
RS-Wrapper: Random Write Optimization
for Solid State Drive

Da Zhou
Information School

Renmin University of China
Beijing 100872, China

cadizhou@gmail.com

Xiaofeng Meng
Information School

Renmin University of China
Beijing 100872, China

xfmeng@ruc.edu.cn

ABSTRACT
Solid State Drive (SSD), emerging as new data storage media with
high random read speed, has been widely used in laptops, desk-
tops, and data servers to replace hard disk during the past few years.
However, poor random write performance becomes the bottle neck
in practice. In this paper, we propose to insert unmodified data into
random write sequence in order to convert random writes into se-
quential writes, and thus data sequence can be flushed at the speed
of sequential write. Further, we propose a clustering strategy to
improve the performance by reducing quantity of unmodified data
to read. After exploring the intrinsic parallelism of SSD, we also
propose to flush write sequences with the help of the simultaneous
program between planes and parallel program between devices for
the first time. Comprehensive experiments show that our method
outperform the existing random-write solution up to one order of
magnitude improvement.
Categories and Subject Descriptors: H.2.2 Database Manage-
ment: Physical Design-Access methods
General Terms: Algorithm, Design, Performance
Keywords: Flash Memory, Database, Random Write, Parallelism

1. INTRODUCTION
SSD, emerging as a new electronic storage device, is widely

adopted in laptops and personal computers during the past few
years. This mainly benefits from the high read performance of
SSD, especially random read performance. As we know, SSD does
not has mechanical part like the magnetic head of Hard Disk Drive
(HDD), therefore there is no latency for random read of SSD. As
a result, random read has similar speed with sequential read. This
characteristic improves the read performance of system fundamen-
tally. Besides this, SSD has other attractive characteristics, such
as low power consumption, high shock resistance and lightweight
form. All of these advantages make SSD as outstanding data stor-
age instead of HDD.

However, the random write performance of SSD, especially small
random writes, is very poor as shown in table 1. Read and sequen-
tial write is faster than random write in two orders. The costly erase

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’09, November 2–6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$10.00.

Table 1: IO Performance Values of Mtron SSD[5]
Sequential Sequential Random Random

Read Write Read Write
11,100 16,600 11,200 120

operation of flash memory lays down the main reason for the slow
performance of random writes. Erase is peculiar to flash memory.
In a word, erase operation has two important characteristics: erase
before rewrite and high cost. We must erase the whole block if we
want to rewrite pages of it. On the other hand, the cost of erase is
1.5ms, while that of write is only 0.22ms according to Micron elec-
tronics datasheet[3]. Besides the cost of erase itself, large quantity
of data need to be transferred before erase operation is executed.
Although erase operation has high cost and leads to low write per-
formance, every small updates will still trigger erase operation in
the worst situation. FTL embedded in SSD can reduce the num-
ber of erase by implementing out-of-place update with the help of
Physical-to-Logical mapping[4], but the efficiency is very low ac-
cording to random write performance as shown in table 1. As a
result, low performance of random write becomes the bottleneck of
wider applications of SSD.

In this paper we propose a novel and efficient method for avoid-
ing random write. Based on the key observation that SSD has high
sequential write performance, our method avoids random writes by
converting random write sequence into sequential write sequence
in order to take full advantage of high performance of sequential
write. We novelly insert unmodified data into the random write
sequence, which locate between the lower and upper limit of the
random write sequence. Finally we flush the constructed sequential
write sequence into SSD instead of original random write sequence.
Compared with flushing random write sequence, cost of writing the
converted sequential write sequence is much lower. Therefore the
write performance is enhanced obviously. Density and granular-
ity of write sequence are two key factors of the efficiency of our
method in this paper. We also propose to reduce the cost of get-
ting addresses and reading unmodified data further by cluster when
density is low than MD(Minimum Density).

We also propose to improve write performance by intrinsic par-
allelism of SSD further. SSD contains several flash memory de-
vices and one chip is made up of a number of planes. According
to this, we explore the simultaneous program between planes and
parallel program between devices for the first time. With help of in-
trinsic parallelism of SSD, we partition sequential write sequence
and flush partitions in parallel. Results of comparison experiments
show the write performance are enhanced obviously, especially for
sequence with low density.

The rest of this paper is organized as follows. Section 2 explains

In Proceedings of the 18th ACM Conference on Information and Knowledge Management (CIKM2009),
page1457-1460, November 2-6, 2009, Hong Kong, China

5 3 7 1

1 2 3 5 764

Random Write Sequence

Sequential Write Sequence

391 202

(A) Conversion of

Static Random Write Sequence (C) Write Performance Test on Density(B) IO Performance Test of Sequential Write

Minimum

Density

Figure 1: Conversion of static random write sequence and performance experiments

the basic idea. Section 3 expresses our method in detail with data
stream. We also enhance performance further in section 4. Experi-
ments are shown in section 5. Finally, section 6 concludes.

2. STATIC RANDOM WRITE SEQUENCE
In this section, we first describe the basic idea of our method

by static random write sequence, and then discuss how density and
granularity impact the efficiency of our method. Finally, we opti-
mize our method according to density.

2.1 Converting Random Write Sequence
Static random write sequence is defined as a random write se-

quence without changes during the course of conversion. We insert
unmodified data into the random write sequence, which locate be-
tween the lower and upper limit of the random write sequence. So
we flush the constructed sequential write sequence into SSD instead
of original random write sequence. Therefore the cost of write will
be reduced due to high sequential write performance. For exam-
ple, the random write sequence has four data items as shown in
Fig. 1(A). The addresses of these items are 5, 2, 7 and 1. It may
take four random writes if we flush this write sequence into SSD di-
rectly. According to table 1, the cost will be 33 ms. However, after
we extend the random sequence with unmodified data items, item
2, 4 and 6, we can flush the sequential write sequence as shown in
Fig. 1(A) sequentially. As a result, we only cost seven sequential
writes. The cost of flushing is only 0.4 ms ideally. Although the
approach is straightforward in concept, when one actually attempts
to implement such a facility, one is faced with myriad options and
difficult decisions every step of the way. One of important prob-
lems is how to decide the granularity and density of random write
sequence. We will explore the impaction as follows.

2.2 Granularity and Density
Granularity is defined as the write unit when we flush the con-

verted sequential write sequence into SSD. As shown in Fig. 1(B),
the throughput becomes higher when we increase the write unit
size. The results shows that the write performance of SSD is not
taken full use of when the write unit size is less than 32KB. There-
fore, 32KB is the optimum granularity for our SSD to perform se-
quential write. According to this experiment, we define this special
write unit as OS WG(Optimum Sequential Write Granularity). Dif-
ferent SSDs have different OSWGs.

Density is defined as the length ratio of random write sequence
to the converted sequential write sequence. Density is direct ra-
tio to the performance. The less the density is, the more unmodi-
fied data items are inserted, and the larger the cost of reading and
flushing these data is. According to different density, we get run-

time of flushing random write sequence and the converted sequen-
tial write sequence. According to the experiment results as shown
in Fig. 1(C), the larger density is, the higher the efficiency of our
method is. We define the density of intersection point as MD. Our
method outperforms random write about 100%∼150% when den-
sity is larger than MD. Different SSDs have different MDs. The
MD of the Mtron SSD in our lab is 18%.

2.3 Optimization
According to Fig. 1(C), our method is worse than random write

when density is less than MD. For example, when the density is
10%, the runtime of our method is as high as 201.7 seconds. In
our method, the runtime of getting addresses of each data item,
reading unmodified data items and flushing converted sequential
write sequence are 6.4, 50.7 and 144.6 seconds, respectively. the
In this case, we need to read too much unmodified data, and then
flush them into SSD. In a word, the large quantity of unmodified
data lead to low performance of our method.

A sub-sequence is defined as a cluster if the density of it is larger
than MD. After sorting the random write sequence according to
addresses, we generate clusters as follows. Firstly we decide the
first data item as a cluster. Secondly, this cluster and its next data
item are treated as a new sub-sequence. If the density of it is larger
than MD, the next data item are grouped into this cluster. If not, the
next data item will be grouped as a new cluster. This course cycles
until all data items are grouped into clusters. After getting clusters,
we convert these clusters into sequential write sequence instead of
the whole write sequence. We re-execute the experiments with the
help of clusters when density is less than MD. Experiments show
our method outperforms random write about 10%. This attributes
to obvious decrease of the quantity of unmodified data to read, and
then the costs of random read and sequential write decrease.

3. DATA STREAM
Section 2 explains our basic idea by static random write sequence.

However real applications usually generate writes continuously as
data stream. According to characteristics of dynamic write se-
quence, we first load and initialize the write sequence, and then
generate initial clusters. Lastly the final clusters are evolved from
initial clusters and flushed into SSD. The above steps repeat until
the end of data stream. We will explain each steps in following.

3.1 Initialization
After loading writes from data stream, we need to calculate den-

sity. The address of each data item is used to calculate the den-
sity of write sequence. Therefore, we need to get the address of
each data item in the first step. Actually, this step takes full ad-

1 32 50 3005652 317316308303302301

Cluster 1 Cluster 2 Cluster 4

57 100 103

Cluster 3

Final Cluster 1 Final Cluster 2

Cluster 5

500

Cluster 6

Figure 2: Initialized random write sequence. Data items are
grouped into initial clusters , and initial clusters are merged
into final clusters.

vantage of characteristics of SSD. During the course of getting an
address of a data item, we need to look up it from index, and so
several random read operations must be executed. Compared with
HDD, SSD gets high performance because of its high random read
performance, and then the cost of getting address is low for SSD.
After getting addresses of data items, we need to sort the write se-
quence in cache according to addresses and generate initial clusters
as shown in Fig. 2. The numbers denote the addresses of data items.

3.2 Final Cluster
The design objective of final cluster is to avoid small granularity

of write. Final cluster is defined as the random write sub-sequence,
the length of which is larger than OSWG and the density of which
is larger than MD. The basic design principle is the length should be
as long as possible in order to take full advantage of high sequential
write speed of SSD. Therefore we will get final clusters by merging
initial clusters. There are two cases according to the maximum
length of initial clusters: The maximum length is no less or less
than OSWG. We will discuss them in following.

No Less Than OSWG. The initial clusters are defined as candi-
date clusters if their lengths are no less than OSWG. In order to
lengthen the final cluster, we need to merge adjacent initial clusters
into candidate clusters with the grantee of density. The detail step
of merger is described as following. For each candidate cluster, we
first merge preceding initial clusters into candidate cluster. If the
density of merged cluster is less than MD, the course of the merger
will be terminated. In the same way, the following initial clusters
are merged. For example, as to cluster 4 in Fig. 2, preceding clus-
ters will be merged into cluster 4 firstly. Because the density of
cluster 3∪cluster 4 is less than MD, the course of merging preced-
ing clusters is terminated. As for following initial clusters, cluster
5 will be merged with cluster 4. At last we get final cluster 2.

Less than OSWG. We need to merge initial clusters into final
clusters when lengths of all initial clusters are less than OSWG.
[cluster i, cluster j] means the cluster union from cluster i to j. In
order to get the maximum length efficiently, we use the method of
top to down. For example, all initial clusters are shown in Fig. 3.
Firstly, the density of [clusters 1, cluster 6] is calculated. If the den-
sity is larger than MD, the course of merger will be terminated. If
not, the course will continue. For example, the density of [clusters
1, cluster 5] is calculated. This course will be continued until the
cluster union only contain two clusters. As shown in Fig. 3, final
clusters will be gotten in the last step. The density of [cluster 1,
cluster 2] is larger than MD and length is larger than OSWG, they
are merged into final cluster 1. So does the Final cluster 2.

4. OPTIMIZATION WITH INTRINSIC
PARALLELISM

In this section we will explore the intrinsic parallelism of SSD,
and then optimize our method further.

New date item

Figure 3: Random write sequence with lengths of all initial
clusters are less than OSWG.

4.1 Intrinsic Parallelism
After disassembling the SSD used in my lab, we can see that

sixteen flash devices are arrayed on the circuit board, and the part
number is MT29F8G08DAA. Therefore we assure that parallelism
exists between flash devices because each device can be operated
individually. Besides this, parallelism also exists in the interior of
one flash device. According to specifications[3], one flash device
contains two CE#s(Chip Enable) which has two planes. Both CE#s
and planes can be accessed in parallel. As to smaller storage unit,
plane is made up from blocks which contain pages.

In order to testify the parallelism, we design five experiments.
Each experiment will write 131072 pages of data into SSD. Exper-
iment 1 sequentially writes pages in a single plane. Experiment 2, 3
and 4 alternately and sequentially write pages between two planes,
two CE#s and two devices. Finally, experiment 5 sequentially write
pages according page NO. We allocate storage area sequentially in
logic layer and suppose it is physically sequential. The experiment
results show the reasonableness of our assumption.

The runtime of experiment 1, 2, 3, 4 and 5 are 28.2, 25.8, 23.2,
23 and 25.2 seconds, respectively. The write performance of exper-
iment 1 is less than that of experiment 2 about 10%. The reason is
experiment 1 only can write data one by one. However, experiment
2 can write data into two planes of the same CE# at the same time
by TWO-PLANE PROGRAM. So do experiments 3 and 4. Finally
we find that sequential write almost has the same performance with
experiments 2. Because even-numbered and odd-numbered blocks
belong to different planes, sequential write also utilizes the TWO-
PLANE PROGRAM to speed up write as experiment 2. But se-
quential write does not utilize intrinsic parallelism between CE#s
and devices, so the performance is lower than experiment 3 and 4.

4.2 Optimization
According to above experiments, we propose to speed up our

method further with intrinsic parallelism between CE#s and de-
vices. Data items in write sequence are programmed alternately
into flash devices if they belong to different CE#s or devices. For
example, we suppose the final cluster 1 and 2 in Fig. 2 belong to
different devices. As to previous method, we will flush final cluster
1 firstly, and then final cluster 2. However, we change the write
sequence according to the parallelism of SSD. Final cluster 1 and 2
will be written alternately. The write sequence will be organized as
50, 300, 51, 301......57, 307, 308, 309......317. After re-organizing
the write sequence, the parallelism between devices is triggered,
and then the write performance is further improved.

5. PERFORMANCE EVALUATION
In this section we will firstly introduce the hardware platform

and benchmarks in our experiments. In the next, comparison ex-
periment results are shown and analyzed.

5.1 Experiments Setup and Workloads
We implement our experiments on a desktop PC powered by In-

tel Core 2 Pentium 4 Duo CPU 2.83GHz running Linux fedora 8

(A) Experiment on IO trace of FileBench (B) Experiment on IO trace of Tiobench (C) Experiment on IO trace of TPCC

Figure 4: Comparison experiments about performance of RS-Wrapper.

with 2GB main memory. The kernel version is Linux-2.6.23. The
SSD used in our experiments is 16GB Mtron SSD(MSD-SATA
3035-016). We use three benchmark tests to testify the IO per-
formance enhancement brought by our RS-Wrapper. We also use
blktrace[1] to trace the IO activities at the block level. After run-
ning benchmarks, we get the IO activities, OWS (Original Write Se-
quence). In our comparison experiments, we firstly write OWS into
SSD directly. Secondly, we re-organize OWS by our RS-Wrapper
and flush the new sequences. For each benchmark, a series of ex-
periments are run by varying the length of write sequence.

5.2 File System Benchmarks
FileBench[2] is a framework of workload for measuring file sys-

tem performance. In our experiments, the number of files is set
50,000, 50,000 and 25,000 for creatfiles, deletefiles and copyfiles
respectively. Besides this, both the file size and IO size are set as 2
kilobytes. We also convert the OWS by our method when the length
of sequence varies from 5,000 to 50,000. The runtime is plotted in
Fig. 4 (A). Our method outperforms OWS about 600% as a whole.
The main reason is that IO operations of a file are basically sequen-
tial. In this case, the density of final cluster is very high in our
method. Therefore, our RS-Wrapper gains high performance.

5.3 File IO Benchmarks
IOzone[6] is a file system benchmark tool. In order to simu-

late the real workload mostly, we select the full automatic mode.
The IO operations cover all tested file operations for record sizes
of 4KB to 16MB for file sizes of 64KB to 512MB. The comparison
experiment results are shown in Fig. 4(B). With the length of write
sequence varying from 1,000 to 10,000, our RS-Wrapper is faster
than OWS about 800% as a whole. As for IOzone, the IO activi-
ties are random and converge in a limited range. In common test,
the maximum size is 512MB. Therefore, every writes are random,
and thus the write cost of OWS is very high. However, converted
sequential sequence has high density. Therefore our method takes
full advantage of, and then performance is enhanced obviously.

5.4 TPCC Benchmark
In order to test the write performance enhancement on databases,

we select the typical write intensive benchmark, TPC-C. In this ex-
periment, write sequence comes from the disk IO operations by
running TPC-C on PostgreSQL database system version 8.3.5. The
operation system is Red Hat Linux 2.6.27. After setting the number
of warehouses as 50, page size as 8KB, the number of threads as
200, we run TPC-C 30 minutes. We modify postgreSQL to record
disk IO operations when executing the routines of writing data to
disk. In the same way, we flush IO trace by two ways. The experi-

ment results are shown as Fig. 4(C). Our method outperforms OWS
about 300% when length N is no less than 25000. The high perfor-
mance is obtained because our method converges random writes
into high density clusters and flushes them in parallel.

6. CONCLUSIONS
SSD is applied widely due to its high random read speed and

sequential access performance. However, poor random write leads
to the low performance of write-intensive applications on SSD. We
novelly propose to extend random write sequence into sequential
write sequence by inserting unmodified data into write sequence.
Firstly, we explore the impact of density and length on performance
of our method with static random write sequence. Secondly, we
optimize our method with cluster which reduces the quantity of
data to read and flush during the course of conversion. Thirdly,
we improve the performance in further by merging initial clusters
into final clusters. Finally, we improve write performance with its
intrinsic parallelism. The experiments show our method improves
write performance of SSD obviously under all tested workloads.

7. ACKNOWLEDGMENT
We would like to thank Yinan Li and Prof. Qiong Luo for their

help in the experiments, Prof. Lei Chen and Jianliang Xu for their
constructive comments, and Prof. Jiaheng Lu for his revision. This
research was supported by the grants from the Natural Science
Foundation of China under grant number 60833005.

8. REFERENCES
[1] J. Axboe, A. D. Brunelle, and N. Scott. blktrace(8) - linux man

page, 2006. http://linux.die.net/man/8/blktrace.
[2] R. McDougall, J. Crase, and S. Debnath. Filebench: File

system microbenchmarks, 2006.
http://www.opensolaris.org/os/community/
performance/filebench/.

[3] Micron. Nand flash memory mt29f4g08aaa, mt29f8g08baa,
mt29f8g08daa, mt29f16g08faa, 2007.
http://download.micron.com/pdf/datasheets/
flash/nand/4gb_nand_m40a.pdf.

[4] Mtron. Solid gear | mtron ssd technology, 2008.
http://www.solidgear.sg/technology/
mtron-ssd-technology.php.

[5] Mtron. Solid state drive msd-sata 3035 product specification,
2008. http://mtron.net/Upload_Data/Spec/ASiC/
MOBI/SATA/MSD-SATA3035_rev0.4.pdf.

[6] W. Norcott. Iozone filesystem benchmark, 2006.
http://www.iozone.org/.

