
ESQP: An Efficient SQL Query Processing for Cloud Data
Management

Jing Zhao, Xiangmei Hu and Xiaofeng Meng
School of Information, Renmin University of China

Beijing, China, 100872
{zhaoj, hxm2008, xfmeng}@ruc.edu.cn

ABSTRACT
Recently, the cloud computing platform is getting more and
more attentions as a new trend of data management. Cur-
rently there are several cloud computing products that can
provide various services. However, most cloud platforms
are not designed for structured data management. So they
rarely support SQL queries directly. Even though some plat-
forms support SQL queries, their bottoms are traditional
relational database, therefore, the cost for executing a sub-
query in RDBS may influence the overall query performance.
How to improve query efficiency in cloud data management
system, especially query on structured data has become a
more and more important problem. To address the issue,
an efficient algorithm about query processing on structured
data is proposed. Our approach is inspired by the idea of
MapReduce, in which a job is divided into several tasks.
Based on the distributed storage of one table, this algorithm
divides a user query into different subqueries, at the same
time, with replicas in cloud, a subquery is mapped to k+1
subqueries. Every subquery has to wait in the queue of the
slave where the query data store. To balance the load, our
algorithm also takes two scheduling strategies to dispatch
the subquery. Besides, in order to reduce the client’s long
waiting time, we adopt the pipeline strategy to process re-
sult returning. Finally, we demonstrate the efficiency and
scalability of our algorithm with kinds of experiments. Our
approach is quite general and independent from the under-
lying infrastructure and can be easily carried over for imple-
mentation on various cloud computing platforms.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query process-
ing ; C.2.4 [Computer-Communication Networks]: Dis-
tributed Systems—Distributed applications

General Terms
Algorithms
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1. INTRODUCTION
With the rapid growth of the amount of data, how to

manage massive information becomes a challenging prob-
lem. It changes the infrastructure of data storage and gen-
erates a new technology called cloud computing. Existing
cloud computing systems include Amazon’s Elastic Com-
puting Cloud(EC2)[1], IBM’s Blue Cloud[2] and Google’s
GFS[5]. They adopt flexible resources management mecha-
nism and provide good scalability. There are also some open
source cloud computing projects, such as Apache Hadoop
project’s HDFS[9] and HBase[8], which are the open source
implementation of Google’s GFS and BigTable[4], and Cas-
sandra[7], which brings together Dynamo’s[6] fully distributed
design and Bigtable’s ColumnFamily-based data model.

Although Google’s BigTable[4] stores data with table struc-
ture, column based storage model and timestamps are de-
signed to improve the flexibility of one record. In other
words, column based storage model is just more applicable
for unstructured and semi-structured data storage, but not
for structured data.

On the other hand, Because the popularity of traditional
RDBMS and data warehouse, currently the analytical data
of most enterprisers used in business planning, problem solv-
ing, and decision support are structured data. Analytical
data has its special characteristics: ACID guarantees are
typically not needed; Particularly sensitive data can often
be left out of the analysis; shared-nothing architecture is a
good match for analytical data management. These charac-
teristics of the data and workloads of typical analytical data
management applications are well-suited for cloud deploy-
ment[14]. At the same time, these analysis data is close to
even more than PB level[10]. How to query and analyze on
these data is a challenge problem.

Cloud computing platforms contain hundreds and thou-
sands of heterogeneous commodity hardware, and they pro-
cess workloads and tasks in parallel. This is a typical char-
acteristic of cloud computing infrastructures. When a user
submits a query, master nodes in the cluster must decompose
the query into subqueries, dispatch them to slave nodes for
concurrently processing and merge the results returned from
slave nodes. The results of the query can not returned to
users until all subqueries on slave nodes execute completely.
However, in cloud computing platforms, slave nodes always
can not finish subqueries at the same time, some of them
may execute more quickly while some may be slower. There-



fore, we have to consider load balance to help us query more
efficiently rather than dispatch the same amount of sub-
queries to each slave node. Meanwhile, as we know, cloud
computing platforms always have k replicas of data for fault
tolerance, which can also be used for efficient query answer-
ing. k replicas of data means that k+1 equivalent subqueries
on the same data partition can be generated, and we can dy-
namically assign one of them to the appropriate slave node
according to the load of system. In other words, replicas in
cloud computing platform contribute to efficient subquery
scheduling, which is very essential for query response.

In Summary, this paper makes the following contributions:

• Inspired by the idea of MapReduce, we propose a new
efficient SQL query processing algorithm (ESQP) us-
ing data replicas in cloud storage.

• We describe how to decompose queries into subqueries
according to query operator/oprande pair, which can
run in parallel.

• We propose two scheduling algorithms in query pro-
cedure to achieve load balancing, and then improve
query process efficiency.

• In order to reduce response time of the query, a pipeline
strategy is employed when results return.

• We perform a series of experiments on large scale of
machine nodes with large volume of data. The ex-
periment confirms that our algorithm is efficient and
scalable.

The rest of this paper is organized as follows: Section 2
and Section 3 describe related works and the current query
on cloud computing separately. Section 4 presents our effi-
cient SQL query processing algorithms for cloud data man-
agement, including query transformation, subquery schedul-
ing and execution, and result return. In Section 5, we present
the experimental results to demonstrate the efficiency and
scalability of our methods. Finally, we make a conclusion
and discuss some possible future work in Section 6.

2. RELATED WORK

2.1 Distributed Query Processing
Query processing problem is a difficult and extensive prob-

lem in distributed environments. There are many important
aspects of this problem, including query decomposition, data
localization, global and local optimization, etc. A detail dis-
cussion of each aspect is out of the scope of this paper, and
what we want to discuss here is the cost of query processing.
As we all know, total cost [16] is a good measure of resource
consumption. And the total cost includes CPU, I/O, and
communication costs in distributed database system. As
network becomes faster and faster, the communication cost
does not dominate local processing cost. Therefore, many re-
searches consider a weighted combination of these three cost
components rather than communication cost merely. Cloud
database systems share many properties of distributed and
parallel database systems, but scale well into hundreds or
thousands of nodes. Although a typical cluster connect large
scale of nodes via a high-bandwidth network, the communi-
cation cost is quite important due to the huge size of dataset.

Data in cloud data management system is always uniformly
distributed, so that the larger dataset is, the more com-
munication cost may be produced, especially in join query.
Therefore, one of our aim is to minimize communication cost
at run time by exploiting the replicated data.

2.2 MapReduce
Google’s MapReduce programming model mainly focuses

on supporting distributed solution for web-scale data pro-
cessing[3]. It decomposes data processing into two func-
tions: map functions, reading an input key-value pairs and
outputting intermediate key-value pairs; reduce functions,
which merges the intermediate pairs with the same key into
the final output. All map and reduce operations can be
performed in parallel by partitioning the input dataset and
handling different partitions concurrently by cluster.

This model provides good load balancing, fault tolerance
and low communication cost. In order to achieve dynamic
load balancing, TaskTrackers are assigned tasks as soon as
they finish them. As communication cost component is
probably the most important factor considered in distributed
query, so that Master schedules map tasks on the machine
that contains a replica of the corresponding input data. Fur-
thermore, MapReduce programming model spawn backup
tasks for the tasks run on slow workers to shorten job com-
pletion time and reexecute completed or in-progress map
tasks and in-progress reduce tasks to ensure fault tolerance
of workers.

However, this model has its own limitations. Users have
to translate their applications into map and reduce tasks to
achieve parallelism. Due to the commonality of this model,
it takes sorting as the necessary step before reduce func-
tion. But this translation and sorting is really unnecessary
for some simple SQL operations such as selection and pro-
jection. Furthermore, as indicated in [17], complex applica-
tions such as join, which requires extra stages of map and
reduce, does not quite fit into this model. The implementa-
tion of map and reduce functions, especially the strategies
of functions optimization would get users into trouble.

So we try to employ the basic idea of MapReduce pro-
gramming model, including partition, single task re-execution,
scalability and fault tolerance. We adopts the strategy of
this model by decomposing a SQL query into multiple sub-
queries according to the corresponding data replicas. Mean-
while, we take advantages of techniques of traditional DBMS
and parallel database system.

2.3 MapReduce and SQL
There are some work on combining ideas of MapReduce

with database system. Typical examples include Apache’s
Hive[12], Yale’s HadoopDB[11], Microsoft’s SCOPE[13], etc.
However, some of these work focus on system hybrid, while
others focus on the SQL-like interface. HadoopDB[11] pro-
vides a hybrid solution at system level, using MapReduce
framework for query distribution, inheriting the scheduling
from Hadoop for fault tolerance and coordination ability,
and take PostgreSQL servers as database engine for query
processing. SCOPE and Hive separately provides a kind of
SQL-like language. They integrate SQL-like language into
MapReduce-like software to increase user productivity and
system efficiency.

We do not use any database system for query processing
but we employ some key techniques, including index and



Figure 1: Framework of Query Processing in Cloud

pipeline, to improve the efficiency of subquery processing.
Moreover, although we employ the basic idea of MapReduce,
we design a structure for query distribution and processing,
which does not base on or combine with Hadoop, so that we
can take control of the whole progress of query processing
and ESQP can be easily carried over for implementations on
various of cloud computing platforms

3. QUERY IN THE CLOUD
As we know, a cloud computing platform(a cluster) con-

sisting of hundreds or thousands of PC is responsible for data
computing and storage. As Figure 1 shows, there are two
types of nodes in the cluster: master nodes and slave nodes.
Master nodes store some meta data about the whole clus-
ter while slave nodes store the regular data. In other words,
slave nodes store data records and their replicas for security.
So the query on the cloud platform is different from central
or parallel database. In the cloud platform, client query is
often presented against the master nodes. After that the
mater nodes decide which slave nodes are relevant to the
query and then the query is passed to the slave nodes to do
the query processing directly. The general query processing
in cloud computing platform is in Figure 1. So a typical
query in the cloud computing platform can be divided into
two phases: locate the slave nodes which stores the relevant
data and process query on the slave nodes directly. The
procedure cloud be expressed as algorithm 1.

Algorithm 1 Process query on cloud

1: procedure Set processQuery(Query q)
2: Set nodes = empty;
3: nodes.add(getRelativeNodes(q));
4: Set results = empty;
5: for (each node n in the nodes) do
6: results.add(n.retrieveRecords(q));
7: end for
8: returnresults;
9: end procedure

From the above discussion,we can see that:

• The query processing problem is much more difficult
in cloud computing environments than in centralized
ones, because the query processing is not complete by
one machine.

• The huge scale of cluster leads query processing in
cloud environment problem be different from in par-
allel ones.

• Most of cloud computing systems decide which replica
of data to be used for query before query processing.
These predefined replica may result in more cost in
some cases.

In order to query efficiently, we have to improve query pro-
cessing by some means. In the following part of the paper,
we will discuss how to query more efficiently on the cloud
platform. The details will be listed below.

4. QUERY PROCESSING
As we mentioned earlier, the key problems of structured

query processing in cloud database system lie in structured
query translation, load balance of the whole system and data
transfer among nodes. In order to query efficiently, our ap-
proach employs four key ideas:

• We exploit replicas in cloud database system for query
translation in order to provide better alternatives for
scheduler.

• A scheduler and scheduling metric are developed to
ensure load balancing and reduce the total runtime of
each query.

• We adopt DigestJoin [15] to reduce the size of data
that has to be transferred in join operation.

• In order to avoid client’s longtime waiting, pipeline and
ASAP are employed in subquery processing model.

In the remainder of this section, we discuss the details of
our design. First, we describe the data and query model the
algorithm is optimized for, and then present the execution of
query, including query transformation, subquery scheduling
and execution, and result returning. Finally, we focus on
transformation of query for a number of relational operators.

4.1 Data and query model
Due to our method in general supporting common SQL

query in cloud computing system, the data need to be dis-
tributively stored in cloud system. Generally, a table is a col-
lection of records, each of which is identified by a unique key,
and each table is divided into n parts, each part replicated k
times and are stored in different nodes in cluster. k is usu-
ally much smaller than the number of nodes in cluster while
k = 2 for most cloud computing system. The meta infor-
mation, such as the storage information about each replica
of each partition. These information is reported to master
nodes in cluster, which are in charge of subqueries schedul-
ing. Typical cloud computing systems usually provide good
support for key/value based queries, therefore, we assume
that the data in cloud computing system has an index in
key field, based on which we provide an efficient join pro-
cessing method.

We focus on providing low latency for read-only SQL query,
including generalized selection, projection, aggregation and
join. Generalized selection means retrieving not only a single
record by primary key but also a number of records satisfied
any condition in any fields of a table. All these operations
need to scan all data without index. Therefore, low latency
means that the first record of query results should return as
soon as possible to avoid client’s longtime waiting.



Figure 2: Execution Overview

4.2 Query execution
A key goal of our processing algorithm is to minimize the

response time of a query in cloud database system. As fig-
ure 1 shows, in the cloud platform, master nodes store some
meta data about the whole system and are in charge of dis-
tributing query to coordinate slave nodes. When a slave
node receives the request from master nodes, it retrieves
data locally or communicate with other slave nodes for rele-
vant data according to the operation type and stores results
locally. Results are returned to client directly after result
generating.

From this progress we can see that the key components of
query processing which influence latency are:

• Query transformation: A user query should be trans-
formed into a set of independent subqueries that can
be execute parallelly on nodes of cluster. Parallelism
can significantly reduce query latency in all. Local ex-
ecution is another important aspect for low latency,
so that we try to make sure that the percentage of
subqueries that could be executed locally as large as
possible.

• Query dispatch: Assignment of subqueries plays an im-
portant role in query processing. System can achieve
load banlancing via good and reasonable scheduling of
subqueries, and then minimize the total runtime of the
query.

• Subquery execution: Slave nodes employ the idea of
pipeline to accelerate a number of subqueries process-
ing rather than repeat the following three steps, receive
subquery, process subquery and return result serially,
parallel execution of previous result returning and cur-
rent query processing can save much time in that we
don’t need to wait for results transfer.

We present the details of execution in the following. Fig-
ure 2 shows this in diagram form.

4.2.1 Query transformation
Each user query is transformed into a set of subqueries

according to the partition of involved tables, each of which
can be executed independently. There are kinds of SQL
operators, which lead to various transformations. But all
kinds of transformations are based on the partitions of ta-
bles and their replicas. We consider a user query as an oper-
ator/operand pair. Operator includes generalized selection,
projection, aggregation and join, and operand here means
the data blocks of table where operators retrieve from. Be-
cause the operator is constant to the specific SQL operation,
we generate subqueries by modifying the operands of the
original query. The operand can be classified into two cate-
gories: single table for the first three operators and multiple
tables for join operator. We maintain a list of subqueries,
each of which has two kinds of transformed operands set for
multiple tables, while one set for single table. The procedure
could be expressed as algorithm 2, and now we present the
transformation of operands in detail:
Single Table: Operands of the first three kinds of opera-
tors are single table. We simply replace the original operand,
a single table in FROM clause, with a number of location
sets of replicas to create the subqueries. Each set contains
all copies of a partition in one table. For instance, table R
is divided into m parts R1, R2, ..., and Rm with a backup
factor k = 2, hence we create m sets, each of which is com-
posed of Ri (i = 1, 2, ..., m), Ri1 , Ri1 , ..., Rik , where Rij

is the copy of Ri. These subqueries can be run in parallel,
locally and independently.
Multiple Tables: We consider two tables here because op-
eration on multiple tables can be split into a set of operations
on two tables. The transformed operands are classified into
two kinds: one is partitions of tables without intersection
and the other is partitions of tables with intersection, which
implies that there is a slave machine that store two replicas
of blocks belonging to different tables. Therefore, we create
three sets for a subquery to store the location information
of two blocks, one of which shows the location of replicas
from two blocks that stored in the same slave node, called
intersectionset, and the other two separately express the
location information of replicas from different tables, called
replicaset. It is necessary to state that, employing the ba-
sic idea of DigestJoin[15], the operator on intersectionset
operand is original joining, while the operator of subquery
without intersectant replicas includes not only JOIN but
also EXTRACT and RELOAD, where EXTRACT means
extracting digest data from nearest node before JOIN op-
eration and RELOAD refers to reloading relevant data to
compose query result after JOIN operation.

For a cluster of n slaves, take table R joins table S for
example. As our data model stated above, supposing Ri

is a part of R and Sj is a part of S, then we have repli-
cas Ri1 , Ri2 ,..., Rik for Ri and Sj1 , Sj2 , ..., Sjk for Sj .
We suppose that Ri, Ri1 , Ri2 ,..., Rik are stored in slavei,
slavei1 , slavei2 ,..., slaveik and Si, Si1 , Si2 ,..., Sik are stored
in slavej , slavej1 , slavej2 ,..., slavejk . We declare that Ri

intersect Sj , if and only if there is any is == jt, where
s, t = 1, 2, ..., k. We store is in intersection set when inter-
section occurred and set the other sets into empty, while
assigning i, i1, i2,..., ik to one replica set, j, j1, j2,..., jk to
anther and intersection set is set to empty when there is no
intersection. Figure 3 shows how to maintain these informa-



Figure 3: Totally 3 copies of partitions R1, R2, S1

and S2 are separately stored in four slave nodes. The
edges of bipartite graph shows the intersection in-
formation of Ri and Sj , and lists in the the corner
express location of replicas of each partition, each
of which is assigned to coordinate subquery when
intersection set is empty.

tion for partitions R1, R2, S1 and S2 with replica factor of
k = 2.

Algorithm 2 Query Transformation

1: procedure Set transformQuery(Query, q)
2: Set subqueries = empty;
3: if (q.type is JOIN) then
4: Set partsA = getPartitionsOfTable(q.tableA);
5: Set partsB = getPartitionsOfTable(q.tableB);
6: for (each part p in partsA) do
7: Set replicasA = getReplicasOfPart(p);
8: for (each part p in partsB) do
9: Set intersection = empty;
10: Set locationsA = empty;
11: Set locationsB = empty;
12: Set replicasB = getReplicasOfPart(p);
13: if (replicasA and replicasB intersect) then
14: intersection.add(location of intersected

replicas);
15: else
16: locationsA = replicasA;
17: locationsB = replicasB;
18: end if
19: subqueries.add(intersection,locationsA,

locationsB);
20: end for
21: end for
22: else
23: Set parts = getPartitionsOfTable(q.table);
24: for (each part p in parts) do
25: Set blocks = getReplicasOfPart(p);
26: subqueries.add(blocks);
27: end for
28: end if
29: return subqueries;
30: end procedure

4.2.2 Subquery Scheduling
While the subqueries can be executed in parallel, accord-

ing to the expression above, the number of subqueries is
equivalent to the number of table’s partitions or the product
of numbers of two tables’ parts, which far exceeds the num-
ber of nodes in cloud platform, and different performances
of machines in the cluster lead to heterogeneous load, so we
develop a scheduler and scheduling matrix to coordinate the

Figure 4: A constructed matrix with 4 slave nodes
and 4 subqueries to be scheduled. Parameter Li of
each slave node represents the number of subqueries
waiting for slave node slavei.

execution of subqueries, which dynamically changes loads
on slave nodes to minimize the response time of the query.

In general, each slave only executee subqueries on replicas
of parts that it is stored locally, particularly for JOIN oper-
ator, a subquery is dispatched to the slave store one of its
operands. And every subquery is composed of a operator
and a operand set which contains location information of
subquery, in other words, we regard a subquery as a set of
at least k + 1 equivalent subqueries. Therefore, we exploit
a scheduling matrix to decide which subqueries are given
to a slave node. We take subqueries as horizontal axis and
slave nodes as vertical axis. The element of this matrix are
numbers in a union {0, 1, 2}, where Mij = 0 means that the
partition where subquery subQj retrieve does not have any
copies stored in slave node slavei, Mij = 1 expresses that
one of the copies of subquery subQj ’s partition is stored
in slavei or both retrieved tables’ partition have copies in
slavei, and Mij = 2 implies subquery’s original operator is
JOIN and only one table involved has copies stored in slavei.
In the other word, we consider a row of the matrix as an
unordered of subqueries which are waiting for dispatching.
Figure 4 shows the scheduling matrix for a cluster consisted
of 4 slave nodes, with a backup factor k = 1. In this figure,
each slave node has a parameter representing the number of
subqueries that are waiting for execution on a certain node.

The greedy scheduler grants a subquery as soon as possible
to a slave node when it becomes free. The system achieves
load balancing effectively through such an approach because
fast slave nodes can take on more workload to lighten slower
nodes. Moreover, scheduler creates a subquery list which
consists of the operator, operand and the status of this
query, including waiting, processing, processed, gettingRe-
sult, and finished, and a status list of slave nodes. It com-
municates with slave nodes according to these two lists and
scheduling matrix through two message types. The sched-
uler sends a slave node a dispatch message, which notifies
it to start processing subquery. As a subquery is assigned
to slave node, the scheduler changes the status of it from
waiting to processing and removes all equivalent subqueries
from scheduling matrix. And when slave node has finished
execution of current subquery, it returns a free message to
the scheduler, which will change the status of the subquery
to processed and reset the slave node’s state to free. The
procedures are described as algorithm 3, 4 and 5.

There are kinds of scheduling algorithms. We have im-
plemented two: Random Scheduling. Whenever a slave
node becomes free, our scheduler randomly chooses a sub-
query from its waiting queue. Global Scheduling. We
adopt the idea of global optimization. A subquery which
balances all waiting queues is chosen. Before choosing a sub-
query, we compute the length of waiting queue for each slave



Algorithm 3 Initialize Scheduling Matrix

1: procedure Matrix InitializeMatrix(ListsubQueries)
2: Matrix M = empty;
3: for (each subquery subqi in subqueries list) do
4: if (subq.operator is a unary operator) then
5: for (each location loc in subq.operand.locs) do
6: Mloci = 1;
7: end for
8: else
9: if (subq.operand.intersectionset is empty) then
10: for (each loc in subq.operand.firstSet) do
11: Mloci = 2;
12: end for
13: for (each loc in subq.operand.secondSet) do
14: Mloci = 2;
15: end for
16: else
17: for (each loc in subq.operand.intersection) do
18: Mloci = 1;
19: end for
20: end if
21: end if
22: subq.status = waiting;
23: end for
24: return M;
25: end procedure

Algorithm 4 Subquery scheduling

1: procedure Boolean schedule(List subQueries)
2: InitializeMatrix(subQueries);
3: while (scheduling matrix != 0) do
4: for (each free slave slavei) do
5: subq = chooseSubquery(slavei);
6: dispatch(subq,slavei);
7: for (each element in column set of subq) do
8: element=0;
9: end for
10: subq.status = processing;
11: slavei.status = busy;
12: end for
13: end while
14: return true;
15: end procedure

Algorithm 5 Select a subquery

1: procedure SubQuery select(int slaveLoc)
2: SubQuery subq = empty;
3: double variance = POSITIVE INFINITY;
4: List length = QueueLength(Matrix M);
5: for (each subquery q in waiting list) do
6: generate length list lengths;
7: if (variance > varianceOf(lengths)) then
8: variance = varianceOf(lengths);
9: subq = q;
10: end if
11: end for
12: return subq;
13: end procedure

nodes by removing every possible subquery, which comes
from the waiting queue of free slave node, thus we have l
length lists, where l is the number of possible subqueries.
The variance of each list is calculated and the subquery cor-
responding to the smallest variance is assigned to the slave
node.

As is shown by Figure 4, Li represents the number of
subqueries waiting for distribution of each slave node. Sup-
posing slave1 is free, a and c are two probable subqueries

in its waiting queue. Thus we separately pre-compute the
length of each slave node’s waiting queue removing a and
c. Random would randomly assign a or c to slave1, while
Global would chose a for load balance of the system due to
the variance of Li − a is 0.33, which is smaller than Li − c’s
variance 1.

4.2.3 Subquery Execution and results returning
When a slave node receives dispatch message sent by

scheduler, it starts the execution thread, storing results lo-
cally. Instead of returning results as quickly as it generates,
the slave node sends the free message back to scheduler
to report that the subquery is completed, and the master
node creates a result handling thread to get back the results
asynchronously. The slave node processes subqueries in full
sail rather than being distracted by transportation of results,
thus the subquery execution on slave nodes seems a pipeline,
returning of the results of previous subquery and current
subquery’s processing go simultaneously, which reduces the
overall runtime of a query in a sense. The subquery execu-
tion and result returning procedures are as algorithm 6 and
7, and the implementation of algorithm 6 is invoked by slave
nodes repeatedly while the algorithm 7’s implementation is
called by scheduler.

Algorithm 6 Subquery Processing

1: procedure void processSubquery(SubQuery subq)
2: Result results = getResult(subq);
3: String fileName = storeResults(results);
4: send free message back to scheduler;
5: end procedure

Algorithm 7 Result Returning

1: procedure Results getResults(SubQuery subq, String loc)
2: subq.status = gettingResult;
3: Results middleR = fetchResult(subq,loc);
4: return middleR;
5: end procedure

4.2.4 Result Representation
In order to minimize the response time of the query, the

main idea of our approach is that returning the results to
clients as soon as possible, even if only one record of all re-
sults is ready. Some of results could be returned to users
once the result processor get them, for example, the results
of generalized selection, projection and joins, but in some
cases, the results of subqueries are not the just result of
original query, so that some retreatments are required, as ag-
gregation. The combination involves order and aggregate:
Order: Although the results of the subqueries are well
sorted locally on slave nodes, a global sorting must be car-
ried out to form an ordered result of original query.
Aggregate: J. Gray et al.[18] classified aggregate function
F() into three categories: Distributive,Algebraic and Holis-
tic. We only consider first two types in SQL aggregate
operators. These aggregate functions are equivalent to ag-
gregation of original functions, such as COUNT(), MIN(),
MAX(), SUM(), or combination of additional functions, for
instance AVERAGE(). The result processor compute the
aggregate result of query according to different aggregate
functions. Take MIN() and AVERAGE() for example, re-
sult processor take the minimum of values fetched from slave



(a) Performance of projection (b) Performance of aggregation (c) Performance of join

Figure 5: Query response time for different queries by scaling up the size of table

(a) Performance of projection (b) Performance of aggregation (c) Performance of join

Figure 6: Query response time for different queries by scaling up the number of slave nodes

nodes to find the final minimum value, while slave nodes re-
port SUM() and COUNT() of subset for AVERAGE() func-
tion and result processor adds these two components and
then divides to produce the global average.

4.3 Fault Tolerance
Inspired by the approach taken by MapReduce[3], the

fault tolerance strategy is to restart all subqueries which
are marked as processing, processed, or gettingResult when
the corresponding slave node is out of contact. Although
our algorithm can deal with the failure of slave nodes, we
will take this as a future work for lack of space.

5. PERFORMANCE EVALUATIONS
We now evaluate the performance and scalability of our

query processing in cloud databases. Testing for query pro-
cessing breaks down into two suites: efficiency and scalabil-
ity tests, to demonstrate the effect and scalability of of our
query processing technique, and load balancing tests, to test
our subquery execution scheduling.

5.1 Experiment Setup
Our testing infrastructure includes 11 machines which are

connected together to simulate cloud computing platforms
- 1 master and 10 slaves. Each contains a Inter Core 2
2.33GHz CPU, 8GB of main memory and 2TB hard disk.
Machines ran Ubuntu 9.10 Server OS. Communication band-
width was 1Gbps.

We use this infrastructure to simulate different size of
cloud computing systems. We conducted 10 simulation ex-
periments, ranging from 100 nodes to 1000 nodes. Each time
100 more nodes are considered to be added into the cloud
computing system. Our algorithm is implemented in Java.
We use a small telecom CDR data sample to generate 100

GB of data with about 200 bytes per tuple. These data are
used as 10 different sets, ranging from 10 GB to 100 GB
with 10 GB increment. Three typical queries are hired to
testify our algorithm’s efficiency and scalability, including
projection, aggregation and join requirements. And for join
query the dataset is a little different from above dataset. We
use data from 1 GB to 10 GB as a table and join two tables
with the same size.

5.2 Performance of typical queries
We design two sets of experiments to evaluate the perfor-

mance of the query processing of three typical queries. For
each query, we separately scale up the size of data, which in-
dicates the total number of subqueries of one original query
due to the fixed size of one data block in the system, and
the number of slave nodes in the cluster. First of all, for
a fixed 50 nodes cluster, we increase the size of data, and
then for a fixed 10 GB data, we scale up the number of slave
nodes. Response time, which is the interval between the
query started and the first result of the query returned to
the user, is used as the metric in the experiments. Respec-
tively, we use four methods to execute each typical query,
including basic method, ASAP based basic method, random
optimum scheduling method and global optimum scheduling
method. Basic method decomposes query into multiple cer-
tain subqueries rather than k + 1 equivalent subqueries for
each table partition, and it is marked busy until all results
are returned to master nodes. And finally the master nodes
return the result of original query after all subqueries execu-
tion finished, while ASAP based basic method return results
as soon sa possible. Optimal methods not only take the ad-
vantage of table’s multiple backups, but also employ ASAP
approach, pipeline and scheduler to reduce the response time
as best as we can. All results are obtained based on 5 runs.



Figure 5 and 6 show our results straightforwardly. Results
show very good performance. Random and Global ESQP
have similar performance in our dataset in that our data is
distributed uniformly. As can be seen in figure 5, the cost
of optimal method answering the projection and join query
in 50 nodes and 100 GB only is less than 1 second, and ag-
gregation query is only 100-300 seconds, which shows that
our method is very efficient. ASAP based basic method also
has good performance in figure 5(a) and 5(c) because the re-
sponse time is determined by query decomposition and the
fastest subquery execution, where our method has no obvi-
ous superiority. But according to our experimental records,
the total cost of a query execution in this method is much
more than ESQP method.

Figure 5 and 6 also illustrate the scalability of our meth-
ods. These graphs show that our distributed efficient SQL
query processing method scales almost linearly with the ta-
ble size or the number of nodes. Benefiting from pipeline
strategy, when the queries don’t have aggregation, we re-
turn the result of query as soon as we get it from subquery
execution node, and we stop the mission timer at the point
that first result is received by client. Therefore, the response
time of this kind query is only influenced by query decompo-
sition, which is always dominated by subqueries dispatching
time. On the other hand, the response time of aggregation
query is consist of query decomposition time, query dispatch
time and time of the lowest subquery’s execution and result
return. Although the scale up of the cluster makes nonun-
hiform distribution of subqueries in basic method that leads
to the load unbalance problem, which causes the relevant
curves in figure 6 are not smooth or monotonic, the figure
shows our method is high available and scale to hundreds of
nodes, and figure 5 shows the performance of our method is
very good when data size is scaling up.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented a newly more efficient query

algorithm to deal with SQL query. According to different
kinds of queries, we adopted different subqueries dispatch.
Besides, the algorithm took advantage of the idea of divide
and conquer. In order to get higher efficiency, we not only
used scheduling algorithms to get load balance, but also we
utilized pipeline technique to process result return. Finally,
we proved the efficiency and scalability of our approach with
vast experiments.

For future work, as the number of slave nodes increases,
although our query processing algorithm has very good scal-
ability, the query cost does not reduce lineally because of
the computation of the large matrix. Therefore, we will
study more advanced query schedulers to make our algo-
rithm more scalable, and do more research on large-scale
concurrent queries answering which brings further scalabil-
ity problems. Besides, currently our scheduling algorithms
choose subquery according to a heuristic method-variance
to achieve maximum load balancing. So we also plan to
research a more accurate measure of load balance.
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