the size of thedata region to the size
of whole deep Web page instead of the actual size. In our
experiments in Section 7, the threshold of the ratio is set at 0.4,
that is, if the ratio of the horizontally centered region is
greater than or equal to 0.4, then the region is recognized as
the data region.

Layout features (LF s). These features indicate how the
data records in the data region are typically arranged.

. LF1: The data records are usually aligned flush left
in the data region.

. LF2: All data records are adjoining.

. LF3: Adjoining data records do not overlap, and the
space between any two adjoining records is the
same.

Data records are usually presented in one of the
two layout models shown in Fig. 3. In Model 1, the data
records are arranged in a single column evenly, though they
may be different in width and height. LF1 implies that the
data records have the same distance to the left boundary of
the data region. In Model 2, data records are arranged in
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Fig. 2. (a) The presentation structure and (b) its Visual Block tree.

Fig. 3. Layout models of data records on deep Web pages.



multiple columns, and the data records in the same column
have the same distance to the left boundary of the data
region. Because most deepWeb pages follow the first model,
we only focus on the first model in this paper, and the second
model can be addressed with minor implementation expan-
sion to our current approach. In addition, data records do not
overlap, which means that the regions of different data
records can be separated.

Appearance features (AF s). These features capture the
visual features within data records.

. AF1: Data records are very similar in their appear-
ances, and the similarity includes the sizes of the
images they contain and the fonts they use.

. AF2: The data items of the same semantic in
different data records have similar presentations
with respect to position, size (image data item), and
font (text data item).

. AF3: The neighboring text data items of different
semantics often (not always) use distinguishable
fonts.

AF1 describes the visual similarity at the data record
level. Generally, there are three types of data contents in data
records, i.e., images, plain texts (the texts without hyper-
links), and link texts (the texts with hyperlinks). Table 2
shows the information on the three aspects for the data
records in Fig. 1. We can see that these five data records are
very close on the three aspects. AF2 and AF3 describe the
visual similarity at the data item level. The text data items of
the same semantic always use the same font, and the image
data items of the same semantic are often similar in size. The
positions of data items in their respective data records can be
classified into two kinds: absolute position and relative position.
The former means that the positions of the data items of
certain semantic are fixed in the line they belong to, while the
latter refers to the position of a data item relative to the data
item ahead of it. Furthermore, the items of the same semantic
from different data records share the same kind of position.
AF3 indicates that the neighboring text data items of
different semantics often use distinguishable fonts. How-
ever, AF3 is not a robust feature because some neighboring
data items may use the same font. Neighboring data items
with the same font are treated as a composite data item.
Composite data items have very simple string patterns and
the real data items in them can often be separated by a
limited number of symbols, such as “,”, “/,” etc. In addition,

the composite data items of the same semantics share the
same string pattern. Hence, it’s easy to break composite data
items into real data items using some predefined separating
symbols. For example, in Fig. 4, four data items, such as
publisher, publishing date, edition, and ISBN, form a
composite data item, and they are separated by commas.
According to our observation to deep Web pages, the
granularity of the data items extracted is not larger than
what HTML tags can separate, because a composite data
item is always included in one leaf node in the tag tree.

Content feature (CF ). These features hint the regularity
of the contents in data records.

. CF1: The first data item in each data record is
always of a mandatory type.

. CF2: The presentation of data items in data records
follows a fixed order.

. CF3: There are often some fixed static texts in data
records, which are not from the underlying Web
database.

The data records correspond to the entities in real world,
and they consist of data items with different semantics that
describe the attribute values of the entities. The data items
can be classified into two kinds: mandatory and optional.
Mandatory data items appear in all data records. For
example, if every data record must have a title, then titles
are mandatory data items. In contrast, optional items may
be missing in some data records. For example, “discounted
price” for products is likely an optional unit. The order of
different types of data items from the same Web database is
always fixed in data records. For example, the order of
attributes of data records from Bookpool.com in Fig. 4 is
“title,” “author,” “publisher,” “publish time,” “edition,”
“ISBN,” “discount price,” “save money,” “availability,” etc.
Fixed static texts refer to the texts that appear in every data
record. Most of them are meaningful labels that can help
users understand the semantics of data items, such as “Buy
new” in Fig. 4. We call these static texts static items, which
are part of the record template.

Our deep Web data extraction solution is developed
mainly based on the above four types of visual features. PF
is used to locate the region containing all the data records
on a deep Web page; LF and AF are combined together to
extract the data records and data items.

Statistics on the visual features. To verify the robust-
ness of these visual features we observed, we examined
these features on 1,000 deep Web pages of different Web
databases from the General Data Set (GDS) used in our
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Relevant Visual Information about the

Top Five Data Records in Fig. 1

Fig. 4. Illustrating visual features of deep Web pages.



experiments (see Section 7 for more information about
GDS). The results are shown in Table 3. For most features
(except AF3 and CF3), their corresponding statistics are
the percentages of the deep Web pages that satisfy them.
For example, the statistics of 99.9 percent for PF1 means
that for 99.9 percent of the deep Web pages, PF1 feature
“data regions are always centered horizontally” is true.
From the statistics, we can conclude that these visual
features are very robust and can be reliably applied to
general deep Web pages. For AF3, 92.8 percent is the
percentage of the data items that have different font from
their following data items. For CF3, 6.5 percent is the
percentage of the static data items over all data items.

We should point out that when a feature is not satisfied
by a page, it does not mean that ViDE will fail to process
this page. For example, our experiments using the data sets
to be described in Section 7 show that among the pages that
violate LF3, 71.4 percent can still be processed successfully
by ViDE, and among the pages that violate AF1, 80 percent
can still be correctly processed.

3.4 Special Supplementary Information

Several types of simple nonvisual information are also used
in our approach in this paper. They are same text, frequent
symbol, and data type, as explained in Table 4.

Obviously, the above information is very useful to
determine whether the data items in different data records
from the same Web database belong to the same semantic.
The above information can be captured easily from the
Web pages using some simple heuristic rules without the
need to analyze the HTML source code or the tag trees of

the Web pages. Furthermore, they are specific language
(i.e., English, French, etc.) independent.

4 DATA RECORDS EXTRACTION

Data record extraction aims to discover the boundary of
data records and extract them from the deep Web pages. An
ideal record extractor should achieve the following: 1) all
data records in the data region are extracted and 2) for each
extracted data record, no data item is missed and no
incorrect data item is included.

Instead of extracting data records from the deep Web
page directly, we first locate the data region, and then,
extract data records from the data region. PF1 and PF2
indicate that the data records are the primary content on the
deep Web pages and the data region is centrally located on
these pages. The data region corresponds to a block in the
Visual Block tree. We locate the data region by finding the
block that satisfies the two position features. Each feature can
be considered as a rule or a requirement. The first rule can be
applied directly, while the second rule can be represented by
ðareab=areapageÞ > Tregion, where areab is the area of block b,
areapage is the area of the whole deepWeb page, and Tregion is
a threshold. The threshold is trained from sample deep Web
pages. If more than one block satisfies both rules, we select
the block with the smallest area. Though very simple, this
method can find the data region in the Visual Block tree
accurately and efficiently.

Each data record corresponds to one or more subtrees in
the Visual Block tree, which are just the child blocks of the
data region, as Fig. 5 shows. So, we only need to focus on
the child blocks of the data region. In order to extract data
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Nonvisual Information Used
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records from the data region accurately, two facts must be
considered. First, there may be blocks that do not belong to
any data record, such as the statistical information (e.g.,
about 2,038 matching results for java) and annotation about
data records (e.g., 1, 2, 3, 4, 5 (Next)). These blocks are called
noise blocks in this paper. Noise blocks may appear in the
data region because they are often close to the data records.
According to LF2, noise blocks cannot appear between data
records. They always appear at the top or the bottom of the
data region. Second, one data record may correspond to one
or more blocks in the Visual Block tree, and the total
number of blocks in which one data record contains is not
fixed. In Fig. 5, block b1 (statistical information) and b9
(annotation) are noise blocks; there are three data records
(b2 and b3 form data record 1; b4, b5, and b6 form data
record 2; b7 and b8 form data record 3), and the dashed
boxes are the boundaries of data records.

Data record extraction is to discover the boundary of
data records based on the LF and AF features. That is, we
attempt to determine which blocks belong to the same data
record. We achieve this in the following three phases:

1. Phase 1: Filter out some noise blocks.
2. Phase 2: Cluster the remaining blocks by computing

their appearance similarity.
3. Phase 3: Discover data record boundary by regroup-

ing blocks.

4.1 Phase 1: Noise Blocks Filtering

Because noise blocks are always at the top or bottom, we
check the blocks located at the two positions according to
LF1. If a block at these positions is not aligned flush left, it
will be removed as a noise block. This step does not
guarantee the removal of all noise blocks. For example, in
Fig. 5, block b9 can be removed in this step, while block b1
cannot be removed.

4.2 Phase 2: Blocks Clustering

The remaining blocks in the data region are clustered based
on their appearance similarity. Since there may be three
kinds of information in data records, i.e., images, plain text,
and link text, the appearance similarity between blocks is
computed from the three aspects. For images, we care about
the size; for plain text and link text, we care about the
shared fonts. Intuitively, if two blocks are more similar on
image size and font, they should be more similar in
appearance. The formula for computing the appearance
similarity between two blocks b1 and b2 is given below:

simðb1; b2Þ ¼ wi � simIMGðb1; b2Þ þ wpt � simPT ðb1; b2Þ
þ wlt � simLT ðb1; b2Þ;

ð1Þ
where simIMGðb1; b2Þ, simIMGðb1; b2Þ, and simLT ðb1; b2Þ
are the similarities based on image size, plain text font,
and link text font, respectively. And wi, wpt, and wlt are
the weights of these similarities, respectively. Table 5
gives the formulas to compute the component similarities
and the weights in different cases. The weight of one type
of contents is proportional to their total size relative to the
total size of the two blocks.

A simple one-pass clustering algorithm is applied. First,
starting from an arbitrary order of all the input blocks, take

the first block from the list and use it to form a cluster. Next,
for each of the remaining blocks, say b, compute its
similarity with each existing cluster. Let C be the cluster
that has the largest similarity with A. If simðb; CÞ > Tas for
some threshold Tas, which is to be trained by sample pages
(generally, Tas is set to 0.8), then add b to C; otherwise, form
a new cluster based on b. Function simðb; CÞ is defined to be
the average of the similarities between b and all blocks in C
computed using (1). As an example, by applying this
method to the blocks in Fig. 1, the blocks containing the
titles of the data records are clustered together, so are the
blocks containing the prices and so on.

4.3 Phase 3: Blocks Regrouping

The clusters obtained in the previous step do not
correspond to data records. On the contrary, the blocks in
the same cluster all come from different data records.
According to AF2, the blocks in the same cluster have the
same type of contents of the data records.

The blocks need to be regrouped such that the blocks
belonging to the same data record form a group. Our basic
idea of blocks regrouping is as follows: According to CF1,
the first data item in each data record is always mandatory.
Clearly, the cluster that contains the blocks for the first
items has the maximum number of blocks possible; let n be
this maximum number. It is easy to see that if a cluster
contains n blocks, these blocks contain mandatory data
items. Our regrouping method first selects a cluster with
n blocks and uses these blocks as seeds to form data
records. Next, given a block b, we determine which record b
belongs to according to CF2. For example, suppose we
know that title is ahead of author in each record and they
belong to different blocks (say an author block and a title
block). Each author block should relate to the nearest title
block that is ahead of it. In order to determine the order of
different semantic blocks, a minimum bounding rectangle is
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formed for each cluster on the page. By comparing the
positions of these rectangles on the page, we can infer the
order of the semantics. For example, if the rectangle
enclosing all title blocks is higher than the rectangle
enclosing the author blocks, then title must be ahead of its
corresponding author. Based on this idea, the algorithm of
block regrouping is developed as shown in Fig. 6.

This algorithm consists of three steps. Step 1 rearranges
the blocks in each cluster based on their appearance order
on the Web page, i.e., from left to right and from top to
bottom (lines 1-7). In addition, a minimum bounding
rectangle is formed for each cluster on the page (line 8).
In Step 2, n groups are initialized with a seed block in each
group as discussed earlier, where n is the number of blocks
in a maximum cluster, denoted as Cmax. According to CF1,
we always choose the cluster that contains the first
mandatory data item of each record as Cmax. Let bmax;k

denote the seed block in each initial group Gk. Step 3
determines to which group each block belongs. If block bi;j
(in Ci, Ci is not Cmax) and block bmax;k (in Cmax) are in the
same data record, then bi;j should be put into the same
group bmax;k belongs to. According to LF3, no two adjoining
data records overlap. So, for bmax;k in Cmax, the blocks that
belong to the same data record with bmax;k must be below
bmax;k�1 and above bmax;kþ1. For each Ci, if data record Ri is
ahead of Rmax, then the block on top of Ri is ahead of
(behind) the block on top of Rmax. Here, “ahead of” means
“on the left of” or “above,” and “behind” means “on the
right of” or “below.” According to CF2, bi;j is ahead of

bmax;k if they belong to the same data record. So, we can
conclude that if bmax;k is the nearest block behind bi;j, then
bi;j should be put into the group bmax;k belongs to.
Obviously, the complexity of this algorithm is Oðn2Þ, where
n is the number of data records in the sample page.

Example for data record extraction. Fig. 7 illustrates the
case in Fig. 5. First, b9 is removed according to LF1. Then,
the blocks on the left in Fig. 7b are clustered using (1).

Altogether, four clusters are formed and the blocks in them
are also rearranged: C1fb1g, C2fb2; b4; b7g, C3fb3; b6; b8g, and
C4fb5g. Next, C2 is Cmax, and b2, b4, and b7 form three initial
groups G1; G2, and G3, respectively. Since R3 and R4

overlap with R2 and R3 is below R2, we group b3, b6, and b8
with b2, b4, and b7 (the nearest block above it in C2),
respectively. At last, G1 is {b2; b3}, G2 is {b4; b5; b6}, and G3 is
{b7; b8}. Each group forms a complete data record.

5 DATA ITEM EXTRACTION

A data record can be regarded as the description of its
corresponding object, which consists of a group of data
items and some static template texts. In real applications,
these extracted structured data records are stored (often in
relational tables) at data item level and the data items of the
same semantic must be placed under the same column.
When introducing CF , we mentioned that there are three
types of data items in data records: mandatory data items,
optional data items, and static data items. We extract all
three types of data items. Note that static data items are
often annotations to data and are useful for future
applications, such as Web data annotation. Below, we focus
on the problems of segmenting the data records into a
sequence of data items and aligning the data items of the
same semantics together.

Note that data item extraction is different from data
record extraction; the former focuses on the leaf nodes of
the Visual Block tree, while the latter focuses on the child
blocks of the data region in the Visual Block tree.

5.1 Data Record Segmentation

AF3 indicates that composite data items cannot be segmen-
ted any more in the Visual Block tree. So, given a data
record, we can collect its leaf nodes in the Visual Block tree
in left to right order to carry out data record segmentation.
Each composite data item also corresponds to a leaf node.
We can treat it as a regular data item initially, and then,
segment it into the real data items with the heuristic rules
mentioned in AF3 after the initial data item alignment.
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Fig. 6. The algorithm of blocks regrouping.

Fig. 7. An illustration of data record extraction.



5.2 Data Item Alignment

CF1 indicates that we cannot align data items directly due to
the existence of optional data items. It is natural for data
records to miss some data items in some domains. For
example, somebooks havediscount price,while somedonot.

Every data record has been turned into a sequence of
data items through data record segmentation. Data item
alignment focuses on the problem of how to align the data
items of the same semantic together and also keep the order
of the data items in each data record. In the following, we
first define visual matching of data items, and then, propose
an algorithm for data item alignment.

5.2.1 Visual Matching of Data Items

AF2 indicates that if two data items from different data
records belong to the same semantic, they must have
consistent font and position, including both absolute
position and relative position. In Fig. 8, a simple algorithm
to match two visually similar data items from different data
records is described.

The first four lines of the algorithm say that two data
items are matched only if they have the same absolute
position in addition to having the same font. Here, absolute
position is the distance between the left side of the data
region and the left side of a data item. When two data items
do not have the same absolute position, they can still be
matched if they have the same relative position. For match
on relative position, the data items immediately before the
two input data items should be matched (from line 5 to
line 6). As an example, for the two records in Fig. 4, the titles
can be matched based on the absolute positions and the
authors on the relative positions.

Because two data items of different semantics can also be
visually similar, AF2 cannot really determine whether two
data items belong to the same semantic. But the fixed order
of the data items in the same data record (CF2) can help us
remedy this limitation. So, we further propose an effective
algorithm for data item alignment that utilizes both CF2
and AF2.

5.2.2 Algorithm for Data Item Alignment

CF2 says that the order of data items in data records is
fixed. Thus, each data record can be treated as a sequence of
data items. We can utilize this feature to align data items.
Our goal is to place the data items of the same semantic in

the same column. If an optional data item does not appear
in a data record, we will fill the vacant position with a
predefined blank item. Based on this insight, we propose a
multialignment algorithm that can process all extracted
data records holistically step by step. The basic idea of this
algorithm is described as follows: Initially, all the data items
are unaligned. We align data items by the order in their
corresponding data records. When we encounter optional
data items that do not appear in some data records, these
vacant positions will be filled with the predefined blank
item. This ensures that all data records are aligned and have
the same number of data items at the end. Our data item
alignment algorithm is shown in Fig. 9.

The input is n data records {r1; r2; . . . ; rn}, and each
data record ri is denoted as a sequence of data items
{item1

i ; item
2
i ; . . . ; item

m
i }. Any data item has a unique

position in its corresponding sequence according to the
semantic order. In each iteration, we only process the
next unaligned data item of every data record and decide
which ones should be ahead of all others. The complexity
of this algorithm is Oðn2 �mÞ, where n is the number of
data records in the sample page and m is the average
number of data items per data record.

Example for data item alignment. The example shown
in Fig. 10 explains the process of data item alignment.

LIU ET AL.: VIDE: A VISION-BASED APPROACH FOR DEEP WEB DATA EXTRACTION

Fig. 8. The algorithm of data item matching.
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Suppose there are three data records fr1; r2; r3g and each
row is a data record. We use simple geometric shapes
(rectangle, circle, triangle, etc.) to denote the data items. The
data items represented by the same shape are visually
matched data items. We also use itemj

i to denote the
jth data item of the ith data record. Initially (Fig. 10a), all
current unaligned data items fitem1

1; item
1
2; item

1
3g of the

input data records are placed into one cluster, i.e., they are
aligned as the first column. Next (Fig. 10b), the current
unaligned data items item2

1; item
2
2; item

2
3 are matched into

two clusters C1 ¼ fitem2
1; item

2
3g and C2 ¼ fitem2

2g (line 5 in
Fig. 9). Thus, we need to further decide which cluster
should form the next column. The data items in C1 can
match item4

2, and the position value 2 is logged (lines 6-12),
which means that item4

2 is the third of the unaligned data
items of r2. The data items in C2 can match item3

1 and item3
3,

and the position value 1 is logged (lines 6-12). Because 1 is
smaller than 2 (line 16), the data items in C1 should be
ahead of the data items in C2 and form the next column by
inserting the blank item into other records at the current
positions (lines 21-22). The remaining data items can be
aligned in the same way (Figs. 10c and 10d).

6 VISUAL WRAPPER GENERATION

ViDE has two components: ViDRE and ViDIE. There are
two problems with them. First, the complex extraction
processes are too slow in supporting real-time applications.
Second, the extraction processes would fail if there is only
one data record on the page. Since all deep Web pages from
the same Web database share the same visual template,
once the data records and data items on a deep Web page
have been extracted, we can use these extracted data
records and data items to generate the extraction wrapper
for the Web database so that new deep Web pages from the
same Web database can be processed using the wrappers
quickly without reapplying the entire extraction process.

Our wrappers include data record wrapper and data
item wrapper. They are the programs that do data record
extraction and data item extraction with a set of parameter
obtained from sample pages. For each Web database, we
use a normal deep Web page containing the maximum
number of data records to generate the wrappers. The
wrappers of previous works mainly depend on the
structures or the locations of the data records and data
items in the tag tree, such as tag path. In contrast, we mainly
use the visual information to generate our wrappers. Note

that some other kinds of information are also utilized to
enhance the performances of the wrappers, such as the data
types of the data items and the frequent symbols appearing
in the data items. But they are easy to obtain from the Web
pages. We describe the basic ideas of our wrappers below.

6.1 Vision-Based Data Record Wrapper

Given a deep Web page, vision-based data record wrapper
first locates the data region in the Visual Block tree, and
then, extracts the data records from the child blocks of the
data region.

Data region location. After the data region R on a
sample deep Web page P from site S is located by ViDRE,
we save five parameters values (x; y; w; h; l), where (x; y)
form the coordinate of R on P , w and h are the width and
height of R, and l is the level of R in the Visual Block tree.

Given a new deep Web page P � from S, we first check
the blocks at level l in the Visual Block tree for P �. The data
region on P � should be the block with the largest area
overlap with R on P �. The overlap area can be computed
using the coordinates and width/height information.

Data record extraction. For each record, our visual data
record wrapper aims to find the first block of each record
and the last block of the last data record (denoted as blast).

To achieve this goal, we save the visual information (the
same as the information used in (1)) of the first block of each
data record extracted from the sample page and the distance
(denoted as d) between two data records. For the child
blocks of the data region in a new page, we find the first
block of each data record by the visual similarity with the
saved visual information. Next, blast on the new page needs
to be located. Based on our observation, in order to help the
users differentiate data records easily, the vertical distance
between any two neighboring blocks in one data record is
always smaller than d and the vertical distance between blast
and its next block is not smaller than d. Therefore, we
recognize the first block whose distance with its next block
is larger than d as blast.

6.2 Vision-Based Data Item Wrapper

The data alignment algorithm groups data items from
different data records into columns or attributes such that
data items under the same column have the same semantic.
Table 6 lists useful information about each attribute
obtained from the sample page that can help determine
which attribute a data item belongs to.

The basic idea of our vision-based data item wrapper is
described as follows: Given a sequence of attributes
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Fig. 10. An example of data item alignment.

TABLE 6
Explanation for (f; l; d)



fa1; a2; . . . ; ang obtained from the sample page and a
sequence of data items fitem1; item2; . . . ; itemmg obtained
from a new data record, the wrapper processes the data
items in order to decide which attribute the current data
item can be matched to. For itemi and aj, if they are the
same on f , l, and d, their match is recognized. The wrapper
then judges whether itemiþ1 and ajþ1 are matched next, and
if not, it judges itemi and ajþ1. Repeat this process until all
data items are matched to their right attributes.

Note that if an attribute on a new page did not appear on
the sample page, the data item of the attribute cannot be
matched to any attribute. To avoid such a problem, several
sample pages may be used to generate the wrapper. This
can increase the chance that every attribute appears on at
least one of these sample pages.

This process is much faster than the process of wrap-per
generation. The complexity of data records extraction with
the wrapper is OðnÞ, where n is the number of data records
in the page. The complexity of data items extraction with
the wrapper is Oðn �mÞ, where n is the number of data
records in the test page andm is the average number of data
items per data record.

7 EXPERIMENTS

We have implemented an operational deep Web data
extraction system for ViDE based on the techniques we
proposed. Our experiments are done on a Pentium 4
1.9 GH, 512 MB PC. In this section, we first describe the
data sets used in our experiments, and then, introduce the
performance measures used. At last, we evaluate both
ViDRE and ViDIE. We also choose MDR [17] and DEPTA
[29] to compare with ViDRE and ViDIE, respectively. MDR
and DEPTA are the recent works on Web data record
extraction and data item extraction, and they are both
HTML-based approaches.

7.1 Data Sets

Most performance studies of previous works used small
data sets, which are inadequate in assuring the impartiality
of the experimental results. In our work, we use a large data
set to carry out the experiments.

GDS. This data set is collected from CompletePlanet
(www.completeplanet.com), which is currently the largest
deep Web repository with more than 70,000 entries of Web
databases. These Web databases are classified into 42 cate-
gories covering most domains in the real world. GDS
contains 1,000 available Web databases. For each Web
database, we submit five queries and gather five deep Web
pages with each containing at least three data records.

Special data set (SDS). During the process of obtaining
GDS, we noticed that the data records from two-thirds of
the Web databases have less than five data items on
average. To test the robustness of our approaches, we select
100 Web databases whose data records contain more than
10 data items from GDS as SDS.

Note that the deep Web pages collected in the testbed are
the ones that can be correctly displayed by the Web browser
we used. An example where a page is not correctly
displayed is when some images are displayed as small
red crosses. This will cause the positions of the texts on the
result page to shift.

7.2 Performance Measures

All previous works use precision and recall to evaluate their
experimental results (some also include F-measure, which is
the weighted harmonic mean of precision and recall). These
measures are also used in our evaluation.

In this paper, we propose a new metric, revision, to
measure the performance of an automated extraction
algorithm. It is defined to be the percentage of the Web
databases whose data records or data items are not perfectly
extracted, i.e., either precision or recall is not 100 percent.
This measure indicates the percentage of Web databases the
automated solution fails to achieve perfect extraction, and
manual revision of the solution is needed to fix this. An
example is used to illustrate the significance of this
measure. Suppose there are three approaches (A1, A2,
and A3) which can extract structured data records from
deep Web pages, and they use the same data set (five Web
databases and 10 data records in each Web database). A1
extracts nine records for each site and they are all correct.
So, the average precision and recall of A1 are 100 and
90 percent, respectively. A2 extracts 11 records for each site
and 10 are correct. So, the average precision and recall of A2
are 90.9 and 100 percent, respectively. A3 extracts 10 records
for four of the five databases and they are all correct. For the
fifth site, A3 extracts no records. So, the average precision
and recall of A3 are both 80 percent. Based on average
precision and recall, A1 and A2 are better than A3. But in real
applications, A3 may be the best choice. To make precision
and recall 100 percent, all wrappers generated by A1 and A2
have to be manually tuned/adjusted, while only one
wrapper generated by A3 needs to be manually tuned. In
other words, A3 needs the minimum manual intervention.

Because our experiments include data record extraction
and data item extraction, we define precision, recall, and
revision for them separately.

In Table 7, DRc is the total number of correctly extracted
data records, DRr is the total number of data records, DRe

is the total number of data records extracted, DIc is the total
number of correctly extracted data items, DIr is the total
number of data items, and DIe is the total number of data
items extracted; WDBc is the total number of Web
databases whose precision and recall are both 100 percent
and WDBt is the total number of Web databases processed.

7.3 Experimental Results on ViDRE

In this part, we evaluate ViDRE and also compare it with
MDR. MDR has a similarity threshold, which is set at the
default value (60 percent) in our test, based on the
suggestion of the authors of MDR. Our ViDRE also has a
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similarity threshold, which is set at 0.8. In this experiment,
the input to ViDRE and MDR contains the deep Web pages
and the output contains data records extracted. For ViDRE,
one sample result page containing the most data records is
used to generate the data record wrapper for each Web
database. Table 8 shows the experimental results on both
GDS and SDS. Based on our experiment, it takes approxi-
mately 1 second to generate the data record wrapper for
each page and less than half second to use the wrapper for
data record extraction.

From Table 8, we can make the following three
observations. First, ViDRE performs significantly better
than MDR on both GDS and SDS. Second, ViDRE is far
better than MDR on revision. ViDRE needs only to revise
slightly over 10 percent of the wrappers, while MDR has to
revise almost five times more wrappers than ViDRE. Third,
the precision and recall of ViDRE are steady on both SDS
and GDS, but for MDR, they drop noticeably for SDS. Our
analysis indicates that: for precision of ViDRE, most errors
are caused by failing to exclude noise blocks that are very
similar to the correct ones in appearance; for recall of
ViDRE, most errors are caused by mistaking some top or
bottom data records as the noise blocks; for MDR, its
performance is inversely proportional to the complexity of
the data records, especially data records with many
optional data items.

7.4 Experimental Results on ViDIE

In this part, we evaluate ViDIE and compare it with
DEPTA. DEPTA can be considered as the follow-up work
for MDR, and its authors also called it MDRII. Only correct
data records from ViDRE are used to evaluate ViDIE and
DEPTA. For ViDIE, two sample result pages are used to
generate the data item wrapper for each Web database.
Table 9 shows the experimental results of ViDIE and
DEPTA on both GDS and SDS. Our experiments indicate
that it takes between 0.5 and 1.5 seconds to generate the
data item wrapper for each page and less than half second
to use the wrapper for data item extraction.

FromTable 9, we can see that the observationswemade in
comparing the results of ViDRE and MDR remain basically
valid for comparing ViDIE and DEPTA. In addition, we also
found that DEPTA often misaligns two data items of
different semantics if they are close in the tag tree and have
the same tag path, and this leads to the misalignment of all
the data items in the same data record that follow the
misaligned data items. In contrast, ViDIE can easily
distinguish them due to their different fonts or positions.

We also tried to use one sample page and three sample
pages to generate the data item wrapper for each Web
database. When one page is used, the performance is much
lower; for example, for SDS, the precision, recall, and
revision are 91.7, 95, and 32.3 percent, respectively. This is
caused by the absence of some optional data items from all
the data records in the sample page used. When more
sample pages are used, the likelihood that this will happen
is significantly reduced. When three pages are used, the
results are essentially the same as shown in Table 9, where
two sample pages are used. This suggests that using two
sample pages to generate the data item wrapper for each
Web database is sufficient.

We also conducted experiments based on the data sets
used in [30] and provided by [13], and the results are
similar to those shown in Tables 8 and 9. These results are
not shown in this paper due to space consideration.

8 CONCLUSIONS AND FUTURE WORKS

With the flourish of the deep Web, users have a great
opportunity to benefit from such abundant information in
it. In general, the desired information is embedded in the
deep Web pages in the form of data records returned by
Web databases when they respond to users’ queries.
Therefore, it is an important task to extract the structured
data from the deep Web pages for later processing. In this
paper, we focused on the structured Web data extraction
problem, including data record extraction and data item
extraction. First, we surveyed previous works on Web data
extraction and investigated their inherent limitations.
Meanwhile, we found that the visual information of Web
pages can help us implement Web data extraction. Based on
our observations of a large number of deep Web pages, we
identified a set of interesting common visual features that
are useful for deep Web data extraction. Based on these
visual features, we proposed a novel vision-based approach
to extract structured data from deep Web pages, which can
avoid the limitations of previous works. The main trait of
this vision-based approach is that it primarily utilizes the
visual features of deep Web pages.

Our approach consists of four primary steps: Visual
Block tree building, data record extraction, data item
extraction, and visual wrapper generation. Visual Block
tree building is to build the Visual Block tree for a given
sample deep page using the VIPS algorithm. With the
Visual Block tree, data record extraction and data item
extraction are carried out based on our proposed visual
features. Visual wrapper generation is to generate the
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wrappers that can improve the efficiency of both data
record extraction and data item extraction. Highly accurate
experimental results provide strong evidence that rich
visual features on deep Web pages can be used as the basis
to design highly effective data extraction algorithms.

However, there are still some remaining issues and we
plan to address them in the future. First, ViDE can only
process deep Web pages containing one data region, while
there is significant number of multidata-region deep Web
pages. Though Zhao et al. [31] have attempted to address
this problem, their solution is HTML-dependent and its
performance has a large room for improvement. We intend
to propose a vision-based approach to tackle this problem.
Second, the efficiency of ViDE can be improved. In the
current ViDE, the visual information of Web pages is
obtained by calling the programming APIs of IE, which is a
time-consuming process. To address this problem, we
intend to develop a set of new APIs to obtain the visual
information directly from the Web pages.
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