

发表论文精选

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 8, AUGUST 2020 1

LF-GDPR: A Framework for Estimating Graph
Metrics with Local Differential Privacy

Qingqing Ye, Member, IEEE, Haibo Hu, Senior Member, IEEE, Man Ho Au, Member, IEEE,
Xiaofeng Meng, Member, IEEE, Xiaokui Xiao, Member, IEEE

Abstract—Local differential privacy (LDP) is an emerging technique for privacy-preserving data collection without a trusted collector.
Despite its strong privacy guarantee, LDP cannot be easily applied to real-world graph analysis tasks such as community detection and
centrality analysis due to its high implementation complexity and low data utility. In this paper, we address these two issues by
presenting LF-GDPR, the first LDP-enabled graph metric estimation framework for graph analysis. It collects two atomic graph metrics
— the adjacency bit vector and node degree — from each node locally. LF-GDPR simplifies the job of implementing LDP-related steps
(e.g., local perturbation, aggregation and calibration) for a graph metric estimation task by providing either a complete or a
parameterized algorithm for each step. To address low data utility of LDP, it optimally allocates privacy budget between the two atomic
metrics during data collection. To demonstrate the usage of LF-GDPR, we show use cases on two common graph analysis tasks,
namely, clustering coefficient estimation and community detection. The privacy and utility achieved by LF-GDPR are verified through
theoretical analysis and extensive experimental results.

Index Terms—Local differential privacy; Graph metric; Privacy-preserving graph analysis.

F

1 INTRODUCTION

With the prevalence of big data and machine learning,
graph analytics has received great attention and nurtured
numerous applications in web, social network, transporta-
tion, and knowledge base. However, recent privacy inci-
dents, particularly the Facebook privacy scandal, pose real-
life threats to any centralized party who needs to safeguard
graph data of individuals while providing graph analysis
service to third parties. In that scandal, a third-party de-
veloper Cambridge Analytica retrieves the personal profiles
of 87 million Facebook users through the Facebook Graph
API for third-party apps [1], [2]. The main cause is that
this API allows these apps to access the friends list of a
user by a simple authorization, through which these apps
propagate like virus in the social network. Unfortunately,
most existing privacy models on graph assume a central-
ized trusted party to release the graph data that satisfies
certain privacy metrics, for example, the k-neighborhood
anonymity [3], k-degree anonymity [4], k-automorphism [5],
k-isomorphism [6], and differential privacy [7], [8]. How-
ever, in practice even Facebook cannot be fully trusted or is
in the centralized position to release graph data on behalf
of each user. For decentralized graphs in which each user
or party locally maintains a limited view of the graph,

• Qingqing Ye is with the Department of Electronic and Information
Engineering, Hong Kong Polytechnic University, and the School of
Information, Renmin University of China. E-mail: qqing.ye@polyu.edu.hk

• Haibo Hu is with the Department of Electronic and Information Engineer-
ing, Hong Kong Polytechnic University, and Polyu Shenzhen Research
Institute. E-mail: haibo.hu@polyu.edu.hk

• Man Ho Au is with the Department of Computer Science, The University
of Hong Kong. E-mail: allenau@cs.hku.hk

• Xiaofeng Meng is with the School of Information, Renmin University of
China. E-mail: xfmeng@ruc.edu.cn

• Xiaokui Xiao is with the School of Computing, National University of
Singapore. E-mail: xkxiao@nus.edu.sg

Manuscript received April 19, 2005; revised August 26, 2015.

there is even no such a central party. These graphs, such
as the World Wide Web, federated knowledge graphs, peer-
to-peer (e.g., vehicular and mobile ad-hoc) and blockchain
networks, and contact tracing graph for COVID-19, are in
a more compelling need to find alternative privacy models
without a trusted party [9].

A promising model is local differential privacy
(LDP) [10], where each individual user locally perturbs her
share of graph metrics (e.g., node degree and adjacency list,
depending on the graph analysis task) before sending them
to the data collector for analysis. As such, the data collector
does not need to be trusted. A recent work LDPGen [11]
has also shown the potential of LDP for graph analytics. In
that work, LDP is used to collect node degree for synthetic
graph generation. However, such solution is usually task
specific — for different tasks, such as centrality analysis
and community detection, dedicated LDP solutions must
be designed from scratch. To show how complicated it is, an
LDP solution usually takes four steps: (1) selecting graph
metrics to collect from users for the target metric (e.g.,
clustering coefficient, modularity, or centrality) of this task,
(2) designing a local perturbation algorithm for users to re-
port these metrics under LDP, (3) designing a collector-side
aggregation algorithm to estimate the target metric based
on the perturbed data, (4) designing an optional calibration
algorithm for the target metric if the estimation is biased.
Step (4) is important as locally perturbed data often causes
bias (i.e., deviation from the true mean) in the collector-side
statistics. Obviously, working out such a solution requires
in-depth knowledge of LDP, which hinders the embrace of
LDP by more graph applications.

In this paper, we address this challenge by presenting
LF-GDPR (Local Framework for Graph with Differentially
Private Release), the first LDP-enabled graph metric esti-
mation framework for general graph analysis. It simplifies

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 8, AUGUST 2020 2

the job of a graph application to design an LDP solution
for a graph metric estimation task by providing complete
or parameterized algorithms for steps (2)-(4) as above. As
long as the target graph metric can be derived from the two
atomic metrics, namely, the adjacency bit vector and node
degree, the parameterized algorithms in steps (2)-(4) can
be completed with ease. Furthermore, LF-GDPR features
an optimal allocation of privacy budget between the two
atomic metrics. To illustrate the usage of LF-GDPR, we will
also show use cases on two common graph analysis tasks,
namely, clustering coefficient estimation and community
detection. To summarize, our main contributions in this
paper are as follows.

1) This is the first LDP-enabled graph metric estimation
framework for a variety of graph analysis tasks.

2) We provide complete or parameterized algorithms for
local perturbation, collector-side aggregation, and cali-
bration.

3) We present an optimal solution to allocate the privacy
budget between adjacency bit vector and node degree.

4) We show two use cases of LF-GDPR and compare their
performance with existing methods on real datasets.

The rest of the paper is organized as follows. Section 2
introduces preliminaries on local differential privacy and
its application in graph analytics. Section 3 presents an
overview of LF-GDPR. Section 4 describes the implemen-
tation details of this framework. Sections 5 and 6 show
the detailed usage of LF-GDPR in two use cases. Section 7
presents the experimental results, followed by Section 8
which reviews related work. Section 9 draws a conclusion
with future work.

2 PRELIMINARIES

2.1 Local Differential Privacy

Differential privacy [12] (DP) is defined on a randomized
algorithm A of a sensitive database. A is said to satisfy ε-
differential privacy, if for any two neighboring databases D
and D′ that differ only in one tuple, and for any possible
output s of A, we have Pr[A(D)=s]

Pr[A(D′)=s] ≤ eε. In essence,
DP guarantees that after observing any output of A, an
adversary cannot infer with high confidence whether the
input database is D or D′, thus hiding the existence or non-
existence of any individual tuple.

Centralized DP requires the real database stored in a
trusted server where the randomized algorithm A can exe-
cute. However, this assumption does not hold in many real-
world applications. Local differential privacy (LDP) [10],
[13] is proposed to assume each individual is responsible
for her own tuple in the database. In LDP, each user locally
perturbs her tuple using a randomized algorithm before
sending it to the untrusted data collector. Formally, a ran-
domized algorithm A satisfies ε-local differential privacy,
if for any two input tuples t and t′ and for any output t∗,
Pr[A(t)=t∗]
Pr[A(t′)=t∗] ≤ e

ε holds. In essence, LDP guarantees that after
observing any output tuple t∗, the untrusted data collector
cannot infer with high confidence whether the input tuple
is t or t′.

2.2 Local Differential Privacy on Graphs
In this paper, a graph G is defined as G = (V,E), where
V = {1, 2, ..., n} is the set of nodes, and E ⊆ V × V is
the set of edges. For the node i, di denotes its degree and
Bi = {b1, b2, ..., bn} denotes its adjacency bit vector, where
bj = 1 if and only if edge (i, j) ∈ E, and otherwise bj = 0.
The adjacency bit vectors of all nodes constitute the adjacency
matrix of graph G, or formally, Mn×n = {B1,B2, ...,Bn}.

As with existing LDP works, we concern attacks where
an adversary can infer with high confidence whether an
edge exists or not, which compromises a user’s relation
anonymity in a social network. As a graph has both nodes
and edges, LDP can be applied to either of them, which
leads to node local differential privacy [14] and edge local
differential privacy [15]. Node LDP (resp. edge LDP) guaran-
tees the output of a randomized algorithm does not reveal
whether any individual node (resp. edge) exists in G.
Definition 2.1. (Node local differential privacy). A randomized

algorithm A satisfies ε-node local differential privacy
(a.k.a., ε-node LDP), if and only if for any two adja-
cency bit vectors B,B′ and any output s ∈ range(A),
Pr[A(B)=s]
Pr[A(B′)=s] ≤ e

ε holds.

Definition 2.2. (Edge local differential privacy). A randomized
algorithm A satisfies ε-edge local differential privacy
(a.k.a., ε-edge LDP), if and only if for any two adjacency
bit vectors B and B′ that differ only in one bit, and any
output s ∈ range(A), Pr[A(B)=s]

Pr[A(B′)=s] ≤ e
ε holds.

Both node and edge LDP satisfy sequential composition.
Theorem 2.3. (Sequential Composition) [11]. Given c random-

ized algorithms Ai(1 ≤ i ≤ c), each satisfying εi-
node (resp. edge) LDP, the collection of these algorithms
Ai(1 ≤ i ≤ c) satisfies (

∑
εi)-node (resp. edge) LDP.

Edge-LDP is a relaxation of node-LDP, which limits the
definition of neighbors from any two adjacency bit vectors
to those that differ only in one bit (i.e., one edge). Nonethe-
less, edge-LDP can still achieve strong indistinguishability
of each edge’s existence, which suffices for many graph
applications such as social networks while preserving high
utility [14]. As such, in this paper we assume edge-LDP as
with all existing graph LDP works.

3 LF-GDPR: FRAMEWORK OVERVIEW

In this section, we first introduce the rationale behind
LF-GDPR for privacy-preserving graph analytics and then
overview its workflow. Finally, we introduce two use cases
of LF-GDPR.

3.1 Design Principle
The core of privacy-preserving graph analytics often in-
volves estimating some target graph metric without access-
ing the original graph. Under the DP/LDP privacy model,
there are two solution paradigms, namely, generating a
synthetic graph to calculate this metric [11], [16], [17], [18],
[19] and designing a dedicated DP/LDP solution for such
metric [7], [14], [20], [21], [22]. The former provides a gen-
eral solution but suffers from low estimation accuracy as
the neighborhood information in the original graph is

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 8, AUGUST 2020 3

TABLE 1
Popular graph analysis tasks and metrics

Graph Analysis Task Graph Metric Derivation from
Concerned B, M , and D

synthetic graph clustering coefficient cci =
M3
ii

di(di−1)generation
community detection, modularity Qc =

||Mc||
||D|| −

||Dc||2
||D||2graph clustering

node role, page rank degree centrality ci = di
eigenvector centrality ci = BiM

k

connectivity analysis structural similarity τ(i, j) =
||Bi

⋂
Bj ||√

didj(clique / hub)
node similarity cosine similarity τ(i, j) =

BiB
′
j√

didjsearch

missing from the synthetic graph. The latter can achieve
higher estimation accuracy but cannot generalize such a
dedicated solution to other problems — it works poorly or
even no longer works if the target graph metric or graph
type (e.g., undirected graph, attributed graph, and DAG) is
changed [8], [18].

LF-GDPR is our answer to both solution generality and
estimation accuracy under the LDP model. It collects from
each node i two atomic graph metrics that can derive a
wide range of common metrics. The first is the adjacency bit
vector B, where each element j is 1 only if j is a neighbor
of i. B of all nodes collectively constitutes the adjacency
matrix M of the graph. The second metric is node degree
vector D = {d1, d2, ..., dn}, which is frequently used in
graph analytics to measure the density of connectivity [21].
Table 1 lists some of the most popular graph analysis tasks
in the literature [23], [24], [25] and their graph metrics, all of
which can be derived from B, M , and D.

Intuitively, for each node, d can be estimated from B.
However, given a large graph and limited privacy budget,
the estimation accuracy could be too noisy to be meaningful.
To illustrate this, let us assume each bit of the adjacency bit
vectorB is perturbed independently by the classic Random-
ized Response (RR) [26] algorithm with privacy budget ε. As
stated in [26], the variance of the estimated node degree d̃ is

V ar[d̃] = n ·
[1

16(eε

eε+1 −
1
2)

2
− (

d

n
− 1

2
)2
]

(1)

Even for a moderate social graph with extremely large
privacy budget, for example, d = 100, n = 1M , and ε = 8
(the largest ε used in [11] is 7), V ar[d̃] ≈ 435 > 4d, which
means the variance of the estimated degree is over 4 times
that of the degree itself. As such, we choose to spend some
privacy budget on an independently perturbed degree. This
further motivates us to design an optimal privacy budget
allocation between adjacency bit vector B and node degree
d, to minimize the distance between the target graph metric
and the estimated one.

To summarize, in LF-GDPR each node sends two per-
turbed atomic metrics, namely, the adjacency bit vector B̃
(perturbed from B) and node degree d̃ (perturbed from d),
to the data collector, who then aggregates them to estimate
the target graph metric.

1 0 1 1 0 1... 12

0 1 1 0 1 0... 31

Adjacency bit vector B Degree D
 Privacy Budget Allocation

2

1Total Privacy
 Budget

Aggregation and Calibration

Graph Data Perturbation

4

32

1 0 1 1 1... 13

1 0 0 1 1... 29

21

Data Collector

Users

LF-GDPR

Graph Metric Reduction1

0

2

4

6

8

Graph Metric Estimation

~D

2

1

B~

~d

F = Map (M, D)

F

F~

F~
M~

,

F : Target graph metric
 : Privacy budget
M : Adjacency matrix
B : Adjacency bit vector
D : Node degree vector

Fig. 1. An overview of LF-GDPR

3.2 LF-GDPR Overview

LF-GDPR works as shown in Fig. 1. A data collector who
wishes to estimate a target graph metric F first reduces it
from the adjacency matrix M and node degree vector D of
all nodes by deriving a mapping function F =Map(M ,D)
(step 1©). Based on this reduction, LF-GDPR optimally allo-
cates the total privacy budget ε betweenM andD, denoted
by ε1 and ε2, respectively (step 2©). Then each node locally
perturbs its adjacency bit vector B into B̃ to satisfy ε1-edge
LDP, and perturbs its node degree d into d̃ to satisfy ε2-
edge LDP (step 3©). According to the composability of LDP,
each node then satisfies ε-edge LDP. Note that this step is
challenging as both B and d are correlated among nodes.
For B, the j-th bit of node i’s adjacency bit vector is the
same as the i-th bit of node j’s adjacency bit vector. For
d, whether i and j has an edge affects both degrees of i
and j. Sections 4.2 and 4.3 solve this issue and send out
the perturbed B and d, i.e., B̃ and d̃. The data collector
receives them from all nodes, aggregates them according to
the mapping function Map(·) to obtain the estimated target
metric F̃ , and further calibrates it to suppress estimation
bias and improve accuracy (step 4©). The resulted F̃ is then
used for graph analysis. The detailed implementation of LF-
GDPR for steps 1© 2© 3© 4© will be presented in Section 4.
Note that the algorithms in steps 1© 2© 4© are parameterized,
which can only be determined when the target graph metric
F is specified.

Example 3.2. LF-GDPR against Facebook Privacy Scan-
dal. Facebook API essentially controls how a third-party
app accesses the data of each individual user. To limit the
access right of an average app (e.g., the one developed by
Cambridge Analytica) while still supporting graph analyt-
ics, Facebook API should have a new permission rule that
only allows such app to access the perturbed adjacency bit
vector and degree of a user’s friends list under ε1 and ε2-
edge LDP, respectively. In the Cambridge Analytica case,
the app is a personality test, so the app developer may
choose structural similarity as the target graph metric and
use the estimated value for the personality test. To estimate
structural similarity, the app then implements steps 1© 2© 4©

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 8, AUGUST 2020 4

of LF-GDPR. On the user side, each user u has a privacy
budget εu for her friends list. If εu ≥ ε1 + ε2, the user can
grant access to this app for perturbed adjacency bit vector
and degree; otherwise, the user simply ignores this access
request.

3.3 Two Cases of Graph Analytics Using LF-GDPR

To illustrate LF-GDPR, we show two use cases throughout
this paper. In this subsection, we introduce their background
and target graph metrics F . Their usage details, including
the reduction of F (step 1©), the optimal privacy budget
allocation (step 2©), and the aggregation and calibration
(step 4©), are presented in Sections 5 and 6 respectively.

3.3.1 Clustering Coefficient Estimation

The clustering coefficient of a node measures the connec-
tivity in its neighborhood, i.e., the subgraph of its neighbors.
Formally, the clustering coefficient cci of node i is defined
as

cci =
2ti

di(di − 1)
,

where ti denotes the number of edges in the neighborhood
of node i, or equivalently, the number of triangles incident
to node i. A clustering coefficient is in the range of [0, 1], and
a high value indicates its neighbors tend to directly connect
to each other. It is an important measure of graph structure,
and is widely used in graph analytics. For example, the
graph model BTER [11], [27] needs clustering coefficient (as
well as node degree) to generate a synthetic graph. As it
depends on the neighborhood information and thus cannot
be calculated locally in each node, existing LDP techniques
for values, such as [28], [29], [30], cannot work. The detailed
solution by LF-GDPR will be shown in Section 5.

3.3.2 Modularity Estimation and Community Detection

Communities (i.e., densely connected subgraphs) are com-
monly used in graph analytics to understand the underlying
structure of a graph. The criterion of a good community is
similar to a graph partition — with many intra-community
edges and only a few inter-community edges. Many popular
community detection methods are based on modularity
maximization [31], which iteratively improves modularity,
a widely-adopted metric to measure the quality of detected
communities. Formally, the modularity Q of a graph is
defined as the sum of individual modularities qc of all
communities C:

Q =
r∑
c=1

qc =
r∑
c=1

[
Lc
L
− (

Kc

2L
)2
]
, (2)

where r is the number of communities in the graph, L is
the total number of edges, Lc is the total number of edges
in community C, and Kc is the total degree of all nodes in
C. Q is in the range of [−1, 1], where a higher value is more
desirable. As with clustering coefficient, neither individual
nor overall modularity can be estimated by dedicated LDP
techniques which do not send the adjacency bit vectors.
Section 6 will elaborate on how to use LF-GDPR to estimate
it.

4 LF-GDPR: IMPLEMENTATION

In this section, we present the implementation details of LF-
GDPR. We first discuss graph metric reduction (step 1©),
followed by the perturbation protocols for adjacency bit
vector and node degree, respectively (step 3©). Then we
elaborate on the aggregation and calibration algorithm (step
4©). Finally, we present the optimal allocation of privacy

budget between adjacency bit vector and node degree (step
2©).

4.1 Graph Metric Reduction

The reduction outputs a polynomial mapping function
Map(·) from the target graph metric F to the adjacency
matrix M = {B1,B2, ...,Bn} and degree vector D =
{d1, d2, ..., dn}, i.e., F = Map(M ,D). Without loss of
generality, we assume F is a polynomial of M and D. That
is, F is a sum of terms Fl, each of which is a multiple of
M and D of some exponents. Since F and Fl are scalars,
in each term Fl, we need functions f and g to transform M
and D with exponents to scalars, respectively. Formally,

F =
∑

l
Fl =

∑
l
fφl(M

kl) · gψl(D), (3)

whereMkl is the kl-th power of adjacency matrixM whose
cell (i, j) denotes the number of paths between node i and j
of length kl, φl projects a matrix to a cell, a row, a column or
a sub-matrix, and fφl(·) denotes an aggregation function f
(e.g., sum) after projection φl. Likewise, ψl projects a vector
to a scalar or a sub-vector, and gψl(·) denotes an aggregation
function g after ψl.

As such, the metric reduction step is to determine kl,
fφl(·), and gψl(·) for each term Fl in Eq. 3.

4.2 Adjacency Bit Vector Perturbation

An intuitive approach, known as Randomized Neighbor List
(RNL) [11], perturbs each bit of the vector independently
by the classic Randomized Response (RR) [26]. Formally,
given an adjacency bit vector B = {b1, b2, ..., bn}, and
privacy budget ε1, the perturbed vector B̃ = {b̃1, b̃2, ..., b̃n}
is obtained as follows:

b̃i =

{
bi w.p. eε1

1+eε1

1− bi w.p. 1
1+eε1

(4)

Note that here basic RR rather than OUE [32] is adopted.
This is because adjacency bit vector is a binary vector, and
according to [33], RR can achieve better accuracy than OUE.

Note that in Eq. 4, the probability of preserving an
edge (bit ‘1’) or non-edge (bit ‘0’), i.e., p = eε1

1+eε1 , is not
proportional to the amount of edge information disclosed
to the collector. In fact, the success rate of the collector
inferring an observed edge is a true edge is γp

γp+(1−γ)(1−p) ,
where γ is the edge density in a graph. Although the edge
density γ is not considered in the definition of edge LDP, but
it contributes to the posterior probability for the collector
to infer the truth from an observed edge or non-edge. As
such, a high edge density γ also plays an important role
in raising the success rate. But it is normally very small in
social networks, and furthermore, such statics are generally
not precisely owned by the collector.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 8, AUGUST 2020 5

0

101

1

1

0

00

1

0

0

0

11

*
jiM1

0

1

1

0

00 1*
jiM1 0

A

C B

ED

(a) Original graph (b) Adjacency bit matrix

Adjacency bit vector

1

1 Perturbed and transmitted bits

Copied bits

A

B

C

D

E

A B C D E

Fig. 2. Illustration of RABV protocol

RNL is proved to satisfy ε1-edge LDP for each user.
However, for undirected graphs, RNL can only achieve
2ε1-edge LDP for the collector, because the data collector
witnesses the same edge perturbed twice and indepen-
dently. Let M̃ = {B̃1, B̃2, ..., B̃n} denote the perturbed
adjacency matrix. The edge between nodes i and j appears
in both M̃ij and M̃ji, each perturbed with privacy budget
ε1. Then according to the theorem of composability, RNL
becomes a 2ε1-edge LDP algorithm for an undirected graph,
which is less private. A formal proof is as follows.

For the original adjacency matrix M of an undirected
graph, Mij = Mji always holds for any two nodes i and
j. By observing two perturbed bits M̃ij and M̃ji in the
perturbed adjacency matrix M̃ , the posterior probability
that there exists an edge between nodes i and j can be
denoted by Pr[Mij =Mji = 1 | M̃ij , M̃ji]. Further, we have

Pr[Mij =Mji = 1 | M̃ij , M̃ji]

Pr[Mij =Mji = 0 | M̃ij , M̃ji]

≤ Pr[Mij =Mji = 1 | M̃ij = M̃ji = 1]

Pr[Mij =Mji = 0 | M̃ij = M̃ji = 1]

=
Pr[Mij = 1 | M̃ij = 1] · Pr[Mji = 1 | M̃ji = 1]

Pr[Mij = 0 | M̃ij = 1] · Pr[Mji = 0 | M̃ji = 1]

=
eε1

1+eε1 ·
eε1

1+eε1

1
1+eε1 ·

1
1+eε1

= e2ε1 ,

which proves that RNL only provides 2ε1-edge LDP.
Furthermore, RNL requires each user to perturb and

send all n bits in the adjacency bit vector to data collector,
which incurs a high computation and communication cost.

To address the problems of RNL, we propose a more pri-
vate and efficient protocol Randomized Adjacency Bit Vector
(RABV) to perturb edges in undirected graphs. As shown
in Fig. 2(b), the adjacency matrix is composed of n rows,
each corresponding to the adjacency bit vector of a node. For
the first 1 ≤ i ≤ bn2 c nodes, RABV uses RR as in Eq.4 to
perturb and transmit t = bn2 c bits (i.e., bits in grey) — from
the (i+ 1)-th bit to the (i+ 1 + t mod n)-th bit; for the rest
nodes, RABV uses RR to perturb and transmit t = bn−12 c
bits in the same way. In essence, RABV perturbs one and
only one bit for each pair of symmetric bits in the adjacency
matrix. The data collector can then obtain the whole matrix
by copying bits in grey to their symmetric positions.

Following the same proof ofRNL,RABV is guaranteed
to satisfy ε1-edge LDP for the collector. Further, since each
node only perturbs and transmits about half of the bits
in an adjacency bit vector, RABV significantly reduces
computation and communication cost of RNL.

4.3 Node Degree Perturbation
Releasing the degree of a node while satisfying edge ε-
LDP is essentially a centralized DP problem because all
edges incident to this node, or equivalently, all bits in its
adjacency bit vector, form a database and the degree is a
count function. In the literature, Laplace Mechanism [12] is
the predominant technique to perturb numerical function
values such as counts. As such, LF-GDPR adopts it to
perturb the degree di of each node i. According to the
definition of edge LDP, two adjacency bit vectors B and
B′ are two neighboring databases if they differ in only one
bit. As such, the sensitivity of degree (i.e., count function) is
1, and therefore adding Laplace noise Lap(1

ε2
) to the node

degree can satisfy ε2-LDP. That is, d̃i = di + Lap(1
ε2
).

Similar to perturbing adjacency bit vector, however, in
the above naive approach the data collector witnesses two
node degrees di and dj perturbed independently, but they
share the same edge between i and j. As such, whether this
edge exists or not contributes to both di and dj . In the most
extreme case where there are only two nodes and one edge
in the graph, d1 = 1 and d2 = 1, both of which indicate
the existence of this edge. If it is removed, both d1 and d2
will decrease by 1, causing the sensitivity of node degree
perturbation to be 2. As DP or LDP does not refrain an
adversary from possessing any background knowledge, in
the worst case the collector already knows all edges except
for this one. As such, witnessing the two node degrees di
and dj is degenerated to witnessing the edge between i and
j twice and independently.

Unfortunately, the remedy that works for perturbing
adjacency bit vector cannot be adopted here, as direct bit
copy is not feasible for degree. As such, we take an alterna-
tive approach to increase the Laplace noise. The following
theorem proves that if we add Laplace noise Lap(2

ε2
) to

every node degree, ε2-LDP can be satisfied for the collector.
Theorem 4.1. A perturbation algorithm A satisfies ε2-LDP

for the collector if it adds Laplace noise Lap(2
ε2
) to every

node degree di, i.e., d̃i = A(di) = di + Lap(2
ε2
).

PROOF. By adding Laplace noise Lap(2
ε2
) to any node de-

gree di, i.e., d̃i = di+Lap(
2
ε2
), the perturbation algorithmA

satisfies ε2
2 -LDP for node i. For the collector, whether there

is an edge between any two nodes i and j can be derived
from both perturbed degrees d̃i and d̃j . Then according to
the composability property of Theorem 2.3, the perturbation
algorithm A satisfies ε2-LDP for the collector.

The perturbed degree d̃ is a coarse estimation of the true
degree. Now that we have both d̃ and d̃ABV , the degree
estimated from the perturbed adjacency bit vector B̃,1 we
can use Maximum Likelihood Estimation (MLE) [34] to obtain
a refined estimation d̃∗. The rationale of this refinement is
illustrated in Fig. 3. Before refinement (Fig. 3(a)), as each
bit of B follows Bernoulli distribution, according to De
Moivre-Laplace Central Limit Theorem, the probability den-
sity function of d̃ABV can be approximated by a Gaussian

1. A naive and biased estimation is d̃ABV =
∑n
j=1 b̃j . In Example

4.4, we show a calibrated and unbiased estimation d̃ABV =
∑n
j=1 b̃j
2p−1

+
(p−1)n
2p−1

, where p = eε1
eε1+1

.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 8, AUGUST 2020 6

Probability density function

dABV
~ d~

From perturbed degree

From perturbed ABV
True degree follows
Laplace/Gaussian
distribution

(a) Before refinement

Probability density function

dABV
~ d~d*~

(b) After refinement

Fig. 3. Refining d̃ to d̃∗ by MLE

distribution f1(x) = 1
σ
√
2π
e−

(x−d̃∗)2

2σ2 , where the variance

σ2 = n · [1
16(p− 1

2)
2 − (d̃n −

1
2)

2] is derived in Eq. 1.2 On

the other hand, as d̃ is obtained by adding Laplace noise
to d, the probability density function of d̃ follows a Laplace

distribution f2(x) = ε2
4 e
− |x−d̃

∗|ε2
2 . The refinement, as shown

in Fig. 3(b), shifts both distributions to share the same mean,
i.e., the true degree, as they are both drawn from it. To
estimate this mean d̃∗ by MLE, we derive the joint likelihood
of observing both d̃ and d̃ABV , and maximize it. Since they
are both independently perturbed, the joint likelihood is the
multiplication of individual probabilities. Formally,

d̃∗ = argmax
d̃∗

f1(d̃ABV) · f2(d̃)

= argmax
d̃∗

ε2

σ · 4
√
2π
e−

(d̃ABV −d̃
∗)2+σ2|d̃−d̃∗|ε2
2σ2

≈ argmin
d̃∗

(
(d̃ABV − d̃∗)2 + σ2|d̃− d̃∗|ε2

)
By solving the above equation, we have

d̃∗ = median(d̃ABV −
σ2 · ε2

2
, d̃ , d̃ABV +

σ2 · ε2
2

) (5)

4.4 Aggregation and Calibration

Upon receiving the perturbed adjacency matrix M̃ and
degree vector D̃,3 the data collector can estimate the target
graph metric F̃ by aggregation according to Eq. 3 with a
calibration function R(·):

F̃ =
∑

l
R
(
fφl(M̃

kl)
)
· gψl(D̃) (6)

The calibration function aims to suppress the aggregation
bias of M̃ propagated by fφl . On the other hand, no
calibration is needed for gψl(D̃) as D̃ is already an unbiased
estimation of D, thanks to the Laplace Mechanism.

To derive R(·), we regard R as the mapping between
fφl(M

kl) and fφl(M̃
kl). In other words, R estimates

fφl(M
kl) after observing fφl(M̃

kl). Formally,

R : fφl(M̃
kl)→ fφl(M

kl)

The following shows a concrete example for aggregation
and calibration when estimating the number of edges in a
graph. The result of this example will be used in Section 6
to estimate Lc in Eq. 2 of modularity definition.

2. Here we replace d with d̃ in Eq. 1 for simplicity.
3. In the sequel, D̃ denotes the refined degree D̃∗ to simplify the

notation.

Example 4.4. For a graph with n nodes, there are N =
1
2n(n − 1) bits in its upper/lower triangular matrix, each
indicating whether an edge exists or not. Let s denote the
number of edges in the original graph, i.e., the number
of “1”s in these N bits. These N bits are then perturbed
according to RABV protocol by randomized response [26]
with flipping probability p. To estimate s, the data collector
takes the following two steps.
(1) Aggregation. It aggregates the number of “1”s in the
perturbed N bits and uses it as an initial estimation s̃.
(2) Calibration. Since the mapping between s and s̃ can be
captured by s̃ = sp + (N − s)(1 − p), the collector then
calibrates s̃ by R(s̃) = s̃

2p−1 + p−1
2p−1N , which is derived by

solving the mapping function.
We can further show R(s̃) is an unbiased estimation of s,
because E [R(s̃)] = 1

2p−1 [sp+ (N − s)(1− p) + (p−1)N] = s.

If both R(fφl(M̃kl)) and gψl(D̃) are unbiased estima-
tion of fφl(M

kl) and gψl(D) respectively, the following
theorem guarantees F̃ is an unbiased estimation of the
target metric F .

Theorem 4.2. If R(fφl(M̃kl)) and gψl(D̃) are unbiased
estimation of fφl(M

kl) and gψl(D) respectively, the
estimated graph metric F̃ is unbiased.

PROOF. According to the assumption of unbiased estima-
tion, we have

E
[
R
(
fφl(M̃

kl)
)]

= fφl(M
kl)

E
[
gψl(D̃)

]
= gψl(D)

Since the adjacency bit vector and the degree of each
node are perturbed independently, we have

E
[
F̃
]
=
∑

l
E
[
R
(
fφl(M̃

kl)
)
· gψl(D̃)

]
=
∑

l
E
[
R
(
fφl(M̃

kl)
)]
· E
[
gψl(D̃)

]
=
∑

l
fφl(M

kl) · gψl(D)

= F

Therefore, F̃ is unbiased.

4.5 Optimal Privacy Budget Allocation

The final problem in LF-GDPR is to allocate the privacy
budget (step 2© in Fig. 1). Formally, it divides ε into ε1 = αε
and ε2 = (1−α)ε, where α ∈ (0, 1), for adjacency bit vector
and node degree perturbation, respectively.

Our objective is to find the optimal α that minimizes the
distance between the graph metric F and our estimation F̃ .
Without loss of generality, we adopt the L2 distance [35] and
set the loss function for optimization as the expectation of
this distance, i.e., α = argminα∈(0,1) E[||F̃ − F ||

2

2].

Assuming F̃ is unbiased, we have

E[||F̃ − F ||
2

2] = E[F 2 − 2FF̃ + F̃ 2]

= E[F 2]− 2E[F] · E[F̃] + E[F̃ 2]

= E[F̃ 2]− F 2.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 8, AUGUST 2020 7

Since F 2 is constant, we only need to minimize E[F̃ 2] with
respect to α:

E[F̃ 2] = E
[(∑

l
R
(
fφl(M̃

kl)
)
· gψl(D̃)

)2]
(7)

In the next two sections, we will demonstrate how to
derive the terms in Eq. 7 with respect to α. Then we can
apply numerical methods, e.g., Newton’s method [36], to
find α that minimizes Eq. 7. Further, the following theorem
shows the accuracy guarantee of LF-GDPR.
Theorem 4.3. For a graph metric F and our estimation F̃ ,

with at least 1− β probability, we have

|F − F̃ | = O(

√
E[F̃ 2] · log(1/β))

PROOF. For a graph metric F , and its estimated one F̃ ,
the variance of F − F̃ is

V ar[F − F̃] = V ar[F̃] = E[F 2]− (E[F])2

= E[F̃ 2]− F 2 ≤ E[F̃ 2]

By Benstein’s inequality,

Pr[|F − F̃ | ≥ λ] ≤ 2 · exp
(
− λ2

2V ar[F − F̃] + 2
3λ

)

≤ 2 · exp
(
− λ2

2E[F̃ 2] + 2
3λ

)

By the union bound, there exists λ = O(
√
E[F̃ 2] · log(1/β))

such that |F − F̃ | < λ holds with at least 1 − β probabil-
ity.

As will be shown in the next two sections, E[F̃ 2] can be
further expressed by ε, n or d for a specific graph metric.

4.6 Summary
Algorithm 1 summarizes the overall protocol of LF-GDPR. It
takes three inputs — the target graph metric F , the privacy
budget ε, and the true adjacency bit vector Bi of each node
i, and returns an estimation of graph metric F̃ under ε-
LDP. In Line 1, the data collector reduces F to adjacency
matrix and node degree. Based on the reduction, in Line 2
the privacy budget ε is divided into αε and (1− α)ε by the
optimal privacy budget allocation algorithm (see Section 4.5
for details), and then α is sent to each node (Line 3). On each
node i, RABV perturbs its adjacency bit vector (Lines 5-6,
see Section 4.2 for details). For each bit to perturb, it adopts
RR with privacy budget αε. Then node i further perturbs
its degree di by adding a Laplace noise with privacy budget
(1− α)ε (Line 7). Finally, the perturbed adjacency bit vector
and node degree are sent to the data collector (Line 8). After
the collector receives the perturbed adjacency matrix M̃
and degree vector D̃, it first completes the whole adjacency
matrix by copying bits to their symmetric ones in M̃ (Line
9), and then refines each node degree d̃i to d̃∗i (Line 10, see
Section 4.3 for details). Finally, it applies aggregation and
calibration to estimate the graph metric F̃ (Line 11).

Security of Correlation. It is known that the privacy
provided by differential privacy decrease significantly un-
der correlations [37], [38]. However, correlation between

Algorithm 1 Overall protocol of LF-GDPR framework
Input: Target graph metric F

Privacy budget ε
True adjacency bit vector {B1, ...,Bn}

Output: An estimation of the graph metric F̃ under ε-LDP
Procedure:
//Collector side

1: Reduce graph metric F to adjacency matrix M = {B1, ...,Bn} and
degree vector D derived from M

2: Calculate α for privacy budget allocation based on F and ε
3: Send α to each node
//User side

4: for each node i ∈ {1, 2, ..., n} do
5: t = i ≤ bn

2
c ? bn

2
c : bn−1

2
c

6: for each bj ∈ Bi, where i+ 1 ≤ j ≤ (i+ 1 + t) mod n do

Perturb b̃j =

{
bj w.p. eαε

1+eαε

1− bj w.p. 1
1+eαε

7: Calculate the degree di from Bi and then perturb it as

d̃i = di + Lap (2/((1− α)ε))

8: Send B̃i and d̃i to the data collector
//Collector side

9: Copy symmetric bits in M̃ = {B̃1, ..., B̃n}
10: Refine d̃i to d̃∗i of each node i according to Eq. 5
11: Apply aggregation and calibration to estimate the graph metric F̃

based on M̃ and D̃ = {d̃∗1, ..., d̃∗n}
12: return F̃

adjacency bit vectors and node degrees does not compro-
mise LDP in LF-GDPR. First, there is pairwise correlation
between the adjacency bit vectors of any two users, but the
proposed RABV protocol is able to well address it by avoid-
ing “double dose” of the same edge information. Second,
there is correlation between the node degrees of two users
who share an edge. But Theorem 4.1 proves that by setting
sensitivity to 2 and adding Lap(2

ε2
) noise, this correlation

does not compromise ε2-LDP. Third, there is correlation
between the adjacency bit vector and node degree of the
same user. But since we divide the privacy budget between
them, according to sequential composition, ε-LDP is still
achieved even if they have the strongest correlation (i.e., an
equivalent or causal value).

5 CLUSTERING COEFFICIENT ESTIMATION WITH
LF-GDPR
In this section, we show how to use LF-GDPR to estimate
the clustering coefficients of all nodes in a graph. Based on
the implementation framework in Section 4, we present the
details of steps 1© 2© 4©. Finally, Algorithm 2 summarizes the
whole process.

5.1 Implementation Details
Graph Metric Reduction (step 1© in LF-GDPR). Recall that
the clustering coefficient of node i, cci = 2ti

di(di−1) , where ti
is the number of triangles incident to i. To count ti, we set
k1 = 3 so that M3 denotes the number of 3-hop walks for
all pairs of nodes. We then set projection φi to M3

ii, the i-th
diagonal element of M3 that denotes the number of 3-hop
walks starting and ending at node i.4 Note that M3

ii counts

4. The full notion of φi should be φ1,i. Since there is only one term
in the definition of clustering coefficient, we omit the notation 1. The
same applies to ψi.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 8, AUGUST 2020 8

A

C

B

F

D

G EH

A

C

B

F

D

G EH

A

C

B

F

D

G EH

(a) Case 1 (b) Case 2 (c) Case 3

p p

p p 1-pp
p p

1-p1-p 1-p 1-p 1-p

B Neighbors of A Original edges New edges after perturbation

γ ~
1-γ ~

1-γ ~ γ ~

Fig. 4. Estimate number of triangles incident to node A

the triangles incident to node i twice (e.g., triangles ijk and
ikj) , so M3

ii = 2ti, which is exactly the numerator in the
above cci definition. As such, the aggregation function f(·)
can be simply set to an identity function. Formally,

fφi(M
3) = f(M3

ii) =M3
ii = 2ti

To obtain the denominator in the above cci definition, we
set the projection ψi to di, the i-th element of degree vector
D. And the aggregation function g(·) is set according to the
denominator in the definition of clustering coefficient:

gψi(D) = g(di) =
1

di(di − 1)

To sum up, the clustering coefficient of any node i,
denoted by Fi, can be reduced to M and D as

Fi = fφi(M
3) · gψi(D) (8)

Aggregation and Calibration (step 4© in LF-GDPR).
The data collector receives the perturbed adjacency matrix
M̃ and degree vector D̃. According to Eq. 6 and 8, the
estimated clustering coefficient of any node i is

F̃i = R
(
fφi(M̃

3)
)
· gψi(D̃), (9)

where the calibration function R(·) estimates fφi(M
3), the

number of triangles incident to node i based on the per-
turbed number fφi(M̃

3). In what follows, we derive R(·).
According to Section 4.4, to derive R(·) we need to

estimate fφA(M
3), or equivalently tA = fφA(M

3)/2, the
number of triangles incident to nodeA in the original graph.
Figs. 4(a)-(c) enumerate all three cases of such triangles
based on whether the other two nodes of this triangle are
A’s neighbors in the original graph. Let d denote its degree
and p = eαε

1+eαε the perturbation probability. In each case, the
edges that constitute such triangles are highlighted by red
color. In particular, the red solid lines denote the original
edges, and each is retained in the perturbed graph with a
probability of p. The red dashed lines denote the new edges
after perturbation, and each appears with a probability of
1− p.
(1) Fig. 4(a): both nodes are neighbors of A. There are

two sub-cases based on whether there exists an edge
between these two nodes in the original graph. For
triangles such as ABC , there is an edge between B and
C in the original graph. Such triangles will be retained
in the perturbed graph with probability p3. For triangles
such as ADE, there is no edge between D and E in
the original graph. Such triangles will be retained in the
perturbed graph with probability p2(1 − p). Summing
up both sub-cases, the number of such triangles in the
perturbed graph is t̃A,1 = tA · p3 +

(
1
2d(d− 1)− tA

)
·

p2(1− p).

(2) Fig. 4(b): only one node is a neighbor of A, for example
triangles ACG and AEF . Since d nodes are adjacent to
A and n− d− 1 nodes are not adjacent, there are d(n−
d−1) possible triangles. In such a triangle, the two edges
incident to A will be retained in the perturbed graph
with probabilities p(1 − p). The probability of having
the third edge (e.g., CG or EF) in the perturbed graph
can be approximated by the overall edge density after
perturbation, i.e., γ̃ = γp + (1 − γ)(1 − p), where γ =∑n
i=1 di

n(n−1) denote the edge density in the original graph.
As such, the number of triangles in this case is t̃A,2 =
d(n− d− 1) · p(1− p)γ̃.

(3) Fig. 4(c): neither node is a neighbor of A, for example
triangles AGH and AFH . In such a triangle, the two
edges incident to A will be retained in the perturbed
graph with probabilities (1 − p)2. The probability of
having the third edge (e.g., GH or FH) in the per-
turbed graph can also be approximated by γ̃. Since
there are

(n−d−1
2

)
= 1

2 (n − d − 1)(n − d − 2) pos-
sible triangles, the number of triangles in this case is
t̃A,3 = 1

2 (n− d− 1)(n− d− 2) · (1− p)2 γ̃.
By summing up t̃A,1, t̃A,2, and t̃A,3, we obtain t̃A. Since

the calibration functionR(·) maps t̃A to tA, i.e.,R(t̃A) = tA,
we can solve tA from t̃A and derive R(·) as 5

R
(
t̃A
)
=

1

p2(2p−1)

(
t̃A −

1

2
d̃(d̃−1)p2(1−p)

− d̃(n−d̃−1)p(1−p)γ̃ (10)

− 1

2
(n−d̃−1)(n−d̃−2)(1−p)2γ̃

)
Privacy Budget Allocation (step 4© in LF-GDPR). Ac-

cording to Section 4.5, to solve α we derive and minimize
E[F̃ 2] with respect to α in Eq. 7. Theorem 5.1 below shows
the closed-form solution of α.
Theorem 5.1. The optimal α for clustering coefficient estima-

tion can be approximated by:

argmin
α∈(0,1)

eαε + 2

e3αε(eαε−1)2

(
1+

8(10d̂2 − 10d̂+ 3)

d̂2(d̂− 1)2(1− α)2ε2

)
(11)

where d̂ is a representative degree (e.g., the mean, me-
dian, or most frequent degree) of all nodes in the original
graph.

PROOF. According to Eq. 7, we have

E[F̃ 2] = E
[(∑

l
R
(
fφl(M̃

kl)
)
· gψl(D̃)

)2]
=
(
f2φ(M

3) + V ar
[
R
(
fφ(M̃

3)
)])
· E
[
g2ψ(D̃)

]
For each node i, by setting

fφi(M
3) = 2ti and gψi(D) =

1

di(di − 1)
,

we approximate E[F̃i
2
] by:

E[F̃i
2
] = 4(t2i + V ar[R(t̃i)]) · E

[
1

d̃2i (d̃i − 1)2

]
, (12)

5. We replace d with d̃, because the former is unknown to data
collector and the latter is an unbiased estimation of the former.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 8, AUGUST 2020 9

Algorithm 2 Collector-side clustering coefficient estimation

Input: Perturbed adjacency matrix M̃ = {B̃1, ..., B̃n}
Perturbed degree vector D̃ = {d̃1, ..., d̃n}
Percentage α for privacy budget allocation

Output: Estimated clustering coefficient cc = {cc1, ..., ccn}
Procedure:

1: Calculate the edge density in perturbed graph γ̃ =
∑n
i=1 d̃i

n(n−1)
2: for each node i ∈ {1, 2, ..., n} do
3: Calculate the number of triangles t̃i incident to node i
4: Calibrate t̃i to get an unbiased one ti according to Eq. 10, where

p = eαε

1+eαε
.

5: Estimate node i’s clustering coefficient cci = 2ti
d̃i(d̃i−1)

6: return cc = {cc1, ..., ccn}

where

V ar
[
R
(
t̃i
)]

=
V ar[t̃i]

p4(2p− 1)2

=

1
2 (n− 1)(n− 2)V ar

[
M̃it1M̃t1t2M̃t2i

]
p4(2p− 1)2

≈ (n− di − 1)2(n− di − 2)2

2(n− 1)(n− 2)
· eαε + 2

e3αε(eαε − 1)2

(13)

Since t2i � O(n2) ∼ V ar[R(t̃i)] for most cases, we omit

the term of t2i . As for E
[

1

d̃2i (d̃i−1)2

]
, by Taylor expansion at

E[d̃i], we have

E

[
1

d̃2i (d̃i−1)2

]
≈ 1

d2i (di−1)2
+

8(10d2i − 10di + 3)

d4i (di−1)4(1−α)2ε2
(14)

By substituting Eq. 13 and Eq. 14 into Eq. 12, we have

E[F̃ 2
i] =

4(n− di − 1)2(n− di − 2)2

2(n− 1)(n− 2)d2i (di − 1)2

· eαε + 2

e3αε(eαε − 1)2

(
1 +

8(10d2i − 10di + 3)

d2i (di − 1)2(1− α)2ε2

)

To minimize E[F̃ 2
i], we omit the first item which is

independent of α. To unify α for all nodes, we replace di
with d̂, a representative degree (e.g., the mean, median, or
most frequent degree) of all nodes in the original graph.
Therefore, we can derive α as

argmin
α∈(0,1)

eαε + 2

e3αε(eαε − 1)2

(
1 +

8(10d2i − 10di + 3)

d̂2(d̂− 1)2(1− α)2ε2

)

As for the representative degree d̂, it can be estimated
by a portion of privacy budget. The data collector can ask
each node to consume some of its privacy budgets for a
preliminary round of node degree perturbation and send
back D̃ to estimate d̂.

5.2 Overall Algorithm
Algorithm 2 summarizes how the data collector estimates
the clustering coefficients of all nodes, based on the per-
turbed adjacency matrix M̃ and degree vector d̃. It first
computes γ̃, the edge density in the perturbed graph from
d̃ (Line 1). Then for each node the collector calculates the

number of triangles incident to it (Line 3) and then further
calibrates this number based on Eq. 10 (Line 4). Finally, its
clustering coefficient is estimated based on Eq. 9 (Line 5).

Accuracy Guarantee. According to Theorem 5.1, with
at least 1 − β probability, the error of clustering coefficient

estimation is bounded by O(

√
log(1/β)

d·ε).

6 COMMUNITY DETECTION WITH LF-GDPR
In this section, we show how to use LF-GDPR to estimate
the modularity of any community in the graph, with only a
single round of B̃ and D̃ collection. Based on the implemen-
tation framework in Section 4, we present the details of steps
1© 2© 4©. Finally, Algorithms 3 summarizes the process of

modularity estimation, which serves for further community
detection.

6.1 Implementation Details
Graph Metric Reduction (step 1© in LF-GDPR). Recall in
Eq. 2, the modularity of a community C is qc = Lc

L −
K2
c

4L2 ,
where Lc is the number of edges in C, Kc is the total degree
of all nodes in C, and L is the total number of edges in
the whole graph. As such, we can write the graph metric
Fc = qc in the form of Eq. 3 as:

Fc = qc = fφ1,c
(M) · gψ1,c

(D)− gψ2,c
(D) (15)

There are two terms in the above equation. In the first term,
φ1,c projects graph G to community C, i.e., a sub-matrixMc

of nodes in C only, and fφ1,c
(M) = 1

2 ||Mc||, half of the
summation of all elements in Mc. As such, fφ1,c

(M) = Lc.
Similarly, gψ1,c

(D) = 1
L = 2

||D|| . The second term does not
involveM , so we set fφ2,c

(M) = −1. To project graph G to
community C, we set ψ2,c to a sub-vector Dc of nodes in C
only, and then gψ2,c

(D) =
K2
c

4L2 = ||Dc||2
||D||2 .

Aggregation and Calibration (step 2© in LF-GDPR).
According to Eqs. 6 and 15, the data collector estimates the
modularity F̃ based on the perturbed adjacency matrix M̃
and degree vector D̃ as follows.

F̃ = R
(
fφ1,c(M̃)

)
· gψ1,c(D̃)− gψ2,c(D̃)

Note that only the first term needs calibration R(·) as
the second term does not involve M̃ . To derive R(·), we
estimate fφ1,c

(M) from fφ1,c
(M̃) based on the RABV

algorithm and the fact that fφ1,c
(M) = 1

2 ||Mc|| = Lc.
Example 4.4 shows the derivation of this estimation. By
solving fφ1,c

(M) in terms of fφ1,c
(M̃), we can derive R(·)

as

R
(
fφ1,c

(M̃)
)
=
fφ1,c

(M̃)

2p− 1
+

1

2
nc(nc − 1)

p− 1

2p− 1
, (16)

where nc = |C| denotes the number of nodes in C.
Privacy Budget Allocation (step 4© in LF-GDPR). Simi-

lar to clustering coefficient estimation, we derive and min-
imize E[F̃ 2] with respect to α in Eq. 7. Theorem 6.1 below
shows the closed-form solution of α.
Theorem 6.1. The optimal α for modularity estimation can

be approximated by:

argmin
α∈(0,1)

(1−α)2ε2L2+6n2

(1− α)2ε2L4

(
1

16(eαε

1+eαε
− 1

2
)2
−(2L

n(n−1)−
1

2
)2
)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 8, AUGUST 2020 10

PROOF. According to Eq. 7 and Eq. 2, we have

E[F̃ 2] = E
[(∑

l
R
(
fφl(M̃

kl)
)
· gψl(D̃)

)2]
=
(
f2φ1

(M) + V ar
[
R
(
fφ1

(M̃)
)])
· E
[
g2ψ1

(D̃)
]

+ E
[
g2ψ2

(D̃)
]
+ E

[
R
(
fφ1

(M̃)
)]

E
[
gψ1

(D̃)gψ2
(D̃)

]
For each community C, note that E[Lc] =

n2
c

n2L and by setting

fφ1,c
(M) = Lc and gψ1,c

(D) =
1

L
,

fφ2,c
(M) = −1 and gψ2,c

(D) =
K2
c

4L2
,

we can approximate E[F̃ 2
c] by:

E[F̃ 2
c] =

((
n2cL

n2

)2

+V ar
[
R
(
fφ1,c

(M̃)
)])
·E
[
g2ψ1,c

(D̃)
]

+ E
[
g2ψ2,c

(D̃)
]
− 2n2cL

n2
· E
[
gψ1,c

(D̃) · gψ2,c
(D̃)

]
,

(17)

where

V ar
[
R
(
fφ1,c

(M̃)
)]

=
1

2
nc(nc − 1)

(
1

16(p− 1
2)

2
−
(

2L

n(n− 1)
− 1

2

)2
)

(18)

By Taylor expansion at E[d̃i] , we have

E[g2ψ1,c
(D̃)] =

1

L2
+

6n2

(1− α)2ε2L4
(19)

E[g2ψ2,c
(D̃)] = n2c

(
1

n4
+

32

n2(1− α)2ε2L2

+
264

(1− α)4ε4L4
+

480n2

(1− α)6ε6L6

) (20)

E[gψ1,c
(D̃) · gψ2,c

(D̃)] = n2c

(
1

n2L
+

14

(1− α)2ε2L3

+
24n2

(1− α)4ε4L5

) (21)

By substituting Eq. 18 to 21 into Eq. 17, we have

E[F̃ 2
c] ≈

nc(nc − 1)((1− α)2ε2L2 + 6n2)

2(1− α)2ε2L4

(
1

16(eαε

1+eαε −
1
2)

2

−
(2L

n(n− 1)
− 1

2

)2)
+
n2c − n4c
n4

To minimize E[F̃ 2
c], we omit items nc(nc−1)

2 and n2
c−n

4
c

n4

that are independent of α, and derive α as

argmin
α∈(0,1)

(1−α)2ε2L2+6n2

(1− α)2ε2L4

(1

16(eαε

1+eαε−
1
2)

2
−(2L

n(n−1)
−1

2
)2
)

Similar to obtaining d̂ for clustering coefficient estima-
tion in Section 5, the total number of edges L in graph

Algorithm 3 Collector-side modularity estimation
Input: A community C

Perturbed adjacency matrix M̃ = {B̃1, ..., B̃n}
Perturbed degree vector D̃ = {d̃1, ..., d̃n}
Percentage α for privacy budget allocation

Output: qc = EstMod(·), the estimated modularity of C
Procedure:

1: Extract a sub-matrix M̃c from M̃
2: Obtain L̃c by counting and halving the number of “1”s in M̃c

3: Calibrate L̃c to get an unbiased one Lc according to Eq. 16, where
p = eαε

1+eαε
.

4: Calculate the total number of edges in the whole graph L =
1
2

∑n
i=1 d̃i

5: Calculate the total degree of all node in C: Kc =
∑
c∈C dc

6: Calculate the estimated modularity of C: qc = Lc
L
− K2

c
4L2

7: return qc

can be obtained by using a portion of privacy budget for
a preliminary round of node degree perturbation to collect
D̃ and estimate L.

6.2 Overall Algorithm

Algorithm 3 summarizes how the data collector esti-
mates the modularity of a given community C, according
to the perturbed adjacency matrix M̃ and the degree vector
D̃. First, it obtains L̃c, the number of edges in C, by counting
and halving the number of “1”s in M̃c, the sub-matrix of C
extracted from M̃ (Lines 1-2). It then calibrates L̃c to an
unbiased estimation Lc based on Eq. 16 (Line 3). Finally, the
estimated modularity is calculated according to Eq. 15 (Line
6), which is based on Lc, L (obtained from Line 4) and Kc

(obtained from Line 5).
Accuracy Guarantee. According to Theorem 6.1, with at

least 1− β probability, the error of modularity estimation is

bounded by O(

√
log(1/β)

n2·ε).
Now that the modularity of any community can be

estimated by Algorithm 3, we can adopt existing community
detection methods that are based on modularity maximiza-
tion [31]. In essence, they attempt to find a graph partition
with the highest overall modularity of all communities.
For ease of reference, Algorithm 4 presents the detailed
implementation of Louvain method [31], a popular commu-
nity detection method under LF-GDPR, where Algorithm 3
serves as the routine for modularity estimation.

As shown in Algorithm 4, there are two iterative phases
in Louvain. In the first phase, the data collector assigns a
different community to each node and calculates its mod-
ularity by invoking EstMod(·), i.e., Algorithm 3 (Lines 1-
2). Then for each node i, the data collector calculates the
gain of modularity that would take place by moving i to
the community of its neighbor j (Line 5). Here EstMod(·)
is invoked again to estimate the modularity of community
{i, j}. Node i is then moved into the community in which
this gain is positive and maximum (Line 7), and then the
modularity of this community is also updated (Line 8). This
process is repeated for all nodes until no individual move
can improve the total modularity of the graph. The result
of the first phase is a new set of communities (Line 10). In
the second phase, a new graph is formed from this set of
communities, and the data collector repeats the process in

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 8, AUGUST 2020 11

Algorithm 4 Community detection under LF-GDPR with
Louvain method

Input: Perturbed adjacency matrix M̃ = {B̃1, ..., B̃n}
Perturbed degree vector D̃ = {d̃1, ..., d̃n}
Privacy budget for adjacency bit vector perturbation ε1

Output: A set of detected communities C = {C1, C2, ...}
Procedure:

1: Initialize n communities {Ci|1 ≤ i ≤ n}, each consisting of only
one node

2: Estimate the modularity of each Ci: qi = EstMod(Ci,M̃ , D̃, ε1)
3: for each node i ∈ {1, 2, ..., n} do
4: for each node j so that M̃ij = 1 do
5: Calculate gain of modularity:

∆qij = EstMod({i ∪ Cj},M̃ , D̃, ε1)− qi − qj

6: Move i to the community of j, where j = arg max{∆qij |∆qij >
0}

7: Update the modularity of Cj : qj = EstMod(Cj ,M̃ , D̃, ε1)
8: Repeat Lines 3-7 until no individual move can improve the total

modularity, and obtain a new set of communities C∗

9: Build a graph from C∗, and repeat Lines 3-8 to obtain C
10: return C

the first phase to detect the final set of communities (Line
11).

7 EXPERIMENTAL EVALUATION

In this section, we compare the performance of LF-GDPR
with two alternative methods, i.e., RABV-only and LDP-
Gen [11] in both use cases, namely, clustering coefficient esti-
mation and modularity estimation for community detection.
In LF-GDPR, the optimal α for clustering coefficient esti-
mation and modularity estimation is derived Theorem 5.1
and 6.1, respectively. Since the derivation is independent of
the ground-truth data, we use this optimal α unless stated
otherwise. RABV-only is a baseline solution where each node
spends all its privacy budget in the RABV protocol and
then derives her node degree from the perturbed adjacency
bit vector. As for LDPGen, since it needs the clustering
coefficient to generate a synthetic graph, we choose the
most favorable one for it, i.e., the ground truth value. To
have a fair comparison with RABV-only and LDPGen, for
LF-GDPR, we use 10% of the privacy budget to estimate the
domain knowledge in both use cases, i.e., the representative
degree in Theorem 5.1 and the total number of graph edges
in Theorem 6.1. All experiments run in Java on a desktop
computer with Intel Core i7-8700K CPU, 64G RAM running
Windows 10. The code of LF-GDPR and datasets are avail-
able in GitHub at https://github.com/Vicky-cs/LF-GDPR.

Performance measures. For the first use case, we mea-
sure the Mean Square Error (MSE) of the clustering coeffi-
cients of all nodes, i.e., 1

n

∑n
i=1(cci − c̃ci)2. For the second

use case, to evaluate the modularity estimation, we measure
the Relative Error (RE) between the ground-truth modularity
q and estimated modularity q̃ of one community or all
communities in a graph partition, i.e., |q−q̃|q . To evaluate
the final community detection results, we adopt the same
classic metrics for cluster validation as used in [11], namely
Adjusted Random Index (ARI) [39] and Adjusted Mutual In-
formation (AMI) [40]. They measure the similarity of two
clusterings, and a larger ARI or AMI value indicates more
similarity between them.

Datasets. We use four public datasets [41]. The first two
are used in [11], and the rest two are added to evaluate on
denser and larger graphs.
(1) Facebook — an undirected social network of 4,039 nodes

and 88,234 edges, from a survey of participants in Face-
book app.

(2) Enron — an undirected email communication network
of 36,692 nodes and 183,831 edges.

(3) AstroPh — an undirected collaboration network of
18,772 authors and 198,110 edges indicating collabora-
tions between authors in arXiv, who submitted papers
to Astro Physical category.

(4) Gplus — an undirected social network of 107,614
Google+ users and 12,238,285 edges indicating shares
of social circles.6

7.1 Clustering Coefficient Estimation
Fig. 5 shows the clustering coefficient estimation accuracy
of LF-GDPR and two alternative methods over all datasets,
with privacy budget ε varying from 1 to 8. In all cases, LF-
GDPR is the most accurate. Furthermore, it always signifi-
cantly outperforms RABV-only, which justifies our rationale
in Section 3.1 that node degree derived from perturbed
adjacency bit vector is too noisy. As ε increases, the accuracy
of LF-GDPR and RABV-only improves significantly while
LDPGen does not. This is because LDPGen is only affected
by the Laplace noise added to node degree, which is already
very small when ε > 2. In other words, LDPGen cannot fully
exploit a large privacy budget.

To evaluate the impact of privacy budget allocation on
the estimation accuracy, we compare LF-GDPR with optimal
allocation (derived from Eq. 11) against LF-GDPR with four
constant α, namely, 0.3, 0.5, 0.7 and 0.9 in Fig. 6. Due to the
space limitation, we only show the results of Facebook. The
optimal allocation achieves the lowest MSE in most cases.
As for the constant α, we observe that a large ε always favors
a large α, which indicates that the privacy budget needed by
node degree perturbation is relatively stable, and therefore
surplus budget should be mostly allocated to the adjacency
bit vector. However, when privacy budget is small (e.g., ε <
2), large α (e.g., α = 0.9) leads to high MSE. The same
observation is also made in modularity estimation, which is
therefore omitted in the interest of space.

7.2 Modularity Estimation and Community Detection
In this experiment, we evaluate the modularity estima-
tion and Louvain-based community detection of LF-GDPR
against RABV-only, LDPGen, and the ground truth. To al-
low fair comparison, we use the same algorithms for the
latter three except that the modularity is estimated from
the perturbed adjacency matrix only (for RABV-only), or
directly calculated from the synthetic graph (for LDPGen),
or directly calculated from the original graph (for ground
truth). Fig. 7 plots the RE of modularity by these three
methods against ground truth in all datasets. LF-GDPR
always outperforms the other two and its RE approaches
0 as ε increases, especially in Facebook and Gplus which have

6. The original Gplus dataset is a directed graph, and we convert it to
an undirected graph to align with the other three datasets.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 8, AUGUST 2020 12

1 2 3 4 5 6 7 80

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5
MS

E

P r i v a c y B u d g e t

 R A B V - o n l y
 L F - G D P R
 L D P G e n

(a) Facebook

1 2 3 4 5 6 7 80

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

MS
E

P r i v a c y B u d g e t

 R A B V - o n l y
 L F - G D P R
 L D P G e n

(b) Enron

1 2 3 4 5 6 7 80
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6

MS
E

P r i v a c y B u d g e t

 R A B V - o n l y
 L F - G D P R
 L D P G e n

(c) AstroPh

1 2 3 4 5 6 7 80

0 . 1

0 . 2

0 . 3

MS
E

P r i v a c y B u d g e t

 R A B V - o n l y
 L F - G D P R
 L D P G e n

(d) Gplus

Fig. 5. Mean square error of clustering coefficient estimation

M
S
E

Fig. 6. Mean square error of clustering coefficient estimation, varying α

a higher mean degree than the other two datasets. RABV-
only has the second lowest RE when ε is large, especially in
Facebook, which means when the privacy budget is sufficient,
adjacency bit vector alone can also estimate modularity
fairly well. However, when ε is small, RABV-only has the
highest RE among the three, which justifies our rationale in
Section 3.1 that the estimated degree from a perturbed adja-
cency matrix could be too noisy to be meaningful. LDPGen,
on the other hand, still has very high RE even when ε is
large, which also justifies our rationale in Section 3.1 that
the neighborhood information is lost in a synthetic graph.

To compare the detected communities against ground
truth, we plot ARI and AMI between the estimated and
ground-truth graph partitions of each method7 in Fig. 8. Due
to space limitation, we only show the results of Facebook and
Enron. LF-GDPR achieves higher ARI and AMI than LDP-
Gen when ε > 1, which means the detected communities
by LF-GDPR are closer to the ground truth communities
detected in the original graph. Particularly, in Facebook both
ARI and AMI of LF-GDPR approach 1 for large ε (e.g.,
ε ≥ 7), which means that the detected communities are al-
most identical to the ground truth communities. We can also
verify this observation from a visualization tool Gephi in
Fig. 9, which illustrates three sets of communities detected
from the original graph and from LF-GDPR (ε = 8, ε = 1)
respectively. The sizes of top-3 communities in each set are
also marked.

On the other hand, as with the RE results, LDPGen
has steady ARI/AMI curves because it does not have the
neighborhood information of the original graph. As such,
it becomes significantly inferior to LF-GDPR when there

7. For LDPGen*, we use the results directly from [11] because the
calculation of ARI and AMI between partitions from two (similar)
graphs requires an optimal node-to-cluster mapping, which is not
specified in [11].

is a large privacy budget to spend. Dataset-wise, both LF-
GDPR and LDPGen perform better in Facebook than in Enron.
This is because Enron is more sparse and therefore has more
communities — 1275 vs. 16 in Facebook.

In addition, we evaluate the accuracy of modularity
estimation with respect to the size of a community. For
datasets Facebook and Enron, we randomly select 500 small
(5% of the total nodes) communities and 500 large (20%
of the total nodes) communities. Then we apply both LF-
GDPR and RABV-only to estimate the modularity of each
community and measure its RE against the ground truth
modularity of that community. Due to space limitation,
Fig. 10 only shows the results of Facebook and Enron. LF-
GDPR significantly outperforms RABV-only in both small
and large communities, due to the excessive noise in the
node degree introduced by RABV-only. We also observe that
both methods work better for smaller communities and for
the Facebook dataset (than the Enron dataset). We believe this
indicates that LF-GDPR is more superior for denser graphs
with more edges per node.

TABLE 2
Communication bandwidth cost (in kilobytes)

Dataset LF-GDPR RABV-only LDPGen
Facebook 0.25 0.25 3.05

Enron 2.30 2.29 27.55
AstroPh 1.18 1.17 14.10
Gplus 6.73 6.73 80.73

To evaluate the communication bandwidth cost, we
show the number of kilobytes (kB) between a node and
the data collector for all datasets in Table 2. We observe
that all three methods are proportional to the node size n,
whereas LDPGen is also logarithmic to the number of groups
g, an internal parameter of LDPGen. This coincides with the
asymptotic complexity — O (2n+ dlog gen) of LDPGen vs.
O(n) of LF-GDPR. As such, we expect LDPGen incurs even
higher communication cost as the graph becomes larger due
to an increasing g.

To evaluate the computation cost, we show the runtime
of both metric estimation at the collector side in Table 3, with
privacy budget ε ranging from 1 to 8. Due to the space lim-
itation, we only show the results of Facebook. LF-GDPR and
RABV-only have comparable runtime and decrease signifi-
cantly with large ε. For small ε, the perturbed adjacency bit
matrix is very dense, so the computation of metrics becomes
time-consuming. On the other hand, LDPGen always needs
to generate a synthetic graph with almost the same number

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 8, AUGUST 2020 13

1 2 3 4 5 6 7 80

0 . 2

0 . 4

0 . 6

0 . 8

1
RE

P r i v a c y B u d g e t

 R A B V - o n l y
 L F - G D P R
 L D P G e n

(a) Facebook

1 2 3 4 5 6 7 80

0 . 2

0 . 4

0 . 6

0 . 8

1

RE

P r i v a c y B u d g e t

 R A B V - o n l y
 L F - G D P R
 L D P G e n

(b) Enron

1 2 3 4 5 6 7 80

0 . 2

0 . 4

0 . 6

0 . 8

1

RE

P r i v a c y B u d g e t

 R A B V - o n l y
 L F - G D P R
 L D P G e n

(c) AstroPh

1 2 3 4 5 6 7 80

0 . 2

0 . 4

0 . 6

0 . 8

1

RE

P r i v a c y B u d g e t

 R A B V - o n l y
 L F - G D P R
 L D P G e n

(d) Gplus

Fig. 7. Relative error of modularity of detected communities

1 2 3 4 5 6 7 80

0 . 2

0 . 4

0 . 6

0 . 8

1

AR
I

P r i v a c y B u d g e t

 A R I (L F - G D P R)
 A R I (L D P G e n *)

0

0 . 2

0 . 4

0 . 6

0 . 8

1

 A M I (L F - G D P R)
 A M I (L D P G e n *)

AM
I

(a) Facebook

1 2 3 4 5 6 7 80
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6

AR
I

P r i v a c y B u d g e t

 A R I (L F - G D P R)
 A R I (L D P G e n *)

0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6

 A M I (L F - G D P R)
 A M I (L D P G e n *)

AM
I

(b) Enron

Fig. 8. Results of ARI and AMI

TABLE 3
Runtime in Data Collector Side for Facebook(in milliseconds)

Privacy Clustering Coefficient Estimation Modularity Estimation
Budget LF-GDPR RABV-only LDPGen LF-GDPR RABV-only LDPGen

1 12686 11715 910 120 331 842
2 2273 1825 929 76 82 866
3 469 453 942 52 55 882
4 225 276 892 35 36 845
5 105 143 959 32 33 906
6 100 146 957 29 30 903
7 85 102 949 28 28 883
8 79 96 926 28 28 880

of edges as the original one, so its runtime is independent of
ε and is outperformed by LF-GDPR and RABV-only except
for small ε.

7.3 LF-GDPR VS. Dedicated LDP Solutions

As mentioned in the introduction, dedicated LDP solutions
may provide a better utility than a general framework as
LF-GDPR. In this subsection, we conduct such a compar-
ative study on clustering coefficient estimation (CCE) and
modularity estimation for community detection (CD). The
main challenge is the design of local perturbation mecha-
nisms that can provide a global view which is needed for
these two graph metrics. To address this, we equip each
individual user with sufficient ground truth knowledge and
design two optimistic dedicated solutions, i.e., Dedicated-
CCE and Dedicated-CD. In Dedicated-CCE, we assume each
user knows the entire ground-truth adjacency matrix, based
on which her clustering coefficient is calculated and then
perturbed by adding Laplace noise. In Dedicated-CD, we
assume each user knows the ground-truth graph partition,
based on which her number of edges linked to her com-
munity C is counted, perturbed by adding Laplace noise
together with her node degree, and sent to the collector to

calculate the modularity qc by Eq. 2. Note that these two
dedicated solutions provide the same ε-edge LDP guarantee
as LF-GDPR. But since they optimistically assume to know
the ground truth, their estimation accuracy only serves as
the upper bound of dedicated solutions for CCE and CD.

Figs. 11 (a) and (b) show the mean square error (MSE) of
clustering coefficient estimation of Dedicated-CCE and LF-
GDPR on Facebook and Enron datasets. In the interest of
space, the results on other datasets are omitted. We observe
that Dedicated-CCE has very large MSE when the privacy
budget is small, and it gradually outperforms LF-GDPR
when ε ≥ 4 (on Facebook) or ε ≥ 3 (on Enron). But its MSE
is at least 64% and 16% of the MSE of LF-GDPR on two
datasets when ε = 8. Figs. 11 (c) and (d) show the relative
error (RE) of modularity estimation of Dedicated-CD and LF-
GDPR over Facebook and Enron. Similar to CCE, there is no
all-winner — LF-GDPR performs better on Facebook when
ε ≥ 3 whereas Dedicated-CD gains higher accuracy (but its
RE is at least 20% of the RE of LF-GDPR) in other cases.
To summarize, we conclude that LF-GDPR is able to obtain
comparable estimation accuracy as dedicated LDP solutions
for graph metric estimation.

8 RELATED WORK

There are three related fields: privacy-preserving graph
release, graph analytics with differential privacy, and local
differential privacy.

Privacy-Preserving Graph Release. This field studies
how a data owner publishes a privacy-preserving graph.
Early works focus on anonymization techniques under
those privacy models derived from k-anonymity [42]. Zhou
et al. proposed k-neighborhood anonymity to defend against
neighborhood attacks [3], Liu et al. proposed k-degree
anonymity against degree attacks [4], Zou et al. and Cheng et
al. proposed k-automorphism [5] and k-isomorphism [6] re-
spectively against structural attacks, and Xue et al. proposed
random edge perturbation against walk-based structural
identification [43]. As these approaches can be vulnerable
to de-anonymization techniques [44], more rigorous privacy
notions are proposed, such as L-opacity [45] and differential
privacy (DP) [12]. The former ensures an adversary cannot
infer whether the distance between two nodes is equal to
or less than L. The latter uses a generative graph model to
fit the original graph, and then produces a synthetic graph
for analytics. Common graph models include dK-series [16],
Stochastic Kronecker Graph (SKG) model [46], Exponen-
tial Random Graph Model (ERGM) [17], Attributed Graph

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 8, AUGUST 2020 14

(a) Ground truth (b) ε = 8 (c) ε = 1

Fig. 9. Visualization of detected communities by Gephi

1 2 3 4 5 6 7 8
0

0 . 4

0 . 8

1 . 2

RE

P r i v a c y B u d g e t

 L F - G D P R (5 %)
 R A B V - o n l y (5 %)
 L F - G D P R (2 0 %)
 R A B V - o n l y (2 0 %)

(a) Facebook (selected communities)

1 2 3 4 5 6 7 80

0 . 5

1

1 . 5

2

RE

P r i v a c y B u d g e t

 L F - G D P R (5 %)
 R A B V - o n l y (5 %)
 L F - G D P R (2 0 %)
 R A B V - o n l y (2 0 %)

(b) Enron (selected communities)

Fig. 10. Impact of community size on modularity estimation

1 2 3 4 5 6 7 80

0 . 2

0 . 4

0 . 6

0 . 8

1

MS
E

P r i v a c y B u d g e t

 L F - G D P R
 D e d i c a t e d - C C E

(a) Clustering coefficient estimation,
Facebook

1 2 3 4 5 6 7 80

0 . 2

0 . 4

0 . 6

0 . 8

1

MS
E

P r i v a c y B u d g e t

 L F - G D P R
 D e d i c a t e d - C C E

(b) Clustering coefficient estimation,
Enron

1 2 3 4 5 6 7 80

0 . 2

0 . 4

0 . 6

0 . 8

RE

P r i v a c y B u d g e t

 L F - G D P R
 D e d i c a t e d - C D

(c) Modularity for community detec-
tion, Facebook

1 2 3 4 5 6 7 80

0 . 2

0 . 4

0 . 6

0 . 8

RE

P r i v a c y B u d g e t

 L F - G D P R
 D e d i c a t e d - C D

(d) Modularity for community detec-
tion, Enron

Fig. 11. Comparison with dedicated LDP solutions

Model (AGM) [18], Hierarchical Random Graph (HRG) [19],
and BTER [11] (which adopts LDP).

Graph Analytics with Differential Privacy. This field
studies how to estimate graph metric and statistics with
differential privacy. Most of the existing work focuses on
centralized differential privacy. Nissim et al. estimated the
cost of the minimum spanning tree and the number of
triangles in a graph [7]. This technique has been extended

to subgraph counting queries [20], [47] such as k-stars, k-
triangles and k-cliques, and frequent subgraph mining [8],
[48]. Other works estimate the distribution of node de-
gree [14], [21] and clustering coefficient [22]. In the local
setting, Sun et al. [47] propose to estimate subgraph counts
in a decentralized graph. In our previous work [49], we
briefly introduce the LF-GDPR framework that estimates
generic graph metrics with local differential privacy. This
work has advanced our previous work in almost all aspects.
First, this work materializes all algorithms in the LF-GDPR
framework. Second, it proposes a refinement strategy for
degree estimation and an optimal privacy budget allocation.
Third, this work shows use cases on two common graph
analysis tasks, namely, clustering coefficient estimation and
community detection. Last but not the least, this work
comprehensively evaluates the proposed algorithms on four
public datasets.

Local Differential Privacy (LDP). Due to its decen-
tralized nature and no need of a trusted party, LDP be-
comes increasingly popular in privacy-preserving data col-
lection [10], [50]. Existing works focus on estimating statis-
tics such as frequency [32], [51], [52], mean [28], [30], heavy
hitter [35], frequent itemset mining [53], k-way marginal
release [54], [55], key-value data collection [29], [56] and
time-series data collection [57]. Some works also focus on
learning problems [30].

9 CONCLUSION

This paper presents a parameterized framework LF-GDPR
for privacy-preserving graph metric estimation and ana-
lytics with local differential privacy. The building block
is a user-side perturbation algorithm, and a collector-side
aggregation and calibration algorithm. LF-GDPR simplifies
the job of developing a practical LDP solution for a graph
analysis task by providing a complete solution for all LDP
steps. An optimal allocation of privacy budget between the
two atomic metrics is also designed. Through theoretical
and experimental analysis, we verify the privacy and data
utility achieved by this framework.

As for future work, we plan to extend LF-GDPR to
more specific graph types and graph analysis tasks, such as
attributed graph and DAG, and influential node analysis, to
demonstrate its wide applicability. We will also investigate
some relaxation of DP, such as Gaussian Mechanism and

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 8, AUGUST 2020 15

(ε, δ)-DP, to provide higher estimation accuracy and better
utility. Graph-specific tighter bounds for the composition
of DP [58] and the correlation of graph data will also be
studied.

ACKNOWLEDGMENTS

This work was supported by National Natural Science
Foundation of China (Grant No: 62072390, U1636205,
91646203, 61941121 and 61972332), the Research Grants
Council, Hong Kong SAR, China (Grant No: 15238116,
15222118, 15218919, 15203120 and C1008-16G), the Ministry
of Education, Singapore (Grant No: MOE2018-T2-2-091).

REFERENCES

[1] B. Stephanie, Facebook Scandal a ‘Game Changer’ in Data Privacy
Regulation, Bloomberg, Apr 8, 2018.

[2] Facebook, https://developers.facebook.com/docs/graph-api/,
graph API - Facebook for Developers.

[3] B. Zhou and J. Pei, “Preserving privacy in social networks against
neighborhood attacks,” in ICDE. IEEE, 2008, pp. 506–515.

[4] K. Liu and E. Terzi, “Towards identity anonymization on graphs,”
in SIGMOD. ACM, 2008, pp. 93–106.

[5] L. Zou, L. Chen, and M. T. Özsu, “K-automorphism: A general
framework for privacy preserving network publication,” PVLDB,
vol. 2, no. 1, pp. 946–957, 2009.

[6] J. Cheng, A. W. Fu, and J. Liu, “K-isomorphism: privacy preserv-
ing network publication against structural attacks,” in SIGMOD.
ACM, 2010, pp. 459–470.

[7] K. Nissim, S. Raskhodnikova, and A. Smith, “Smooth sensitivity
and sampling in private data analysis,” in STOC. ACM, 2007, pp.
75–84.

[8] S. Xu, S. Su, L. Xiong, X. Cheng, and K. Xiao, “Differentially
private frequent subgraph mining,” in ICDE. IEEE, 2016, pp.
229–240.

[9] C. Wei, S. Ji, C. Liu, W. Chen, and T. Wang, “Asgldp: Collecting and
generating decentralized attributed graphs with local differential
privacy,” IEEE Transactions on Information Forensics and Security,
vol. 15, pp. 3239–3254, April 2020.

[10] J. C. Duchi, M. I. Jordan, and M. J. Wainwright, “Local privacy and
statistical minimax rates,” in FOCS. IEEE, 2013, pp. 429–438.

[11] Z. Qin, T. Yu, Y. Yang, I. Khalil, X. Xiao, and K. Ren, “Generating
synthetic decentralized social graphs with local differential pri-
vacy,” in CCS. ACM, 2017, pp. 425–438.

[12] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating
noise to sensitivity in private data analysis,” in TCC. Springer,
2006, pp. 265–284.

[13] S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova,
and A. Smith, “What can we learn privately?” SIAM Journal on
Computing, vol. 40, no. 3, pp. 793–826, 2011.

[14] S. P. Kasiviswanathan, K. Nissim, S. Raskhodnikova, and A. Smith,
“Analyzing graphs with node differential privacy,” in TCC.
Springer, 2013, pp. 457–476.

[15] J. Blocki, A. Blum, A. Datta, and O. Sheffet, “The johnson-
lindenstrauss transform itself preserves differential privacy,” in
FOCS. IEEE, 2012, pp. 410–419.

[16] A. Sala, X. Zhao, C. Wilson, H. Zheng, and B. Y. Zhao, “Sharing
graphs using differentially private graph models,” in IMC, 2011,
pp. 81–98.

[17] W. Lu and G. Miklau, “Exponential random graph estimation
under differential privacy,” in KDD. ACM, 2014, pp. 921–930.

[18] Z. Jorgensen, T. Yu, and G. Cormode, “Publishing attributed social
graphs with formal privacy guarantees,” in SIGMOD, 2016, pp.
107–122.

[19] Q. Xiao, R. Chen, and K. Tan, “Differentially private network data
release via structural inference,” in KDD. ACM, 2014, pp. 911–
920.

[20] V. Karwa, S. Raskhodnikova, A. Smith, and G. Yaroslavtsev, “Pri-
vate analysis of graph structure,” PVLDB, vol. 4, no. 11, pp. 1146–
1157, 2011.

[21] M. Hay, C. Li, G. Miklau, and D. Jensen, “Accurate estimation of
the degree distribution of private networks,” in ICDM, 2009, pp.
169–178.

[22] Y. Wang, X. Wu, J. Zhu, and Y. Xiang, “On learning cluster
coefficient of private networks,” Social network analysis and mining,
vol. 3, no. 4, pp. 925–938, 2013.

[23] X. Xu, N. Yuruk, Z. Feng, and T. A. J. Schweiger, “SCAN: a
structural clustering algorithm for networks,” in KDD. ACM,
2007, pp. 824–833.

[24] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques,
3rd ed. Morgan Kaufmann, 2011.

[25] T. Martin, X. Zhang, and M. Newman, “Localization and centrality
in networks,” Physical review E, vol. 90, no. 5, p. 052808, 2014.

[26] S. L. Warner, “Randomized response: A survey technique for
eliminating evasive answer bias,” Journal of the American Statistical
Association, vol. 60, no. 309, pp. 63–69, 1965.

[27] C. Seshadhri, T. G. Kolda, and A. Pinar, “Community structure
and scale-free collections of erdős-rényi graphs,” Physical Review
E, vol. 85, no. 5, p. 056109, 2012.

[28] B. Ding, J. Kulkarni, and S. Yekhanin, “Collecting telemetry data
privately,” in NIPS, 2017, pp. 3574–3583.

[29] Q. Ye, H. Hu, X. Meng, and H. Zheng, “PrivKV: Key-value data
collection with local differential privacy,” in S&P. IEEE, 2019, pp.
317–331.

[30] N. Wang, X. Xiao, Y. Yang, J. Zhao, S. C. Hui, H. Shin, J. Shin, and
G. Yu, “Collecting and analyzing multidimensional data with local
differential privacy,” in ICDE. IEEE, 2019.

[31] V. D. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of statistical
mechanics: theory and experiment, vol. 2008, no. 10, p. P10008, 2008.

[32] T. Wang, J. Blocki, N. Li, and S. Jha, “Locally differentially private
protocols for frequency estimation,” in USENIX Security Sympo-
sium, 2017, pp. 729–745.

[33] P. Kairouz, K. Bonawitz, and D. Ramage, “Discrete distribution
estimation under local privacy,” in ICML. ACM, 2016, pp. 2436–
2444.

[34] S. S. Wilks, “The large-sample distribution of the likelihood ratio
for testing composite hypotheses,” The Annals of Mathematical
Statistics, vol. 9, no. 1, pp. 60–62, 1938.

[35] Z. Qin, Y. Yang, T. Yu, I. Khalil, X. Xiao, and K. Ren, “Heavy hitter
estimation over set-valued data with local differential privacy,” in
CCS. ACM, 2016, pp. 192–203.

[36] R. Fletcher, Practical methods of optimization. John Wiley & Sons,
2013.

[37] R. Chen, B. C. Fung, S. Y. Philip, and B. C. Desai, “Correlated
network data publication via differential privacy,” The VLDB
Journal, vol. 23, no. 4, pp. 653–676, 2014.

[38] B. Yang, I. Sato, and H. Nakagawa, “Bayesian differential privacy
on correlated data,” in SIGMOD. ACM, 2015, pp. 747–762.

[39] W. M. Rand, “Objective criteria for the evaluation of clustering
methods,” Journal of the American Statistical association, vol. 66, no.
336, pp. 846–850, 1971.

[40] N. X. Vinh, J. Epps, and J. Bailey, “Information theoretic measures
for clusterings comparison: is a correction for chance necessary?”
in ICML. ACM, 2009, pp. 1073–1080.

[41] L. Jure and K. Andrej, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, 2014.

[42] P. Samarati, “Protecting respondents identities in microdata re-
lease,” TKDE, vol. 13, no. 6, pp. 1010–1027, 2001.

[43] M. Xue, P. Karras, R. Chedy, P. Kalnis, and H. Pung, “Delineating
social network data anonymization via random edge perturba-
tion,” in CIKM, 2012, pp. 475–484.

[44] A. Narayanan and V. Shmatikov, “De-anonymizing social net-
works,” in S&P. IEEE, 2009, pp. 173–187.

[45] S. Nobari, P. Karras, H. Pang, and S. Bressan, “L-opacity: Linkage-
aware graph anonymization,” in EDBT. Springer, 2014, pp. 583–
594.

[46] D. Mir and R. N. Wright, “A differentially private estimator for
the stochastic kronecker graph model,” in EDBT/ICDT Workshops.
ACM, 2012, pp. 167–176.

[47] H. Sun, X. Xiao, I. Khalil, Y. Yang, Z. Qin, H. Wang, and T. Yu,
“Analyzing subgraph statistics from extended local views with
decentralized differential privacy,” in Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, 2019,
pp. 703–717.

[48] E. Shen and T. Yu, “Mining frequent graph patterns with differen-
tial privacy,” in KDD. ACM, 2013, pp. 545–553.

[49] Q. Ye, H. Hu, M. H. Au, X. Meng, and X. Xiao, “Towards locally
differentially private generic graph metric estimation,” in ICDE.
IEEE, 2020, pp. 1922–1925.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 8, AUGUST 2020 16

[50] N. Li and Q. Ye, “Mobile data collection and analysis with local
differential privacy,” in MDM. IEEE, 2019, pp. 4–7.

[51] Ú. Erlingsson, V. Pihur, and A. Korolova, “Rappor: Random-
ized aggregatable privacy-preserving ordinal response,” in CCS.
ACM, 2014, pp. 1054–1067.

[52] R. Bassily and A. Smith, “Local, private, efficient protocols for
succinct histograms,” in STOC. ACM, 2015, pp. 127–135.

[53] T. Wang, N. Li, and S. Jha, “Locally differentially private frequent
itemset mining,” in S&P. IEEE, 2018, pp. 127–143.

[54] G. Cormode, T. Kulkarni, and D. Srivastava, “Marginal release
under local differential privacy,” in SIGMOD. ACM, 2018, pp.
131–146.

[55] Z. Zhang, T. Wang, N. Li, S. He, and J. Chen, “CALM: Consistent
adaptive local marginal for marginal release under local differen-
tial privacy,” in CCS. ACM, 2018, pp. 212–229.

[56] X. Gu, M. Li, L. Xiong, and Y. Cao, “PCKV: locally differentially
private correlated key-value data collection with optimized util-
ity,” in USENIX Security Symposium, 2020.

[57] Q. Ye, H. Hu, N. Li, X. Meng, H. Zheng, and H. Yan, “Beyond
value perturbation: Differential privacy in the temporal setting,”
in INFOCOM. IEEE, 2021.

[58] P. Kairouz, S. Oh, and P. Viswanath, “The composition theorem for
differential privacy,” in ICML, 2015, pp. 1376–1385.

Qingqing Ye is a research assistant professor
in the Department of Electronic and Information
Engineering, The Hong Kong Polytechnic Uni-
versity. She received her PhD degree in Com-
puter Science from Renmin University of China
in 2020. She has received several prestigious
awards, including China National Scholarship,
Outstanding Doctoral Dissertation Award, and
IEEE S&P Student Travel Award. Her research
interests include data privacy and security, and
adversarial machine learning.

Haibo Hu is an associate professor in the De-
partment of Electronic and Information Engi-
neering, Hong Kong Polytechnic University. His
research interests include cybersecurity, data
privacy, internet of things, and machine learning.
He has published over 80 research papers in
refereed journals, international conferences, and
book chapters. As principal investigator, he has
received over 12 million HK dollars of external
research grants from Hong Kong and mainland
China. He is the recipient of a number of titles

and awards, including IEEE MDM 2019 Best Paper Award, WAIM Distin-
guished Young Lecturer, VLDB Distinguished Reviewer, ACM-HK Best
PhD Paper, Microsoft Imagine Cup, and GS1 Internet of Things Award.

Man Ho Au is an associate professor of the De-
partment of Computer Science at the University
of Hong Kong (HKU). Before joining HKU, he
was an associate professor in the Department
of Computing of the Hong Kong Polytechnic Uni-
versity. His research interests include applied
cryptography, information security, blockchain
technology, and related industrial applications.
Dr. Au has published over 170 refereed pa-
pers in top journals and conferences, including
CRYPTO, ACM CCS, ACM SIGMOD, NDSS,

IEEE TIFS, TKDE. He is a recipient of the 2009 PET runner-up award for
outstanding research in privacy-enhancing technologies, and best paper
awards of ACISP 2016, ISPEC 2017, and ACISP 2018. He is a general
chair of ASIACCS 2021, an expert member of the China delegation
of ISO/IEC JTC 1/SC 27 working group 2 Cryptography and security
mechanisms, and a committee member of the Hong Kong Blockchain
Society R&D division.

Xiaofeng Meng is a professor in School of Infor-
mation, Renmin University of China. He is a CCF
Fellow and the vice chair of the Special Inter-
esting Group on Privacy of China Confidentiality
Association(CCA). He has served on the pro-
gram committee SIGMOD, ICDE, CIKM, MDM,
DASFAA, etc., and editorial board of JCST, FCS,
JoS, CRAD, etc. His research interests include
web data management, cloud data manage-
ment, mobile data management, and privacy
protection. He has published over 200 papers

in refereed international journals and conference proceedings including
IEEE TKDE,VLDBJ , VLDB, SIGMOD, ICDE, EDBT, ACM GIS etc.

Xiaokui Xiao received his PhD degree in com-
puter science and engineering from the Chinese
University of Hong Kong in 2008. He is currently
an associate professor at the School of Com-
puting, National University of Singapore (NUS).
His research interests include data privacy and
algorithms for large data.

Towards Locally Differentially Private Generic
Graph Metric Estimation

Qingqing Ye∗, Haibo Hu†, Man Ho Au†, Xiaofeng Meng∗, Xiaokui Xiao�

∗Renmin University of China; †Hong Kong Polytechnic University; �National University of Singapore

yeqq@ruc.edu.cn; haibo.hu@polyu.edu.hk; csallen@comp.polyu.edu.hk; xfmeng@ruc.edu.cn; xkxiao@nus.edu.sg

Abstract—Local differential privacy (LDP) is an emerging
technique for privacy-preserving data collection without a trusted
collector. Despite its strong privacy guarantee, LDP cannot
be easily applied to real-world graph analysis tasks such as
community detection and centrality analysis due to its high
implementation complexity and low data utility. In this paper, we
address these two issues by presenting LF-GDPR, the first LDP-
enabled graph metric estimation framework for graph analysis. It
collects two atomic graph metrics — the adjacency bit vector and
node degree — from each node locally. LF-GDPR simplifies the
job of implementing LDP-related steps (e.g., local perturbation,
aggregation and calibration) for a graph metric estimation task
by providing either a complete or a parameterized algorithm for
each step.

Index Terms—Local differential privacy; Graph metric;
Privacy-preserving graph analysis

I. INTRODUCTION

With the prevalence of big data and machine learning, graph

analytics has received great attention and nurtured numerous

applications in web, social network, transportation, and knowl-

edge base. However, recent privacy incidents, particularly the

Facebook privacy scandal, pose real-life threats to any central-
ized party who needs to safeguard graph data of individuals

while providing graph analysis service to third parties. In that

scandal, Facebook exposed the personal profiles of 87 million

users to Cambridge Analytica through Facebook API for third-

party apps [11]. The main cause is that Facebook allows

these apps to access the friends list of a user, which helps

to propagate these apps easily through friends. Unfortunately,

most existing privacy models assume that the trusted party

cannot be compromised, which is seldom true in practice

as echoed by this scandal. With General Data Protection

Regulation (GDPR) enforced in EU since May 2018, there is

a compelling need to find alternative privacy models without

such a trusted party.

A promising model is local differential privacy (LDP) [1],

[15], where each individual user locally perturbs her share
of graph metrics (e.g., node degree and adjacency list, de-

pending on the graph analysis task) before sending them to the

data collector for analysis. As such, the data collector does not

need to be trusted. A recent work LDPGen [10] has also shown

the potential of LDP for graph analytics. In that work, LDP

is used to collect node degree for synthetic graph generation.

However, such solution is usually task specific — for different

tasks, such as centrality analysis and community detection,

dedicated LDP solutions must be designed from scratch. To

show how complicated it is, an LDP solution usually takes

four steps: (1) selecting graph metrics to collect from users

for the target metric (e.g., clustering coefficient, modularity,

or centrality) of this task, (2) designing a local perturbation

algorithm for users to report these metrics under LDP, (3)

designing a collector-side aggregation algorithm to estimate

the target metric based on the perturbed data, (4) designing

an optional calibration algorithm for the target metric if the

estimation is biased. Obviously, working out such a solution

requires in-depth knowledge of LDP, which hinders the

embrace of LDP by more graph applications.

In this paper, we address this challenge by presenting

LF-GDPR (Local Framework for Graph with Differentially

Private Release), the first LDP-enabled graph metric estimation

framework for general graph analysis. It simplifies the job of a

graph application to design an LDP solution for a graph metric

estimation task by providing complete or parameterized algo-

rithms for steps (2)-(4) as above. As long as the target graph

metric can be derived from the two atomic metrics, namely,

the adjacency bit vector and node degree, the parameterized

algorithms in steps (2)-(4) can be completed with ease. To

summarize, our main contributions of this paper are as follows.

• This is the first LDP-enabled graph metric estimation

framework for a variety of graph analysis tasks.

• We present efficient perturbation algorithms on adjacency

bit vector and node degree, respectively, to address data

correlation among nodes.

• We provide a complete solution for local perturbation,

collector-side aggregation, and calibration.

The rest of the paper is organized as follows. Section II

introduces preliminaries on local differential privacy and graph

analytics. Section III presents an overview of LF-GDPR. Sec-

tion IV describes the implementation details of this framework.

Section V draws a conclusion with future work.

II. LOCAL DIFFERENTIAL PRIVACY ON GRAPHS

In this paper, a graph G is defined as G = (V,E), where

V = {1, 2, ..., n} is the set of nodes, and E ⊆ V × V is

the set of edges. For the node i, di denotes its degree and

Bi = {b1, b2, ..., bn} denotes its adjacency bit vector, where

bj = 1 if and only if edge (i, j) ∈ E, and otherwise bj = 0.

The adjacency bit vectors of all nodes constitute the adjacency
matrix of graph G, or formally, Mn×n = {B1,B2, ...,Bn}.

1922

2020 IEEE 36th International Conference on Data Engineering (ICDE)

2375-026X/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDE48307.2020.00204

Local differential privacy (LDP) [1] is proposed to as-

sume each individual is responsible for her own tuple in the

database. In LDP, each user locally perturbs her tuple using a

randomized algorithm before sending it to the untrusted data

collector. Formally, a randomized algorithm A satisfies ε-local

differential privacy, if for any two input tuples t and t′ and

for any output t∗,
Pr[A(t)=t∗]
Pr[A(t′)=t∗] ≤ eε holds. As with existing

LDP works, we concern attacks where an adversary can infer

with high confidence whether an edge exists or not, which

compromises a user’s relation anonymity in a social network.

This directly leads to Definition 2.1.

Definition 2.1: (Edge local differential privacy). A random-

ized algorithm A satisfies ε-edge local differential privacy

(a.k.a., ε-edge LDP), if and only if for any two adjacency bit

vectors B and B′ that differ only in one bit, and any output

s ∈ range(A), Pr[A(B)=s]
Pr[A(B′)=s] ≤ eε holds.

III. LF-GDPR: FRAMEWORK OVERVIEW

A. Design Principle

The core of privacy-preserving graph analytics often in-

volves estimating some target graph metric without access-

ing the original graph. Under the DP/LDP privacy model, there

are two solution paradigms, namely, generating a synthetic

graph to calculate this metric [5], [7], [10] and designing

a dedicated DP/LDP solution for such metric [4], [6], [9].

The former provides a general solution but suffers from low

estimation accuracy as the neighborhood information in the
original graph is missing from the synthetic graph. The latter

can achieve higher estimation accuracy but cannot generalize

such a dedicated solution to other problems — it works poorly

or even no longer works if the target graph metric or graph

type (e.g., undirected graph, attributed graph, and DAG) is

changed [5].

LF-GDPR is our answer to both solution generality and

estimation accuracy under the LDP model. It collects from

each node i two atomic graph metrics that can derive a wide

range of common metrics. The first is the adjacency bit vector
B, where each element j is 1 only if j is a neighbor of i. B
of all nodes collectively constitutes the adjacency matrix M
of the graph. The second metric is node degree d, which is

frequently used in graph analytics to measure the density of

connectivity [4]. Table I lists some of the most popular graph

analysis tasks in the literature [3], [8], [13] and their graph

metrics, all of which can be derived from B, M and d.

Intuitively, d can be estimated from B. However, given a

large graph and limited privacy budget, the estimation accuracy

could be too noisy to be meaningful. To illustrate this, let us

assume each bit of the adjacency bit vector B is perturbed

independently by the classic Randomized Response (RR) [12]

algorithm with privacy budget ε. As stated in [12], the variance

of the estimated node degree d̃ is

V ar[d̃] = n ·
[1

16(eε

eε+1 − 1
2)

2
− (

d

n
− 1

2
)2
]

(1)

Even for a moderate social graph with extremely large privacy

budget, for example, d = 100, n = 1M , and ε = 8 (the largest

TABLE I
POPULAR GRAPH ANALYSIS TASKS AND METRICS

Graph Analysis Task Graph Metric Derivation from
Concerned B, M , and d

synthetic graph
clustering coefficient cci =

M3
ii

di(di−1)generation
community detection,

modularity Qc =
||Mc||∑

d
− ||dc||2

(
∑

d)2graph clustering

node role, page rank
degree centrality ci = di

eigenvector centrality ci = BiM
k

connectivity analysis
structural similarity τ(i, j) =

||Bi
⋂

Bj ||√
didj(clique / hub)

node similarity
cosine similarity τ(i, j) =

BiB
′
j√

didjsearch

ε used in [10] is 7), V ar[d̃] ≈ 435 > 4d, which means the

variance of the estimated degree is over 4 times that of the

degree itself. As such, we choose to spend some privacy budget

on an independently perturbed degree. This further motivates

us to design an optimal privacy budget allocation between

adjacency bit vector B and node degree d, to minimize the

distance between the target graph metric and the estimated

one.

To summarize, in LF-GDPR each node sends two perturbed

atomic metrics, namely, the adjacency bit vector B̃ (perturbed

from B) and node degree d̃ (perturbed from d), to the data

collector, who then aggregates them to estimate the target

graph metric.

B. LF-GDPR Overview

LF-GDPR works as shown in Fig. 1. A data collector who

wishes to estimate a target graph metric F first reduces it

from the adjacency matrix M and degree vector d of all

nodes by deriving a mapping function F = Map(M ,d) (step
1©). Based on this reduction, LF-GDPR allocates the total

privacy budget ε between M and d, denoted by ε1 and ε2,

respectively (step 2©). Then each node locally perturbs its

adjacency bit vector B into B̃ to satisfy ε1-edge LDP, and

perturbs its node degree d into d̃ to satisfy ε2-edge LDP (step
3©). According to the composability of LDP, each node then

satisfies ε-edge LDP. Note that this step is challenging as both

B and d are correlated among nodes. For B, the j-th bit of

node i’s adjacency bit vector is the same as the i-th bit of node

j’s adjacency bit vector. For d, whether i and j has an edge

affects both degrees of i and j. Sections IV-B and IV-C solve

this issue and send out the perturbed B and d, i.e., B̃ and d̃.

The data collector receives them from all nodes, aggregates

them according to the mapping function Map(·) to obtain the

estimated target metric F̃ , and further calibrates it to suppress

estimation bias and improve accuracy (step 4©). The resulted

F̃ is then used for graph analysis. The detailed implementation

of LF-GDPR for steps 1© 3© 4© will be presented in Section IV.

Note that the algorithms in steps 1© 2© 4© are parameterized,

which can only be determined when the target graph metric

F is specified.

Example III-B. LF-GDPR against Facebook Privacy
Scandal. Facebook API essentially controls how a third-party

app accesses the data of each individual user. To limit the

1923

B d

2

1

21

~d

2

1

B~

~d

F Map M d

F

F

F
M~

,

F

M
B
d

Fig. 1. An overview of LF-GDPR

access right of an average app (e.g., the one developed by

Cambridge Analytica) while still supporting graph analytics,

Facebook API should have a new permission rule that only

allows such app to access the perturbed adjacency bit vector

and degree of a user’s friends list under ε1 and ε2-edge LDP,

respectively. In the Cambridge Analytica case, the app is a

personality test, so the app developer may choose structural

similarity as the target graph metric and use the estimated

value for the personality test. To estimate structural similarity,

the app then implements steps 1© 2© 4© of LF-GDPR. On the

user side, each user u has a privacy budget εu for her friends

list. If εu ≥ ε1 + ε2, the user can grant access to this app for

perturbed adjacency bit vector and degree; otherwise, the user

simply ignores this access request.

IV. LF-GDPR: IMPLEMENTATION

In this section, we present the implementation details of

LF-GDPR. We first discuss graph metric reduction (step 1©),

followed by the perturbation protocols for adjacency bit vector

and node degree, respectively (step 3©). Then we elaborate on

the aggregation and calibration algorithm (step 4©).

A. Graph Metric Reduction

The reduction outputs a polynomial mapping function

Map(·) from the target graph metric F to the adjacency

matrix M = {B1,B2, ...,Bn} and degree vector d =
{d1, d2, ..., dn}, i.e., F = Map(M ,d). Without loss of

generality, we assume F is a polynomial of M and d. That

is, F is a sum of terms Fl, each of which is a multiple of M
and d of some exponents. Since F and Fl are scalars, in each

term Fl, we need functions f and g to transform M and d
with exponents to scalars, respectively. Formally,

F =
∑

l
Fl =

∑
l
fφl

(Mkl) · gψl
(d), (2)

where Mkl is the kl-th power of adjacency matrix M whose

cell (i, j) denotes the number of paths between node i and j
of length kl, φl projects a matrix to a cell, a row, a column

0

101

1

1

0

00

1

0

0

0

11

*
jiM1

0

1

1

0

00 1*
jiM1 0

A

C B

ED

(a) Original graph (b) Adjacency bit matrix

Adjacency bit vector

1

1 Perturbed and transmitted bits

Copied bits

A

B

C

D

E

A B C D E

Fig. 2. Illustration of RABV protocol

or a sub-matrix, and fφl
(·) denotes an aggregation function f

(e.g., sum) after projection φl. Likewise, ψl projects a vector

to a scalar or a sub-vector, and gψl
(·) denotes an aggregation

function g after ψl.
As such, the metric reduction step is to determine kl, fφl

(·),
and gψl

(·) for each term Fl in Eq. 2.

B. Adjacency Bit Vector Perturbation

An intuitive approach, known as Randomized Neighbor List
(RNL) [10], perturbs each bit of the vector independently

by the classic Randomized Response (RR) [12]. Formally,

given an adjacency bit vector B = {b1, b2, ..., bn}, and

privacy budget ε1, the perturbed vector B̃ = {b̃1, b̃2, ..., b̃n} is

obtained as follows:

b̃i =

{
bi w.p. eε1

1+eε1

1− bi w.p. 1
1+eε1

(3)

RNL is proved to satisfy ε1-edge LDP for each user.

However, for undirected graphs, RNL can only achieve
2ε1-edge LDP for the collector, because the data collector

witnesses the same edge perturbed twice and independently.

Let M̃ = {B̃1, B̃2, ..., B̃n} denote the perturbed adjacency

matrix. The edge between node i and j appears in both

M̃ij and M̃ji, each perturbed with privacy budget ε1. Then

according to the theorem of composability, RNL becomes a

2ε1-edge LDP algorithm for an undirected graph, which is

less private. Furthermore, RNL requires each user to perturb

and send all n bits in the adjacency bit vector to data collector,

which incurs a high computation and communication cost.

To address the problems of RNL, we propose a more

private and efficient protocol Randomized Adjacency Bit Vector
(RABV) to perturb edges in undirected graphs. As shown in

Fig. 2(b), the adjacency matrix is composed of n rows, each

corresponding to the adjacency bit vector of a node. For the

first 1 ≤ i ≤ �n2 	 nodes, RABV uses RR as in Eq.3 to

perturb and transmit t = �n2 	 bits (i.e., bits in grey) — from

the (i+ 1)-th bit to the (i+ 1+ t mod n)-th bit; for the rest

nodes, RABV uses RR to perturb and transmit t = �n−1
2 	

bits in the same way. In essence, RABV perturbs one and
only one bit for each pair of symmetric bits in the adjacency

matrix. The data collector can then obtain the whole matrix

by copying bits in grey to their symmetric positions.

Following the same proof of RNL, RABV is guaranteed

to satisfy ε1-edge LDP for the collector. Further, since each

node only perturbs and transmits about half of the bits in an

adjacency bit vector, RABV significantly reduces computa-

tion and communication cost of RNL.

1924

C. Node Degree Perturbation

Releasing the degree of a node while satisfying edge ε-
LDP is essentially a centralized DP problem because all edges

incident to this node, or equivalently, all bits in its adjacency

bit vector, form a database and the degree is a count function.

In the literature, Laplace Mechanism [2] is the predominant

technique to perturb numerical function values such as counts.

As such, LF-GDPR adopts it to perturb the degree di of

each node i. According to the definition of edge LDP, two

adjacency bit vectors B and B′ are two neighboring databases

if they differ in only one bit. As such, the sensitivity of

degree (i.e., count function) is 1, and therefore adding Laplace

noise Lap(1
ε2
) to the node degree can satisfy ε2-LDP. That is,

d̃i = di + Lap(1
ε2
).

Similar to perturbing adjacency bit vector, however, in the

above naive approach the data collector witnesses two node

degrees di and dj perturbed independently, but they share the

same edge between i and j. As DP or LDP does not refrain

an adversary from possessing any background knowledge, in

the worst case the collector already knows all edges except for

this one. As such, witnessing the two node degrees di and dj
is degenerated to witnessing the edge between i and j twice

and independently.

Unfortunately, the remedy that works for perturbing adja-

cency bit vector cannot be adopted here, as direct bit copy

is not feasible for degree. As such, we take an alternative

approach to increase the Laplace noise. The following theorem

proves that if we add Laplace noise Lap(2
ε2
) to every node

degree, ε2-LDP can be satisfied for the collector.

Theorem 4.1: A perturbation algorithm A satisfies ε2-LDP

for the collector if it adds Laplace noise Lap(2
ε2
) to every

node degree di, i.e., d̃i = A(di) = di + Lap(2
ε2
).

PROOF. Please refer to our technical report [14].

D. Aggregation and Calibration

Upon receiving the perturbed adjacency matrix M̃ and

degree vector d̃,1 the data collector can estimate the target

graph metric F̃ by aggregation according to Eq. 2 with a

calibration function R(·):
F̃ =

∑
l
R

(
fφl

(M̃kl)
)
· gψl

(d̃) (4)

The calibration function aims to suppress the aggregation bias

of M̃ propagated by fφl
. On the other hand, no calibration is

needed for gψl
(d̃) as d̃ is already an unbiased estimation of

d, thanks to the Laplace Mechanism.

To derive R(·), we regard R as the mapping between

fφl
(Mkl) and fφl

(M̃kl). In other words, R estimates

fφl
(Mkl) after observing fφl

(M̃kl). Formally,

R : fφl
(M̃kl)→ fφl

(Mkl)

Further, the following theorem shows the accuracy guaran-

tee of LF-GDPR.

1In the sequel, ˜d denotes the refined degree ˜d∗ to simplify the notation.

Theorem 4.2: For a graph metric F and our estimation F̃ ,

with at least 1− β probability, we have

|F − F̃ | = O(

√
E[F̃ 2] · log(1/β))

PROOF. Please refer to our technical report [14].

V. CONCLUSION

This paper presents a parameterized framework LF-GDPR

for privacy-preserving graph metric estimation and analytics

with local differential privacy. The building block is a user-

side perturbation algorithm, and a collector-side aggregation

and calibration algorithm. LF-GDPR simplifies the job of

developing a practical LDP solution for a graph analysis task

by providing a complete solution for all LDP steps. As for

future work, we plan to extend LF-GDPR to more specific

graph types, such as attributed graph and DAG. We will also

evaluate the performance of LF-GDPR on other graph analysis

tasks such as influential node analysis to demonstrate its wide

applicability.

ACKNOWLEDGMENT

This work was supported by National Natural Science Foun-

dation of China (Grant No: 91646203, 61941121, 61572413,

U1636205, 61532010, 91846204 and 61532016), the Re-

search Grants Council, Hong Kong SAR, China (Grant No:

15238116, 15222118 and C1008-16G) (corresponding author:

Xiaofeng Meng).

REFERENCES

[1] J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Local privacy and
statistical minimax rates. In FOCS, pages 429–438. IEEE, 2013.

[2] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to
sensitivity in private data analysis. In TCC, pages 265–284. Springer,
2006.

[3] J. Han, M. Kamber, and J. Pei. Data Mining: Concepts and Techniques.
Morgan Kaufmann, 3 edition, 2011.

[4] M. Hay, C. Li, G. Miklau, and D. Jensen. Accurate estimation of the
degree distribution of private networks. In ICDM, pages 169–178, 2009.

[5] Z. Jorgensen, T. Yu, and G. Cormode. Publishing attributed social graphs
with formal privacy guarantees. In SIGMOD, pages 107–122, 2016.

[6] S. P. Kasiviswanathan, K. Nissim, S. Raskhodnikova, and A. Smith.
Analyzing graphs with node differential privacy. In TCC, pages 457–
476. Springer, 2013.

[7] W. Lu and G. Miklau. Exponential random graph estimation under
differential privacy. In KDD, pages 921–930. ACM, 2014.

[8] T. Martin, X. Zhang, and M. Newman. Localization and centrality in
networks. Physical review E, 90(5):052808, 2014.

[9] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity and
sampling in private data analysis. In STOC, pages 75–84. ACM, 2007.

[10] Z. Qin, T. Yu, Y. Yang, I. Khalil, X. Xiao, and K. Ren. Generating
synthetic decentralized social graphs with local differential privacy. In
CCS, pages 425–438. ACM, 2017.

[11] B. Stephanie, Facebook Scandal a ‘Game Changer’ in Data Privacy
Regulation. Bloomberg, Apr 8, 2018.

[12] S. L. Warner. Randomized response: A survey technique for eliminating
evasive answer bias. Journal of the American Statistical Association,
60(309):63–69, 1965.

[13] X. Xu, N. Yuruk, Z. Feng, and T. A. J. Schweiger. SCAN: a structural
clustering algorithm for networks. In KDD, pages 824–833. ACM, 2007.

[14] Q. Ye, H. Hu, M. H. Au, X. Meng, and X. Xiao. LF-GDPR: A frame-
work for estimating graph metrics with local differential privacy. Tech-
nical report. http://www.eie.polyu.edu.hk/%7ehaibohu/papers/lfgdpr.pdf.

[15] Q. Ye, H. Hu, X. Meng, and H. Zheng. PrivKV: Key-value data
collection with local differential privacy. In S&P, pages 317–331. IEEE,
2019.

1925

A Unified Adversarial Learning
Framework for Semi-supervised
Multi-target Domain Adaptation

Xinle Wu1,2, Lei Wang2(B), Shuo Wang1, Xiaofeng Meng1, Linfeng Li2,3,
Haitao Huang4, Xiaohong Zhang5, and Jun Yan2

1 School of Information, Renmin University of China, Beijing, China
{xinle.wu,shuowang,xfmeng}@ruc.edu.cn

2 Yidu Cloud (Beijing) Technology Co., Ltd., Beijing, China
{lei.wang01,Linfeng.Li,jun.yan}@yiducloud.cn

3 Institute of Information Science, Beijing Jiaotong University, Beijing, China
4 The second Department of Neurology, Liaoning People’s Hospital, Shenyang, China

5 The Fourth Affiliated Hospital, China Medical University,
Taichung, Taiwan, R.O.C.

Abstract. Machine learning algorithms have been criticized as diffi-
cult to apply to new tasks or datasets without sufficient annotations.
Domain adaptation is expected to tackle this problem by establishing
knowledge transfer from a labeled source domain to an unlabeled or
sparsely labeled target domain. Most existing domain adaptation mod-
els focus on the single-source-single-target scenario. However, the pair-
wise domain adaptation approaches may lead to suboptimal performance
when there are multiple target domains available, because the informa-
tion from other related target domains is not being utilized. In this work,
we propose a unified semi-supervised multi-target domain adaptation
framework to implement knowledge transfer among multiple domains (a
single source domain and multiple target domains). Specifically, we aim
to learn an embedded space and minimize the marginal probability distri-
bution differences among all domains in the space. Meanwhile, we intro-
duce Prototypical Networks to perform classification, and extend it to
semi-supervised settings. On this basis, we further align the conditional
probability distributions among the domains by generating pseudo-labels
for the unlabeled target data and training the model with bootstrapping
method. Extensive sentiment analysis experiments show that our app-
roach significantly outperforms several state-of-the-art methods.

Keywords: Domain adaptation · Adversarial learning ·
Semi-supervised · Prototypical networks · Self-training · Sentiment
analysis

1 Introduction

Supervised learning algorithms have achieved great success in many fields with
the availability of large quantities of labeled data. However, it is costly and time-
consuming to annotate such large-scale training data for new tasks or datasets.
c© Springer Nature Switzerland AG 2020
Y. Nah et al. (Eds.): DASFAA 2020, LNCS 12112, pp. 419–434, 2020.
https://doi.org/10.1007/978-3-030-59410-7_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59410-7_29&domain=pdf
https://doi.org/10.1007/978-3-030-59410-7_29

420 X. Wu et al.

A naive idea is directly applying the model trained on a labeled source domain
to the related and sparsely labeled target domain. Unfortunately, the model
usually fails to perform well in the target domain due to domain shifts [24].
Domain adaptation (DA) is proposed to address this problem by transferring
knowledge from a labeled source domain to a sparsely labeled target domain.

Existing DA methods can be divided into: supervised DA (SDA) [14,20,26],
semi-supervised DA (SSDA) [11,21,23,31], and unsupervised DA (UDA) [4,5,9,
15]. SDA methods assume that there are some labeled data in the target domain,
and perform DA algorithms only use the labeled data. Conversely, UDA methods
do not need any target data labels, but they require large amounts of unlabeled
target data to align the distributions between domains. Considering that it is
cheap to annotate a small number of samples and a few labeled data often leads
to significant performance improvements, we focus on SSDA which exploits both
labeled and unlabeled data in target domains.

Typical DA methods are designed to embed the data from the source and tar-
get domains into a common embedding space, and align the marginal probability
distributions between the two domains. There are two approaches to achieve this,
adversarial training [4,10,20,27] and directly minimizing the distance between
the two distributions [15,18,28,35]. Both of the methods can generate domain-
invariant feature representations for input data, and the representations from
the source domain are used to train a classifier, which is then generalized to the
target domain. However, only aligning the marginal distributions is not sufficient
to ensure the success of DA [4,5,12,33], because the conditional probability dis-
tributions between the source and target domains may be different.

Most DA algorithms focus on the single-source-single-target setting. How-
ever, in many practical applications, there are multiple sparsely labeled target
domains. For example, in the sentiment analysis task of product reviews, we can
take the reviews of Books, DVDs, Electronics and Kitchen appliances as differ-
ent domains. If we only have access to sufficient labeled data of Book reviews
(source domain), and hope to transfer knowledge to the other domains, then
each of the other domains can be seen as a target domain. In this case, pair-
wise adaptation approaches may be suboptimal, especially when there are shared
features between the source and multiple target domains or the source and the
target domain are associated through another target domain [9]. This is due to
that these methods fail to leverage the knowledge from other relevant target
domains. In addition, considering the distribution differences among multiple
target domains, simply merging multiple target domains into a single one may
not be the optimal solution.

To address these problems, we propose semi-supervised multi-target domain
adaptation networks (MTDAN). Specifically, we use a shared encoder to extract
the common features shared by all domains, and a private encoder to extract
the domain-specific features of each domain. For feature representations gener-
ated by the two encoders, we train a domain discriminator to distinguish which
domain they come from. To ensure that the shared representation is domain-
invariant, the shared encoder is encouraged to generate the representation

A Unified Adversarial Learning Framework for Domain Adaptation 421

cannot be correctly distinguished by the domain discriminator. Given that there
are only a few labeled data in each target domain, we introduce Prototypical
Networks to perform classification, which is more superior than deep classifiers
in few-shot scenarios [25]. We further leverage unlabeled data to refine proto-
types, and extend Prototypical Networks to semi-supervised scenarios. Moreover,
we utilize the self-training algorithm to exploit unlabeled target data, and we
show that it can also align the class-conditional probability distributions among
multiple domains.

Contributions. Our contributions are: a) We propose a unified adversarial
learning framework for semi-supervised multi-target DA. b) We show that the
prototype-based classifier can achieve better performance than the deep classi-
fier when target domains have only a few labeled data and large amounts of
unlabeled data. c) We show that the self-training algorithm can effectively align
the class-conditional probability distributions among multiple domains. d) Our
method outperforms several state-of-the-art DA approaches on sentiment anal-
ysis dataset.

2 Related Work

Domain Adaptation. Numerous domain adaptation approaches have been
proposed to solve domain shift [29]. Most of them seek to learn a shared embed-
ded space, in which the representations of source domain and target domain
cannot be distinguished [27]. Based on that, the classifier trained with labeled
source data can be generalized to the target domain. There are two typical ways
to learn cross-domain representations: directly minimizing the distance between
two distributions [15,17,18] and adversarial learning [6,7,26,27].

For the first method, several distance metrics have been proposed to measure
the distance between source and target distributions. One common distance met-
ric is the Maximum Mean Discrepancy (MMD) [2], which computes the norm
of the difference between two domain means in the reproducing Kernel Hilbert
Space (RKHS). Specifically, the DDC method [28] used both MMD and regular
classification loss on the source to learn representations that are discriminative
and domain invariant. The Deep Adaptation Network (DAN) [15] applied MMD
to the last full connected layers to match higher order statistics of the two distri-
butions. Most recently, [18] proposed to reduce domain shift in joint distributions
of the network activation of multiple task-specific layers. Besides, Zellinger et al.
proposed Center Moment Discrepancy (CMD) [32] to diminish the domain shift
by aligning the central moment of each order across domains.

The other method is to optimize the source and target mappings using adver-
sarial training. The idea is to train a domain discriminator to distinguish whether
input features come from the source or target, whereas the feature encoder is
trained to deceive the domain discriminator by generating representations that
cannot be distinguished. [6] proposed the gradient reversal algorithm (ReverseG-
rad), which directly maximizes the loss of the domain discriminator by reversing
its gradients. DRCN in [8] takes a similar approach in addition to learning to

422 X. Wu et al.

reconstruct target domain images. [3] enforced these adversarial losses in a shared
feature space, while learned a private feature space for each domain to avoid the
contamination of shared representations.

[4,27,33] argued that only aligning the marginal probability distributions
between the source and target is not enough to guarantee successful domain
adaptation. [16] proposed to align the marginal distributions and conditional
distributions between the source and target simultaneously. [20] extended the
domain discriminator to predict the domain and category of the embedded repre-
sentation at the same time to align the joint probability distributions of input and
output, and achieved a leading effect in the supervised domain adaptive scene.
[5] proposed to align the class-conditional probability distributions between the
source and target.

Recently, Zhao et al. [34] introduced an adversarial framework called MDAN,
which is used for multi-source-single-target domain adaption. They utilized a
multi-class domain discriminator to align the distributions between multiple
source and a target domain. [9] proposed an information theoretic approach to
solve unsupervised multi-target domain adaptation problem, which maximizes
the mutual information between the domain labels and domain-specific features,
while minimizes the mutual information between the the domain labels and the
domain-invariant features. Unlike their approach, we base our method on self-
training rather than entropy regularization. Moreover, we introduce prototypical
networks to perform classification, which is more effective than deep classifiers
in SSDA scenarios.

Semi-supervised Learning. Recently, some works treat domain adaptation
as a semi-supervised learning task. [11] proposed a Domain Adaptive Semi-
supervised learning framework (DAS) to jointly perform feature adaptation
and semi-supervised learning. [21] applied a co-training framework for semi-
supervised domain adaptation, in which the shared classifier and the private
classifier boost each other to achieve better performance. [22] re-evaluated clas-
sic general-purpose bootstrapping approaches under domain shift, and proved
that the classic bootstrapping algorithms make strong baselines on domain adap-
tation tasks.

3 Preliminaries

In this section, we introduce the notations and definitions related to single-
source-multi-target DA.

Notations. We use D to denote a domain, which consists of an m-dimensional
feature space X and a marginal probability distribution P (x), i.e., D =
{X , P (x)}, where x ∈ X . We use T to denote a task which consists of a C-
cardinality label set Y and a conditional probability distribution P (y|x), i.e.,
T = {Y, P (y|x)}, where y ∈ Y.

Problem Formulation (Single-Source-Multi-target Domain Adapta-
tion). Let Ds = {(xs

l , y
s
l)}ns

l=1 be a labeled source domain where ns is the

A Unified Adversarial Learning Framework for Domain Adaptation 423

x

Es

Ep

zs

zp

F DLdiff Lrecon Ld

Lc

Fig. 1. The network structure of the proposed framework. The shared encoder Es

captures the common features shared among domains, while the private encoder Ep

captures the domain-specific features. The shared decoder F reconstruct the input
samples by using both the shared and private representations. The domain classifier D
learns to distinguish which domain the input representations come from. The orthog-
onality constraint loss Ldiff encourages Es and Ep to encode different aspects of the
inputs. The prototype-based classifier is computed on-the-fly, and the classification loss
Lc is only used to optimize Es.

number of labeled samples and let Dt = {Dti}Ki=1 be multiple sparsely labeled
target domains where Dti = {(xti

l , yti
l)}nli

l=1

⋃
{xti

u }nui
u=1, K is the number of target

domains, and nli(nli � ns) and nui
(nui

� nli) refer to the number of labeled
and unlabeled samples of i-th target domain respectively. We assume that all
domains share the same feature space X and label space Y, but the marginal
probability distributions and the conditional probability distributions of source
domain and multiple target domains are different from each other. The goal is
to learn a classifier using the labeled source data and a few labeled target data,
that generalizes well to the target domain.

4 Methodology

In this section, we describe each component and the corresponding loss function
of the proposed framework in detail.

4.1 Proposed Approach

Our model consists of four components as shown in Fig. 1. A shared encoder
Es is trained to learn cross-domain representations, a private encoder Ep is
trained to learn domain-specific representations, a shared decoder F is trained
to reconstruct the input sample, and a discriminator D is trained to distinguish
which domain the input sample comes from. Task classification is performed by
calculating the distance from the domain-invariant representations to prototype
representations of each label class.

Domain-Invariant and Domain-Specific Representations. We seek to
extract domain-invariant (shared) and domain-specific (private) representations

424 X. Wu et al.

for each input x simultaneously. In our model, the shared encoder Es and the
private encoder Ep learn to generate the above two representations respectively:

zs = Es(x,θs)
zp = Ep(x,θp)

(1)

Here, θs and θp refer to the parameters of Es and Ep respectively, zs and zp
refer to the shared and private representations of the input x respectively. Note
that Es and Ep can be MLP, CNN or LSTM encoders, depending on different
tasks and datasets.

Reconstruction. In order to avoid information loss during the encoding, we
reconstruct input samples with both shared and private representations. We use
x̂ to denote the reconstruction of the input x, which is generated by decoder F :

x̂ = F (zs + zp,θf), (2)

where θf are the parameters of F . We use mean square error to define the
reconstruction loss LRecon, which is applied to all domains:

LRecon =
λr

N

N∑

i=1

1
C

‖xi − x̂i‖22, (3)

where C is the dimension of the input x, N is the total number of samples in all
domains, xi refers to the i-th sample, λr is the hyper-parameter controlling the
weight of the loss function, and ‖ · ‖22 is the squared L2-norm.

Orthogonality Constraints. To minimize the redundancy between shared and
private representations, we introduce orthogonality constraints to encourage the
shared and private encoders to encode different aspects of inputs. Specifically,
we use Hs to denote a matrix, each row of which corresponds to the shared
representation of each input x. Similarly, let Hp be a matrix, each row of which
corresponds to the private representation of each input x. The corresponding
loss function is:

LDiff = λdiff‖H�
s Hp‖2F , (4)

where λdiff is the scale factor, ‖ · ‖2F is the squared Frobenius norm.

Adversarial Training. The goal of adversarial training is to regularize the
learning of the shared encoder Es, so as to minimize the distance of distribu-
tions among source and multiple target domains. After that, we can apply the
source classification model directly to the target representations. Therefore, we
first train a domain discriminator D with the domain labels of the shared and
private representations (since we know which domain each sample comes from,
it is obvious that we can generate a domain label for each sample). The dis-
criminator D is a multi-class classifier designed to distinguish which domain the

A Unified Adversarial Learning Framework for Domain Adaptation 425

Algorithm 1. MTDAN Algorithm
Input: labeled source domain examples Ls, labeled multi-target domain examples

Lt = {Lti}Ki=1, unlabeled multi-target domain examples Ut = {Uti}Ki=1

Hyper-parameters: coefficients for different losses: λr, λd, λc, λdiff , mini-batch size
b, learning rate η

1: initialize θs, θp, θf , θd

2: repeat
3: repeat
4: Sample a mini-batch from {Ls, Lt}
5: Train F by minimizing LRecon

6: Train D by minimizing LD

7: Train Ep by minimizing LP

8: Train Es by minimizing LS

9: until Convergence
10: Apply Eq.(9) to label Ut

11: Select the most confident p positive and n negative predicted examples U l
t

from Ut

12: Remove U l
t from Ut

13: Add examples U l
t and their corresponding labels to Lt

14: until obtain best performance on the developing dataset

input representation comes from. Thus, D is optimized according to a standard
supervised loss, defined below:

LD = LDp
+ LDs

, (5)

LDp
= −λd

N

N∑

i=1

d�
i log D(Ep(xi,θp),θd), (6)

LDs
= −λd

N

N∑

i=1

d�
i log D(Es(xi,θs),θd), (7)

where di is the one-hot encoding of the i-th sample’s domain label, θd is the
parameter of D, and λd is the scale factor.

Second, we train the shared encoder Es to fool the discriminator D by gen-
erating cross-domain representations. We guarantee this by adding −LDs

to the
loss function of the shared encoder Es. On the other hand, we hope the private
encoder only extracts domain-specific features. Thus, we add LDp

to the loss
function of Ep to generate representations that can be distinguished by D.

Prototypical Networks for Task Classification. The simplest way to clas-
sify the target samples is to train a deep classifier, however, it may only achieve

426 X. Wu et al.

suboptimal performance as we can see in Table 1. The reason is that there are
only a few labeled samples in each target domain, which is not enough to fine-
tune a deep classifier with many parameters, so that the classifier is easy to over
fit the source labeled data. Although we could generate pseudo-labeled data for
target domains, the correctness of the pseudo-labels can not be guaranteed due
to the poor performance of the deep classifier.

To efficiently utilize the labeled samples in target domains, we refer to the
idea of prototypical networks [25]. Prototypical networks assume that there is
a prototype in the latent space for each class, and the projections of samples
belonging to this class cluster around the prototype. The classification is then
performed by computing the distances to prototype representations of each class
in the latent space. By reducing parameters of the model, the prototype-based
classifier can achieve better performance than the deep classifier when labeled
samples are insufficient. Note that we refine prototypes during self-training by
allowing unlabeled samples with pseudo-labels to update the prototypes. Specif-
ically, we compute the average of shared representations belonging to each class
in a batch as prototypes:

ck =
1
nk

nk∑

i=1

Es(xi,θs), (8)

where nk is the number of samples belonging to class k in a batch. Then we
calculate a distribution by applying softmax function to distances between a
shared representation with a prototype:

p(y = k|x) =
exp(−d(zs, ck))∑
k′ exp(−d(zs, c′

k))
, (9)

where d(·) is a distance measure function. We use the squared Euclidean distance
in this work. The classification loss is defined as:

LC = −λc log p(y = k|x), (10)

where λc is the scale factor.

Self-training for Conditional Distribution Adaptation. As described in
[5,19], only aligning the marginal probability distributions between source and
target is not enough to guarantee successful domain adaptation. Because this
only enforces alignment of the global domain statistics with no class specific
transfer. Formally, we can achieve Ps(Es(xs)) ≈ Pti(Es(xti)) by introducing
adversarial training, but Ps(ys|Es(xs)) �= Pti(yti |Es(xti)) may still hold, where
Ps(ys|Es(xs)) can be regarded as the classifier trained with source data.

Here, we tackle this problem by further reducing the difference of condi-
tional probability distributions among source domain and target domains. In
practice, we replace conditional probability distributions with class-conditional
probability distributions, because the posterior probability is quite involved [16].

A Unified Adversarial Learning Framework for Domain Adaptation 427

However, it is nontrivial to adapt class-conditional distributions, as most of the
target samples are unlabeled. We address this problem by producing pseudo-
labels for unlabeled target samples, and train the whole model in a bootstrap-
ping way. As we perform more learning iterations, the number of target samples
with correct pseudo-labels grows and progressively enforces distributions to align
class-conditionally.

To be specific, we first train our model on labeled source and target samples.
Then, we use the model to generate a probability distribution over classes for
each unlabeled target sample. If the probability of a sample on a certain class
is higher than a predetermined threshold τ , the sample would be added to the
training set with the class as its pseudo-label.

Loss Function and Model Training. We alternately optimize the four mod-
ules of our model.

For Ep, the goal of training is to minimize the following loss:

LP = LRecon + LDiff + LDp
(11)

For Es, the goal of training is to minimize the following loss:

LS = LRecon + LDiff − LDs
+ LC (12)

For F and D, the losses are LRecon and LD, respectively. The detailed training
process is shown in algorithm 1.

5 Experiments

5.1 Dataset

We evaluate our proposed model on the Amazon benchmark dataset [1]. It is a
sentiment classification dataset1, which contains Amazon product reviews from
four different domains: Books (B), DVD (D), Electronics (E), and Kitchen appli-
ances (K). We remove reviews with neutral labels and encode the remaining
reviews into 5000 dimensional feature vectors of unigrams and bigrams with
binary labels indicating sentiment.

We pick two product as the source domain and the target domain in turn,
and the other two domains as the auxiliary target domains, so that we con-
struct 12 single-source-three-target domain adaptation tasks. For each task, the
source domain contains 2,000 labeled examples, and each target domain con-
tains 50 labeled examples and 2,000 unlabeled examples. To fine-tune the hyper-
parameters, we randomly select 500 labeled examples from the target domain as
the developing dataset.

1 https://www.cs.jhu.edu/mdredze/datasets/sentiment/.

https://www.cs.jhu.edu/ mdredze/datasets/sentiment/

428 X. Wu et al.

5.2 Compared Method

We compare MTDAN with the following baselines:

(1) ST: The basic neural network classifier without any domain adaptation
trained on the labeled data of the source domain and the target domain.

(2) CoCMD: This is the state-of-the-art pairwise SSDA method on the Ama-
zon benchmark dataset [21]. The shared encoder, private encoder and recon-
struction decoder used in this model are the same as ours.

(3) MTDA-ITA: This is the state-of-the-art single-source-multi-target UDA
method on three benchmark datasets for image classification [9]. We imple-
mented the framework and extend it to semi-supervised DA method. The
shared encoder, private encoder, reconstruction decoder and domain classi-
fier used in this model are the same as ours.

(4) c-MTDAN: We combine all the target domains into a single one, and train
it using MTDAN. Similarly, we also report the performance of c-CoCMD
and c-MTDA-ITA.

(5) s-MTDAN: We do not use any auxiliary target domains, and train
MTDAN on each source-target pair.

5.3 Implementation Details

Considering that each input sample in the dataset is a tf-idf feature vector with-
out word ordering information, we use a multilayer perceptron (MLP) with an
input layer (5000 units) and one hidden layer (50 units) and sigmoid activation
functions to implement both shared and private encoders. The reconstruction
decoder consists of one dense hidden layer (2525 units), tanh activation func-
tions, and relu output functions. The domain discriminator is composed of a
softmax layer with n-dimensional outputs, where n is the number of the source
and target domains. For MTDA-ITA, we follow the framework proposed by [9],
and use the above modules to replace the original modules in the framework.
Besides, the task classifier for MTDA-ITA is a fully connected layer with softmax
activation functions.

The network is trained with Adam optimizer [13] and with learning rate
10−4. The mini-batch size is 50. The hyper-parameters λr, λd, λc and λdiff are
empirically set to 1.0, 0.5, 0.1 and 1.0 respectively. The threshold τ for produc-
ing pseudo-labels is set to 0.8. Following previous studies, we use classification
accuracy metric to evaluate the performances of all approaches.

5.4 Results

The performances of the proposed model and other state-of-the-art methods
are shown in Table 1. Key observations are summarized as follows. (1) The pro-
posed model MTDAN achieves the best results in almost all tasks, which proves
the effectiveness of our approach. (2) c-CoCMD has worse performance in all
tasks compared with CoCMD, although c-CoCMD exploits labeled and unla-
beled data from auxiliary target domains for training. Similar observation can

A Unified Adversarial Learning Framework for Domain Adaptation 429

also be observed by comparing MTDA-ITA with c-MTDA-ITA and MTDAN
with c-MTDAN. This demonstrates that simply combine all target domains into
a single one is not an effective method to solve the multi-target DA problem. (3)
Our model outperforms CoCMD by an average of nearly 2.0%, which indicates
that our model can effectively leverage the labeled and unlabeled data from
multiple target domains. Similarly, our model performs better than its variant,
s-MTDAN, which does not leverage the data from auxiliary target domains. This
also shows that it is helpful to mine knowledge from auxiliary target domains.
(4) Although MTDA-ITA is also a multi-target domain adaptation method, its
performance is worse than that of MTDAN. This can be due to (i) self-training
is a superior method than entropy regularization to exploit unlabeled target
data, (ii) the prototype-based classifier is more efficient than the deep classi-
fier in semi-supervised scenarios, (iii) we introduce orthogonality constraints to
further reduce the redundancy between shared and private representations. (5)
In the K→E task, MTDAN performs slightly worse than s-MTDAN. This can
be explained that domain K is closer to domain E than the other domains as
shown in Fig. 2 (a), and MTDAN leads to negative transfer when using relevant
target domains to help domain adaptation. (6) s-MTDAN outperforms CoCMD
in 9 of the 12 tasks, note that both of them do not use the auxiliary domains.
This indicates that our model is more effective than CoCMD in pairwise domain
adaptation task. (7) All models achieve better performance than the basic ST
model, which demonstrates that domain adaptation methods are crucial when
there exist a domain gap between the source domain and the target domain.

Table 1. Average classification accuracy with 5 runs on target domain testing dataset.
The best is shown in bold. c-X: combining all target domains into a single one and
performing pairwise domain adaptation with model X. s-X: performing pairwise domain
adaptation between the original source and target domains with model X

Method B→D B→E B→K D→B D→E D→K E→B E→D E→K K→B K→D K→E

ST 81.6 75.8 78.2 80.0 77.0 80.4 74.7 75.4 85.7 73.8 76.6 85.3

CoCMD 83.1 83.0 85.3 81.8 83.4 85.5 76.9 78.3 87.3 77.2 79.6 87.2

c-CoCMD 82.7 82.2 84.5 80.6 83.0 84.8 76.3 77.6 87.1 75.9 79.4 86.1

MTDA-ITA 83.8 83.2 83.7 81.8 83.6 85.4 76.6 78.9 87.7 77.0 78.8 86.8

c-MTDA-ITA 83.3 82.3 83.2 81.4 83.0 85.0 76.0 79.3 87.6 76.7 78.5 87.0

s-MTDAN 83.3 83.9 84.7 81.6 83.7 84.7 78.0 80.2 87.9 78.6 79.9 87.8

c-MTDAN 84.0 84.0 85.5 81.7 84.3 85.9 80.2 80.7 88.1 79.8 80.5 87.0

MTDAN 84.5 84.3 86.0 82.3 85.3 87.2 80.5 81.2 88.9 80.0 80.9 87.4

5.5 Ablation Studies

We performed ablation experiments to verify the importance of each compo-
nent of our proposed model. We report the results of removing orthogonality

430 X. Wu et al.

constraints loss (set λdiff=0), self-training process, the prototype-based classi-
fier (replaced by the deep classifier) respectively.

As we can see from Table 2, removing each of the above components causes
performance degradation. To be specific, disabling self-training degrades the per-
formance to the greatest extent, with an average decrease of 5.1%, which shows
the importance of mining information from the unlabeled data of target domains.
Similarly, replacing prototype-based classifiers with deep classifiers also leads to
performance degradation, with an average decrease of 1.4%, which shows that
the prototype-based classifiers is more effective than deep classifiers in semi-
supervised scenarios. Besides, disabling the orthogonality constraints loss leads
to a performance degradation of 0.7%, which indicates that encouraging the dis-
joint of shared and private representations can make the shared feature space
more common among all domains.

We did not test the performance degradation caused by disabling recon-
struction loss and multi-class adversarial training loss, because they have been
proved in previous work [3,9]. To summarize, each of the proposed components
helps improve classification performance, and using all of them brings the best
performance.

Table 2. Ablations. Performance of the proposed model when one component is
removed or replaced. woDiff means without orthogonality constraints loss, woSelf
means without self-training procedures, woProto means replace the prototype-based
classifier with the deep classifier.

Method B→D B→E B→K D→B D→E D→K E→B E→D E→K K→B K→D K→E

MTDAN-woDiff 84.1 83.6 85.9 81.5 85.0 86.7 79.7 80.5 88.3 79.6 80.0 87.0

MTDAN-woSelf 82.8 77.6 80.0 81.6 78.8 81.5 74.8 75.6 86.7 74.5 77.3 86.7

MTDAN-woProto 83.3 83.8 84.1 81.8 83.8 86.9 79.2 78.9 87.9 78.0 80.3 86.4

MTDAN 84.5 84.3 86.0 82.3 85.3 87.2 80.5 81.2 88.9 80.0 80.9 87.4

5.6 Feature Visualization

In order to understand the behavior of the proposed model intuitively, we project
the shared and private encoder outputs into two-dimensional space with principle
component analysis (PCA) [30] and visualize them. For comparison, we also show
the visualization result of the basic ST model. Due to space constraints, we only
show the visualization results of MTDAN with B as the source domain, E as the
target domain, D and K as the auxiliary target domains. The results are shown
in Fig. 2.

Figure 2 (a) shows the encoder output distribution of the ST model. As we
can see, the distributions of domain B and domain D (called group 1) are similar
and the distributions of domain E and domain D (called group 2) are similar,
while the distributions of cross-group domains are relatively different. That’s
why the ST model gets worse classification performance when the source domain

A Unified Adversarial Learning Framework for Domain Adaptation 431

(a) ST

(b) MTDAN-shared

(c) MTDAN-private

Fig. 2. Feature visualization for the embedding of source and target data. The red,
blue, yellow and green symbols denote the samples from B, D, E and K respectively.
The symbol ‘x’ is used for positive samples and ‘.’ is for negative samples. (a) the
distribution of the encoder output of ST, (b) the distribution of shared representations
of MTDAN, (c) the distribution of private representations of MTDAN. For ST and
MTDAN, we take B as the source domain and D, E and K as the target domains.

432 X. Wu et al.

and the target domain belong to different groups. Besides, there is no obvious
boundary between positive and negative samples, which is consistent with the
poor performance of the ST model.

Figure 2 (b) shows the distribution of the shared encoder output of the
MTDAN model. We can see that the shared representations of the source and
target domains are very close, which demonstrates that our model can effec-
tively align the marginal distributions among the source and multiple target
domains. Meanwhile, for each class of samples, the shared representations of
the source and target domains are also very close, which demonstrates that our
model can effectively align the class-conditional distributions among multiple
domains. Comparing (a) and (b), we can find that the boundary of positive and
negative samples in (b) is more obvious than that in (a), which means the shared
representations of MTDAN model have superior class separability.

Figure 2 (c) shows the distribution of the private encoder output of the
MTDAN model. We can see that the private representations have good domain
separability, partially because the domain discriminator D encourages the pri-
vate encoder Ep to generate domain-specific feature representations.

6 Conclusion

In this paper, we propose MTDAN, a unified framework for semi-supervised
multi-target domain adaptation. We utilize multi-class adversarial training to
align the marginal probability distributions among source domain and multiple
target domains. Meanwhile, we perform self-training on target unlabeled data to
align the conditional probability distributions among the domains. We further
introduce Prototypical Networks to replace the deep classifiers, and extend it
to semi-supervised scenarios. The experimental results on sentiment analysis
dataset demonstrate that our method can effectively leverage the labeled and
unlabeled data of multiple target domains to help the source model achieve
generalization, and is superior to the existing methods. The proposed framework
could be used for other domain adaptation tasks, and we leave this as our future
work.

Acknowledgment. This work was supported by National Natural Science Founda-
tion of China (Grant No: 91646203, 91846204, 61532010, 61941121, 61532016 and
61762082). The corresponding author is Xiaofeng Meng.

References

1. Blitzer, J., Dredze, M., Pereira, F.: Biographies, bollywood, boom-boxes and
blenders: Domain adaptation for sentiment classification. In: Proceedings of the
45th Annual Meeting of the Association of Computational Linguistics, pp. 440–
447 (2007)

2. Borgwardt, K.M., Gretton, A., Rasch, M.J., Kriegel, H.P., Schölkopf, B., Smola,
A.J.: Integrating structured biological data by kernel maximum mean discrepancy.
Bioinformatics 22(14), e49–e57 (2006)

A Unified Adversarial Learning Framework for Domain Adaptation 433

3. Bousmalis, K., Trigeorgis, G., Silberman, N., Krishnan, D., Erhan, D.: Domain
separation networks. In: Advances in Neural Information Processing Systems, pp.
343–351 (2016)

4. Cicek, S., Soatto, S.: Unsupervised domain adaptation via regularized conditional
alignment. arXiv preprint arXiv:1905.10885 (2019)

5. Gabourie, A.J., Rostami, M., Pope, P.E., Kolouri, S., Kim, K.: Learning a domain-
invariant embedding for unsupervised domain adaptation using class-conditioned
distribution alignment. In: 2019 57th Annual Allerton Conference on Communica-
tion, Control, and Computing (Allerton), pp. 352–359. IEEE (2019)

6. Ganin, Y., Lempitsky, V.S.: Unsupervised domain adaptation by backpropagation.
In: Proceedings of the 32nd International Conference on Machine Learning, ICML
2015, Lille, France, 6–11 July 2015, pp. 1180–1189 (2015)

7. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn.
Res. 17(1), 2030–2096 (2016)

8. Ghifary, M., Kleijn, W.B., Zhang, M., Balduzzi, D., Li, W.: Deep reconstruction-
classification networks for unsupervised domain adaptation. In: Leibe, B., Matas,
J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 597–613.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0 36

9. Gholami, B., Sahu, P., Rudovic, O., Bousmalis, K., Pavlovic, V.: Unsuper-
vised multi-target domain adaptation: An information theoretic approach. arXiv
preprint arXiv:1810.11547 (2018)

10. Guo, J., Shah, D.J., Barzilay, R.: Multi-source domain adaptation with mixture of
experts. In: Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, Brussels, Belgium, 31 October–4 November 2018, pp. 4694–
4703 (2018)

11. He, R., Lee, W.S., Ng, H.T., Dahlmeier, D.: Adaptive semi-supervised learning
for cross-domain sentiment classification. In: Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31
October–4 November 2018, pp. 3467–3476 (2018)

12. Hosseini-Asl, E., Zhou, Y., Xiong, C., Socher, R.: Augmented cyclic adversarial
learning for low resource domain adaptation. In: 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019
(2019)

13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd Interna-
tional Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
7–9 May 2015, Conference Track Proceedings (2015)

14. Koniusz, P., Tas, Y., Porikli, F.: Domain adaptation by mixture of alignments of
second-or higher-order scatter tensors. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 4478–4487 (2017)

15. Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with
deep adaptation networks. In: Proceedings of the 32nd International Conference
on Machine Learning, ICML 2015, Lille, France, 6–11 July 2015, pp. 97–105 (2015)

16. Long, M., Wang, J., Ding, G., Sun, J., Yu, P.S.: Transfer feature learning with joint
distribution adaptation. In: Proceedings of the IEEE International Conference on
Computer Vision, pp. 2200–2207 (2013)

17. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Unsupervised domain adaptation with
residual transfer networks. In: Advances in Neural Information Processing Systems,
pp. 136–144 (2016)

18. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Deep transfer learning with joint adap-
tation networks. In: Proceedings of the 34th International Conference on Machine
Learning, vol. 70, pp. 2208–2217 (2017). JMLR. org

http://arxiv.org/abs/1905.10885
https://doi.org/10.1007/978-3-319-46493-0_36
http://arxiv.org/abs/1810.11547

434 X. Wu et al.

19. Luo, Z., Zou, Y., Hoffman, J., Fei-Fei, L.F.: Label efficient learning of transferable
representations across domains and tasks. In: Advances in Neural Information Pro-
cessing Systems, pp. 165–177 (2017)

20. Motiian, S., Jones, Q., Iranmanesh, S., Doretto, G.: Few-shot adversarial domain
adaptation. In: Advances in Neural Information Processing Systems, pp. 6670–6680
(2017)

21. Peng, M., Zhang, Q., Jiang, Y.g., Huang, X.J.: Cross-domain sentiment classifica-
tion with target domain specific information. In: Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 2505–2513 (2018)

22. Ruder, S., Plank, B.: Strong baselines for neural semi-supervised learning under
domain shift. In: Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics, ACL 2018, Melbourne, Australia, 15–20 July 2018,
Volume 1: Long Papers, pp. 1044–1054 (2018)

23. Saito, K., Kim, D., Sclaroff, S., Darrell, T., Saenko, K.: Semi-supervised domain
adaptation via minimax entropy. arXiv preprint arXiv:1904.06487 (2019)

24. Shimodaira, H.: Improving predictive inference under covariate shift by weighting
the log-likelihood function. J. Stat. Plann. Inference 90(2), 227–244 (2000)

25. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In:
Advances in Neural Information Processing Systems, pp. 4077–4087 (2017)

26. Tzeng, E., Hoffman, J., Darrell, T., Saenko, K.: Simultaneous deep transfer across
domains and tasks. In: Proceedings of the IEEE International Conference on Com-
puter Vision, pp. 4068–4076 (2015)

27. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain
adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, pp. 7167–7176 (2017)

28. Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell, T.: Deep domain confusion:
maximizing for domain invariance. arXiv preprint arXiv:1412.3474 (2014)

29. Wang, M., Deng, W.: Deep visual domain adaptation: a survey. Neurocomputing
312, 135–153 (2018)

30. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemometr.
Intell. Lab. Syst. 2(1–3), 37–52 (1987)

31. Yao, T., Pan, Y., Ngo, C.W., Li, H., Mei, T.: Semi-supervised domain adapta-
tion with subspace learning for visual recognition. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 2142–2150 (2015)

32. Zellinger, W., Grubinger, T., Lughofer, E., Natschläger, T., Saminger-Platz, S.:
Central moment discrepancy (CMD) for domain-invariant representation learning.
In: 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, 24–26 April 2017, Conference Track Proceedings (2017)

33. Zhao, H., des Combes, R.T., Zhang, K., Gordon, G.J.: On learning invariant rep-
resentations for domain adaptation. In: Proceedings of the 36th International Con-
ference on Machine Learning, ICML 2019, 9–15 June 2019, Long Beach, California,
USA, pp. 7523–7532 (2019)

34. Zhao, H., Zhang, S., Wu, G., Moura, J.M., Costeira, J.P., Gordon, G.J.: Adversarial
multiple source domain adaptation. In: Advances in Neural Information Processing
Systems, pp. 8559–8570 (2018)

35. Zhuang, F., Cheng, X., Luo, P., Pan, S.J., He, Q.: Supervised representation learn-
ing: Transfer learning with deep autoencoders. In: Twenty-Fourth International
Joint Conference on Artificial Intelligence (2015)

http://arxiv.org/abs/1904.06487
http://arxiv.org/abs/1412.3474

	6-1.论文精选
	tkde
	icde
	Wu2020_Chapter_AUnifiedAdversarialLearningFra
	A Unified Adversarial Learning Framework for Semi-supervised Multi-target Domain Adaptation
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Methodology
	4.1 Proposed Approach

	5 Experiments
	5.1 Dataset
	5.2 Compared Method
	5.3 Implementation Details
	5.4 Results
	5.5 Ablation Studies
	5.6 Feature Visualization

	6 Conclusion
	References

